Homework 6 Math280A Fall 2017

Due Monday in class, Nov 13. Relevant sections in Durrett's textbook 2.3, 5.5; in Resnick book: Chapter 6. Justify all your answers.

1. (Fatou's lemma and dominated convergence theorem for convergence in probability)
(i) Suppose $X_{n} \geq 0$ and $X_{n} \rightarrow X$ in probability. Then $\liminf _{n \rightarrow \infty} \mathbb{E} X_{n} \geq \mathbb{E} X$.
(ii) Suppose $X_{n} \rightarrow X$ in probability and $\left|X_{n}\right| \leq Y$ with $\mathbb{E} Y<\infty$. Then $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=$ $\mathbb{E} X$.
2. This exercise shows convergence in probability is metrizable. On the space of random variables define a metric

$$
d(X, Y)=\mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]
$$

By definition d is obviously symmetric, $d(X, Y)=d(Y, X)$. By a previous homework exercise, $d(X, Y)=0$ if and only if $\frac{|X-Y|}{1+|X-Y|}=0$ a.s., that is a.s. $X=Y$.
(i) To verify d is a metric, show the triangle inequality

$$
d(X, Z) \leq d(X, Y)+d(Y, Z)
$$

(ii) Show that if $X_{n} \rightarrow 0$ in probability if and only if $\mathbb{E}\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \rightarrow 0$. It follows that $X_{n} \rightarrow X$ in probability if and only if $d\left(X_{n}, X\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is countable and \mathcal{F} is the σ-field that consists of all subsets of Ω. Show that on this countable probability space almost sure convergence and convergence in probability are equivalent: $X_{n} \rightarrow X$ in probability implies $X_{n} \rightarrow X$ a.s.
4. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with distribution function F. Let $\left(\lambda_{n}\right)$ be an increasing sequence of numbers and define

$$
A_{n}=\left\{\max _{1 \leq m \leq n} X_{m}>\lambda_{n}\right\}
$$

Show that $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$ if $\sum_{n=1}^{\infty}\left(1-F\left(\lambda_{n}\right)\right)<\infty$; and $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$ if $\sum_{n=1}^{\infty}\left(1-F\left(\lambda_{n}\right)\right)=$ ∞.
5. Suppose X_{1}, X_{2}, \ldots is an uncorrelated sequence, that is $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for any $i \neq j$. Further assume that $\mathbb{E} X_{i}=0, \operatorname{Var}\left(X_{i}\right)=C \in(0, \infty)$ for all $i \in \mathbb{N}$, that is all random variables have mean 0 and the same finite non-zero variance.

Let $\left(a_{n}\right)$ be a sequence of real numbers. Show that $S_{n}=\sum_{i=1}^{n} a_{i} X_{i}$ is convergent in L^{2} if and only if $\sum_{i=1}^{\infty} a_{i}^{2}<\infty$.
6. Suppose $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are two families of uniform integrable variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Is the family $\left\{X_{n}+Y_{n}\right\}$ uniformly integrable?

