Homework 8 Math280A Fall 2017

Due Wednesday in class, Nov 29. Relevant sections in Durrett's textbook 2.4, 2.5; in Resnick book: Chapter 7. Justify all your answers.

1. (Betting on favorable game). Suppose you start with $\$ 1$. On each bet, independently win the amount of your bet with probability $\frac{1}{2}+q$ and lose with probability $\frac{1}{2}-q, q \in\left(0, \frac{1}{2}\right)$. Assume we always bet proportion $a \in(0,1]$ of our current fortune. What is the optimal choice of a as a function of q ?
2. Prove that the three series theorem reduces to the following when the random variables are positive. If $X_{n} \geq 0$ are independent, then $\sum_{n} X_{n}<\infty$ a.s. if and only if for any $c>0$, we have

$$
\begin{aligned}
\sum_{n} \mathbb{P}\left(X_{n}>c\right)<\infty \\
\sum_{n} \mathbb{E}\left(X_{n} \mathbf{1}_{\left\{X_{n} \leq c\right\}}\right)<\infty
\end{aligned}
$$

3. Suppose $\left\{X_{n}, n \geq 1\right\}$ are independent random variables with $\mathbb{E}\left[X_{n}\right]=0$ for all n. If

$$
\sum_{n} \mathbb{E}\left(X_{n}^{2} \mathbf{1}_{\left\{\left|X_{n}\right| \leq 1\right\}}+\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>1\right\}}\right)<\infty
$$

then $\sum_{n} X_{n}$ converges a.s.
4. Suppose $\left\{X_{n}, n \geq 1\right\}$ are independent with distributions

$$
\mathbb{P}\left(X_{n}=n^{-\alpha}\right)=\mathbb{P}\left(X_{n}=-n^{-\alpha}\right)=\frac{1}{2}
$$

Use the Kolmogorov convergence criterion to verify that if $\alpha>1 / 2$, then $\sum_{n} X_{n}$ converges a.s. Use the three series theorem to verify that $\alpha>1 / 2$ is necessary for convergence.
5. Let X_{1}, X_{2}, \ldots be i.i.d. and not constant 0 . Let $r(\omega)$ be the radius of convergence of the power series $\sum_{n \geq 1} X_{n}(\omega) z^{n}$, that is

$$
r(\omega)=\sup \left\{s \in \mathbb{R}_{\geq 0}: \sum\left|X_{n}(\omega)\right| s^{n}<\infty\right\}
$$

Show that $r(\omega)=1$ a.s. or $r(\omega)=0$ a.s., according to $\mathbb{E}\left(\log _{+}\left|X_{1}\right|\right)<\infty$ or $=\infty$. Here $\log _{+} x=\max \{0, \log x\}$.

