Homework 7 Math280A Fall 2017

Due *Monday* in class, Nov 20. Relevant sections in Durrett's textbook 2.2, 2.3; in Resnick book: 6.5, Chapter 7. Justify all your answers.

1. Suppose X_n is a sequence of non-negative random variables, that is $X_n \ge 0$ for all n. Suppose $X_n \to X$ in probability when $n \to \infty$, where X is also a non-negative random variable. Further assume that $\mathbb{E}X < \infty$, $\mathbb{E}X_n < \infty$ and $\lim_{n\to\infty} \mathbb{E}X_n = \mathbb{E}X$. Show that $X_n \to X$ in L^1 . (*Hint:* first show that the family $(X - X_n)_+$ is uniformly integrable.)

2. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = (-1)^k k) = \frac{c}{k^2 \log k}$ for $k \ge 2$, where c is the normalization constant so that the sum of probabilities is 1. Let $S_n = X_1 + \ldots + X_n$. Show that $\mathbb{E}|X_i| = \infty$, but there is a finite constant μ so that $S_n/n \to \mu$ in probability.

3. Suppose X_n is a sequence of i.i.d. random variables such that $0 \leq X_n < \infty$ and $\mathbb{P}(X_n > x) > 0$ for all x > 0. Let M(s) be the truncated first moment:

$$M(s) = \mathbb{E}\left[X_n \mathbf{1}_{\{X_n \le s\}}\right].$$

(i) Verify that $s/M(s) \to \infty$ when $s \to \infty$.

(ii) Set

$$b_n = \inf\{s : s/M(s) \ge n\}.$$

Show that if

$$n\mathbb{P}(X_1 > b_n) \to 0$$
 when $n \to \infty$,

then $S_n/b_n \to 1$ in probability. (*Hint:* use the weak law for triangular arrays.)

4. Let X_0 be the (deterministic) vector $X_0 = (1,0) \in \mathbb{R}^2$. Define a sequence of random variables X_n iteratively by taking X_{n+1} to be chosen uniformly from the ball of radius $|X_n|$ centered at the origin, and $X_{n+1}/|X_n|$ is independent of X_1, \ldots, X_n . Show that $\frac{1}{n} \log |X_n|$ converges a.s. and find the limit.

5. Let X_n be a sequence of i.i.d. random variables with $\mathbb{E}|X_n| < \infty$ and $\mathbb{E}X_n \neq 0$. Show that

$$\frac{\max_{1 \le i \le n} |X_i|}{|S_n|} \to 0 \ a.s.$$