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1. Write Xt = (1 + t)−1/2e
B2
t

2(1+t) . To show that it is a martingale, we consider the conditional expectation

E[(1 + t)−1/2e
B2
t

2(1+t) |Fs] = E[(1 + t)1/2e
((Bt−Bs)+Bs)

2

2(1+t) |Fs].

Since Bt −Bs is indepdent of Bs, we have

=

∫
(1 + t)−1/2e

(x+Bs)
2

2(1+t)
1√

2π(t− s)
e

−x2

2(t−s) dx = e
B2
s

2(s+1)

∫
(1 + t)−1/2e

−(s+1)(x− t−s
s+1Bs)

2

2(1+t)(t−s) dx

which is (1 + s)1/2e
B2
s

2(1+s) . This shows it is a martingale.

By martingale convergence theorem, Xt → X∞ a.s. By Durrett theorem 8.2.7, X∞ is a constant a.s.

Let Yt = Bt

((1+t) log(1+t)))1/2
.Then

Xt = (1 + t)−1/2 exp(Y 2
t log(1 + t)/2).

If c := lim supYt > 1 a.s., we pick any 1 < c0 < c, then there are infinite many t′s such that Xt >
(1 + t)(c

2
0−1)/2. This implies that it is impossible to have Xt convergent a.s. So, we must have c ≤ 1.

2. Write Zn = m({t ∈ [0, 1] : S∗n(t) > 0})− 1
n#{k ≤ n : Sk > 0}. Given any δ > 0, we look at the proof

of Durrett example 8.6.4 with a = 0: on {maxm≤n |Xm| ≤ δ
√
n},

m{t ∈ [0, 1] : S∗n(t) > δ} ≤ 1

n
#{k ≤ n : Sk > 0} ≤ m{t ∈ [0, 1] : S∗n(t) > −δ}.

So, on {maxm≤n |Xm| ≤ δ
√
n},

m{t ∈ [0, 1] : S∗n(t) > δ} −m{t ∈ [0, 1] : S∗n(t) > 0}
≤ − Zn ≤ m{t ∈ [0, 1] : S∗n(t) > −δ} −m{t ∈ [0, 1] : S∗n(t) > 0}.

Because (we denote m as Lebesgue measure on [0, 1] for convenience)

m{S∗n(t) > δ} −m{S∗n(t) > 0} → m{Bt > δ} −m{Bt > 0}

and
m{S∗n(t) > −δ} −m{S∗n(t) > 0} → m{Bt > −δ} −m{Bt > 0},

by continuity of a 7→ m{Bt > a} (see Durrett example 8.6.4), we can choose δ small enough such that
|Zn| < ε for n large enough.
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Since
P(|Zn| > ε) = P(|Zn| > ε,max

m≤n
|Xm| ≤ δ

√
n) + P(|Zn| > ε,max

m≤n
|Xm| > δ

√
n)

where the latter term goes to 0 using Chebyshev’s inequality, we have, by bounded convergence theorem,
for any ε > 0,

lim supP(|Zn| > ε)

≤ lim supP(|Zn| > ε,max
m≤n
|Xm| ≤ δ

√
n) + lim supP(|Zn| > ε,max

m≤n
|Xm| > δ

√
n)

=0.

This proves the convergence in probability.

3. Let Qn = m({t ∈ [0, 1] : S∗n(t) > 0}). By Donsker’s theorem Qn ⇒ m({t ∈ [0, 1] : B(t) > 0}) =: R
and R is arcsine distributed. We decompose, for any ε > 0,

P(Pn/n ≤ x) = P((Pn/n−Qn) + Pn/n ≤ x)
= P((Pn/n−Qn) > ε, Pn/n ≤ x) + P((Pn/n−Qn) ≤ ε, Pn/n ≤ x).

The first term goes to 0 by problem 2. For the second term, we know that P(Pn/n − Qn ≤ ε) → 1 by
problem 1. We also have

{Qn ≤ x− ε} ≤ {|Pn/n−Qn| ≤ ε, Pn/n ≤ x} ⊆ {Qn ≤ x+ ε}.

So, taking limit as n→∞, we have

P(R ≤ x− ε) ≤ lim
n→∞

P(Pn/n ≤ x) ≤ P(R ≤ x+ ε).

To conclude our proof, we let ε → 0 and use the fact that the distribution function of arcsine law is
continuous at every x (not simply right-continuous).

4. H(x) > 0 for all x 6= a since the Markov chain is irreducible. Moreover, the function H is harmonic by
Levin-Peres-Wilmer proposition 9.1, taking ha,b(x) = 1x=b in proposition 9.1.

We denote τb = minn : Xn = b. The P̂ for {Yj} has the same law as {Xn} conditioned on reaching b
before a and being absorbed at b because for any x 6= b,

P̂ (x, y) =
P (x, y)Py(Ta,b = τb)

Px(Ta,b = τb)
=

Px(X1 = y, Ta,b = τb)

Px(Ta,b = τb)
= Px(X1 = y|Ta,b = τb).

Note that x cannot be taken as a in the above equations (since τb = Ta,b) and we are not computing x = b
case.
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