280C HW3 Idea

Ching Wei Ho

May 18, 2018

1. Write $X_{t}=(1+t)^{-1 / 2} e^{\frac{B_{t}^{2}}{2(1+t)}}$. To show that it is a martingale, we consider the conditional expectation

$$
\mathbb{E}\left[\left.(1+t)^{-1 / 2} e^{\frac{B_{t}^{2}}{2(1+t)}} \right\rvert\, \mathscr{F}_{s}\right]=\mathbb{E}\left[\left.(1+t)^{1 / 2} e^{\frac{\left(\left(B_{t}-B_{s}\right)+B_{s}\right)^{2}}{2(1+t)}} \right\rvert\, \mathscr{F}_{s}\right] .
$$

Since $B_{t}-B_{s}$ is indepdent of B_{s}, we have

$$
=\int(1+t)^{-1 / 2} e^{\frac{\left(x+B_{s}\right)^{2}}{2(1+t)}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{\frac{-x^{2}}{2(t-s)}} d x=e^{\frac{B_{s}^{2}}{2(s+1)}} \int(1+t)^{-1 / 2} e^{\frac{-(s+1)\left(x-\frac{t-s}{s+1} B_{s}\right)^{2}}{2(1+t)(t-s)}} d x
$$

which is $(1+s)^{1 / 2} e^{\frac{B_{s}^{2}}{2(1+s)}}$. This shows it is a martingale.
By martingale convergence theorem, $X_{t} \rightarrow X_{\infty}$ a.s. By Durrett theorem 8.2.7, X_{∞} is a constant a.s.
Let $Y_{t}=\frac{B_{t}}{((1+t) \log (1+t)))^{1 / 2}}$.Then

$$
X_{t}=(1+t)^{-1 / 2} \exp \left(Y_{t}^{2} \log (1+t) / 2\right)
$$

If $c:=\limsup Y_{t}>1$ a.s., we pick any $1<c_{0}<c$, then there are infinite many $t^{\prime} s$ such that $X_{t}>$ $(1+t)^{\left(c_{0}^{2}-1\right) / 2}$. This implies that it is impossible to have X_{t} convergent a.s. So, we must have $c \leq 1$.
2. Write $Z_{n}=m\left(\left\{t \in[0,1]: S_{n}^{*}(t)>0\right\}\right)-\frac{1}{n} \#\left\{k \leq n: S_{k}>0\right\}$. Given any $\delta>0$, we look at the proof of Durrett example 8.6.4 with $a=0$: on $\left\{\max _{m \leq n}\left|X_{m}\right| \leq \delta \sqrt{n}\right\}$,

$$
m\left\{t \in[0,1]: S_{n}^{*}(t)>\delta\right\} \leq \frac{1}{n} \#\left\{k \leq n: S_{k}>0\right\} \leq m\left\{t \in[0,1]: S_{n}^{*}(t)>-\delta\right\}
$$

So, on $\left\{\max _{m \leq n}\left|X_{m}\right| \leq \delta \sqrt{n}\right\}$,

$$
\begin{aligned}
& m\left\{t \in[0,1]: S_{n}^{*}(t)>\delta\right\}-m\left\{t \in[0,1]: S_{n}^{*}(t)>0\right\} \\
\leq & -Z_{n} \leq m\left\{t \in[0,1]: S_{n}^{*}(t)>-\delta\right\}-m\left\{t \in[0,1]: S_{n}^{*}(t)>0\right\} .
\end{aligned}
$$

Because (we denote m as Lebesgue measure on $[0,1]$ for convenience)

$$
m\left\{S_{n}^{*}(t)>\delta\right\}-m\left\{S_{n}^{*}(t)>0\right\} \rightarrow m\left\{B_{t}>\delta\right\}-m\left\{B_{t}>0\right\}
$$

and

$$
m\left\{S_{n}^{*}(t)>-\delta\right\}-m\left\{S_{n}^{*}(t)>0\right\} \rightarrow m\left\{B_{t}>-\delta\right\}-m\left\{B_{t}>0\right\},
$$

by continuity of $a \mapsto m\left\{B_{t}>a\right\}$ (see Durrett example 8.6.4), we can choose δ small enough such that $\left|Z_{n}\right|<\varepsilon$ for n large enough.

