Homework 1 Math280A Fall 2017

Due Friday in class, Oct 6. Relevant sections in Durrett's textbook: 1.1; in Resnick book: 1.6,1.7, 1.8, 2.1, 2,2. Justify all your answers.

- 1. (exercise 16 Resnick p22). Suppose \mathcal{A} is a collection of subsets of Ω such that
- $\Omega \in \mathcal{A}$,
- $A \in \mathcal{A}$ implies $A^c \in \mathcal{A}$,
- if $A_1, ... A_n \in \mathcal{A}$ are disjoint subsets, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$.

Show that A is not necessarily a field. (Hint: try a collection of two point subsets of $\Omega = \{1, 2, 3, 4\}$.)

- 2. Let Ω be a non-empty set and \mathcal{C} be all one point subsets.
- (i) Show that

$$\sigma(\mathcal{C}) = \{ A \subseteq \Omega : A \text{ or } A^c \text{ is countable} \}.$$

- (ii) Suppose in addition Ω is uncountable. Let $P: \sigma(\mathcal{C}) \to [0,1]$ be defined as P(A) = 0 if A is countable; P(A) = 1 if A is not countable. Show that $(\Omega, \sigma(\mathcal{C}), P)$ is a probability space.
- 3. Exercise 1.1.4, Durrett page 9.
 - 4. Exercise 1.1.5, Durrett page 9.
- 5. (from Exercise 1.1.6 Durrett) A subset A of $\mathbb{N} = \{1, 2, ...\}$ is said to have asymptotic density θ if the limit

$$\lim_{n\to\infty} |A\cap\{1,2,...,n\}|/n$$

exists and is equal to θ . Let \mathcal{A} be the collection of sets for which the asymptotic density exists. Answer yes or no to the following:

- is \mathcal{A} closed under taking complements?
- is A closed under taking finite union?
- is A closed under taking disjoint finite union?
- is A closed under taking disjoint countable union?
- 6. Let P be a probability measure on the Borel σ -field $\mathcal{B}(\mathbb{R})$ of the real line \mathbb{R} . Use the $\pi \lambda$ theorem to show that for any $B \in \mathcal{B}(\mathbb{R})$, for any $\epsilon > 0$, there exists a set A which is a *finite* union of intervals such that

$$P(A\triangle B) < \epsilon$$
.

Here $A\triangle B$ is the symmetric difference: $A\triangle B=(A\cap B^c)\cup (A^c\cap B)$.