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1. Write X; = (1 4 t)~'/2¢20+9 . To show that it is a martingale, we consider the conditional expectation
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Since B; — Bg is indepdent of B, we have
(z+Bs)? —a? B2 —(s+1) (e —£78 Bs)?
= /(1 + t)*”%ﬁil 2@ dg = e2+D /(1 + t)*1/2ez<1+t—><tfi> dx
27 (t — s)
B2
which is (1 4+ s)1/2¢20+5) . This shows it is a martingale.
By martingale convergence theorem, X; — X, a.s. By Durrett theorem 8.2.7, X, is a constant a.s.
LetY; =

B
(ErEEn) L

Xi = (14 6)7 2 exp(V2 log(1 +1)/2).

If ¢ := limsupY; > 1 as., we pick any 1 < ¢y < c, then there are infinite many #'s such that X; >
(1+ t)(cg_l)/ 2. This implies that it is impossible to have X; convergent a.s. So, we must have ¢ < 1.

2. Write Z, = m({t € [0,1] : S;(t) > 0}) — 2#{k < n: S > 0}. Given any 6 > 0, we look at the proof
of Durrett example 8.6.4 with a = 0: on {max,,<y, | X;n| < 0v/n},

mit € [0,1]: SI(t) > 6} < %#{k <S>0} <mitel0,1]: S5t > o).

So, on {max;, <y, | Xm| < dv/n},

m{t € [0,1] : S;(t) >} —m{t € [0,1] : S;;(t) > 0}
<—Z,<m{te0,1]:S;(t) > -0} —m{t €[0,1] : S;(t) > 0}.

Because (we denote m as Lebesgue measure on [0, 1] for convenience)
m{S;(t) >} —m{S;(t) >0} - m{B; >} — m{B; > 0}

and
m{Sy(t) > -0} —m{S;(t) >0} - m{B; > =6} — m{B, > 0},

by continuity of a — m{B; > a} (see Durrett example 8.6.4), we can choose ¢ small enough such that
| Zy| < € for n large enough.



Since
P(|Zy| > €) = P(|Zy] > &, max | Xom| < 53/n) + P(|Z,] > &, max | Xom| > 6v/7)
m<n m<n

where the latter term goes to 0 using Chebyshev’s inequality, we have, by bounded convergence theorem,
for any € > 0,

limsupP(|Z,| > ¢)
<limsup P(|Z,| > ¢, max | X,,,| < §v/n) + limsup P(| Z,| > ¢, max | X,,,| > dv/n)
m<n m<n

=0.
This proves the convergence in probability.
. Let @, = m({t € [0,1] : S’(t) > 0}). By Donsker’s theorem @Q),, = m({t € [0,1] : B(t) > 0}) =: R
and R is arcsine distributed. We decompose, for any € > 0,

P(P,/n <z) =P(P,/n—Qn) + Py/n < )
=P((Py/n—Qn) >¢e,Py/n<z)+P(P,/n—Qn) <e,P,/n<x).

The first term goes to 0 by problem 2. For the second term, we know that P(P,/n — @, < ¢) — 1 by
problem 1. We also have

{Qngx_g}g{lpn/n_Qﬂ SE,Pn/ngx}g{Qn§x+€}
So, taking limit as n — oo, we have

P(R<z—¢)< lim P(P,/n<z) <P(R<z+¢).

n—o0

To conclude our proof, we let ¢ — 0 and use the fact that the distribution function of arcsine law is
continuous at every x (not simply right-continuous).

. H(x) > 0 for all z # a since the Markov chain is irreducible. Moreover, the function H is harmonic by
Levin-Peres-Wilmer proposition 9.1, taking h, 4 (x) = 1,— in proposition 9.1.

We denote 7, = minn : X,, = b. The P for {Y;} has the same law as {X,,} conditioned on reaching b
before a and being absorbed at b because for any x # b,
- P P,(Ty, = P.( X1 =9y,Tup =
Play) = (@, y)Py( b n) _ Pu(X1=v, Lo )
]P)x(Ta,b = Tb) P, (Ta,b = Tb)

=P (X1 =y|Top =)

Note that  cannot be taken as a in the above equations (since 7, = T}, ;) and we are not computing * = b
case.