Since

$$
\mathbb{P}\left(\left|Z_{n}\right|>\varepsilon\right)=\mathbb{P}\left(\left|Z_{n}\right|>\varepsilon, \max _{m \leq n}\left|X_{m}\right| \leq \delta \sqrt{n}\right)+\mathbb{P}\left(\left|Z_{n}\right|>\varepsilon, \max _{m \leq n}\left|X_{m}\right|>\delta \sqrt{n}\right)
$$

where the latter term goes to 0 using Chebyshev's inequality, we have, by bounded convergence theorem, for any $\varepsilon>0$,

$$
\begin{aligned}
& \lim \sup \mathbb{P}\left(\left|Z_{n}\right|>\varepsilon\right) \\
\leq & \lim \sup \mathbb{P}\left(\left|Z_{n}\right|>\varepsilon, \max _{m \leq n}\left|X_{m}\right| \leq \delta \sqrt{n}\right)+\lim \sup \mathbb{P}\left(\left|Z_{n}\right|>\varepsilon, \max _{m \leq n}\left|X_{m}\right|>\delta \sqrt{n}\right) \\
= & 0 .
\end{aligned}
$$

This proves the convergence in probability.
3. Let $Q_{n}=m\left(\left\{t \in[0,1]: S_{n}^{*}(t)>0\right\}\right)$. By Donsker's theorem $Q_{n} \Rightarrow m(\{t \in[0,1]: B(t)>0\})=: R$ and R is arcsine distributed. We decompose, for any $\varepsilon>0$,

$$
\begin{aligned}
\mathbb{P}\left(P_{n} / n \leq x\right) & =\mathbb{P}\left(\left(P_{n} / n-Q_{n}\right)+P_{n} / n \leq x\right) \\
& =\mathbb{P}\left(\left(P_{n} / n-Q_{n}\right)>\varepsilon, P_{n} / n \leq x\right)+\mathbb{P}\left(\left(P_{n} / n-Q_{n}\right) \leq \varepsilon, P_{n} / n \leq x\right) .
\end{aligned}
$$

The first term goes to 0 by problem 2 . For the second term, we know that $\mathbb{P}\left(P_{n} / n-Q_{n} \leq \varepsilon\right) \rightarrow 1$ by problem 1. We also have

$$
\left\{Q_{n} \leq x-\varepsilon\right\} \leq\left\{\left|P_{n} / n-Q_{n}\right| \leq \varepsilon, P_{n} / n \leq x\right\} \subseteq\left\{Q_{n} \leq x+\varepsilon\right\}
$$

So, taking limit as $n \rightarrow \infty$, we have

$$
\mathbb{P}(R \leq x-\varepsilon) \leq \lim _{n \rightarrow \infty} \mathbb{P}\left(P_{n} / n \leq x\right) \leq \mathbb{P}(R \leq x+\varepsilon)
$$

To conclude our proof, we let $\varepsilon \rightarrow 0$ and use the fact that the distribution function of arcsine law is continuous at every x (not simply right-continuous).
4. $H(x)>0$ for all $x \neq a$ since the Markov chain is irreducible. Moreover, the function H is harmonic by Levin-Peres-Wilmer proposition 9.1, taking $h_{a, b}(x)=\mathbb{1}_{x=b}$ in proposition 9.1.
We denote $\tau_{b}=\min n: X_{n}=b$. The \hat{P} for $\left\{Y_{j}\right\}$ has the same law as $\left\{X_{n}\right\}$ conditioned on reaching b before a and being absorbed at b because for any $x \neq b$,

$$
\hat{P}(x, y)=\frac{P(x, y) \mathbb{P}_{y}\left(T_{a, b}=\tau_{b}\right)}{\mathbb{P}_{x}\left(T_{a, b}=\tau_{b}\right)}=\frac{\mathbb{P}_{x}\left(X_{1}=y, T_{a, b}=\tau_{b}\right)}{\mathbb{P}_{x}\left(T_{a, b}=\tau_{b}\right)}=\mathbb{P}_{x}\left(X_{1}=y \mid T_{a, b}=\tau_{b}\right)
$$

Note that x cannot be taken as a in the above equations (since $\tau_{b}=T_{a, b}$) and we are not computing $x=b$ case.

