Math 280 A Homework 2

October 15, 2017

Exercise 1. Denote

$$
\mathcal{L}=\left\{B: \text { There exists some countable subclass } \mathcal{C}_{B} \subset \mathcal{C} \text { such that } B \in \sigma\left(\mathcal{C}_{B}\right)\right\}
$$

The upshot is to show that \mathcal{L} is a σ-algebra. This is done by (i) show that \mathcal{L} is a λ-system, and (ii) show that \mathcal{L} contains a π system which containing \mathcal{C}.
(i) It is easier to use an alternative definition of λ-system which includes (1) inclusion of \emptyset, Ω; (2) closed in complement; (3) closed in disjoint countable union, (1)(2) are easy, we show (3) here. Assume $B_{i} \in \mathcal{L}$, and B_{i} are disjoint. Assume $\mathcal{C}_{B_{i}}$ are corresponding countable subclasses such that $B_{i} \in \sigma\left(\mathcal{C}_{B_{i}}\right)$. Consider $\left.\sigma(\cup)_{i} \mathcal{C}_{B_{i}}\right)$. Since $\mathcal{C}_{B_{i}}$ are countable, $\cup_{i} \mathcal{C}_{B_{i}}$ is countable. And it is easy to see for all $i, B_{i} \in \sigma\left(\cup_{i} \mathcal{C}_{B_{i}}\right)$. Therefore $\cup_{i} B_{i} \in \sigma\left(\cup_{i} \mathcal{C}_{B_{i}}\right)$ by closeness of countable unions of σ-algebra.
(ii) Consider the class \mathcal{A} such that contains all the finite intersections of elements in \mathcal{C}. Clearly this is a π-system. We need to show $\mathcal{A} \subset \mathcal{L}$. Assume $A \in \mathcal{A}$ such that $A=\cap_{i=i}^{n} A_{i}$ such that $A_{i} \in \mathcal{C}$. Clearly $A \in \sigma\left(A_{1}, \ldots, A_{n}\right)$ so $A \in \mathcal{L}$. This finishes (ii).

The final shot is by $\pi-\lambda$ theorem, $\sigma(\mathcal{C}) \subset \sigma(\mathcal{A}) \subset \mathcal{L}$.

Exercise 2. (i) Assume A is an atom, we need to show that A is a single point. This is done by shrinking sequentially towards an single point. First divide \mathbb{R} to $(n, n+1]$ for $n \in \mathbb{Z}$. By the definition of atom, there is one n such that $P(A \cap(n, n+1])=P(A)$. Now divide the interval $(n, n+1]$ into two, only one will contain the probability mass. Keep doing this operation and denote the interval that contains the probability mass as I_{n} in the n-th round. It is easy to see that $\left|I_{n}\right|=2^{-n}$, and $P\left(I_{n} \cap A\right)=P(A)$. Now by continuity of measure, $\lim _{n} P\left(I_{n} \cap A\right)=P\left(\lim I_{n} \cap A\right)=P(A)$.

Now consider $\lim I_{n} \cap A$. This set is non-empty (positive probability) and contains only one point (easy to show). And it is also trivial to see that this point (say x) satisfies $F(x)-F(x-)>0$.
(ii) If $P(A \cap B) \neq 0$, then $P(A \backslash B)=P(A \backslash(A \cap B))=0$. Similarly $P(B \backslash A)=0$. Therefore $P(A \triangle B)=P(A \backslash B)+P(B \backslash A)=0$.
(iii) If $\{x\}$ is an atom, x is corresponding to an interval $(a, b) \subset[0,1]$ where $a=F(x-)$ and $b=F(x)$. Since $b-a>0$, we may find a rational number q between a and b and make a map from x to q. Such an map is an injection from the set of atoms towards the set of rational numbers in $[0,1]$. Therefore the set of atoms has to be countable.

Exercise 3. (i) If all A_{i} are finite, the union is finite thus both sides are 0 . If one of them is infinite, then the union is infinite thus both sides are 1. More than two A_{i} s being infinite and disjoint is impossible since it will definitely merge in the tail of \mathbb{N}.
(ii) One counterexample will be $A_{i}=\{i, i+1, \ldots\} . A_{i} \downarrow \emptyset$ but $\mu\left(A_{i}\right)$ stays at 1 .

Exercise 4. (i) Denote the original definition as P_{1}, and the alternative definition as P_{2}. Clearly $P_{1} \geq P_{2}$ since $\sum_{i} P\left(B_{i}\right) \geq P\left(\cup_{i} B_{i}\right)$, and $\cup_{i} B_{i} \in \mathcal{F}$.

The reverse is shown as follows. For any $\epsilon>0$, and any A, there exists some $B \in \mathcal{F}$ such that $P_{2}(A)>P(B)-\epsilon$. Since P_{1} and P_{2} agrees on \mathcal{F}, there exists some $B_{i} \in \mathcal{F}_{0}$ such that $P(B)>\sum_{i} P\left(B_{i}\right)-\epsilon$. Note that $A \subset B$, thus $A \subset \cup_{i} B_{i}$. Therefore $P_{2}(A)>P_{1}(A)-2 \epsilon$. Since ϵ is arbitrary, it concludes that $P_{2}=P_{1}$.

To show that there is an set achieving the inf, for any A there exists $B_{n} \in \mathcal{F}$ such that $P\left(B_{n}\right)-1 / n \leq$ $P^{*}(A) \leq P(B)$. Then consider $\cap_{n} B_{n}$. Clearly $A \subset \cap_{n} B_{n}$ and $P\left(\cap_{n} B_{n}\right)-1 / n \leq P^{*}(A)$ for any n. Therefore $P\left(\cap_{n} B_{n}\right)=P^{*}(A)$, which is what we need.
(ii) Note that the inner measures are achievable as well (just think about the complements). The only if side is direct. The if side is done by realizing that there exists $B_{1}, B_{2} \in \mathcal{F}$ such that $B_{2} \subset A \subset B_{1}$ and $P\left(B_{2}\right)=P_{*}(A)=P^{*}(A)=P\left(B_{1}\right)$. Therefore A is B_{2} union some null set (sets with measure 0). Since all null sets are in \mathcal{F} (use definition to see that), $A \in \mathcal{F}$ is illustrated.

Exercise 5. Denote $\{x: f(x) \leq a\}$ as $A(a)$. For a sequence $y_{i} \in A$, and $y_{i} \rightarrow x$. By the definition of l.s.c, $f(x) \leq \lim \inf f(y) \leq a$, which shows that $x \in A$, thus A closed. Now assume $f(x)>\lim \inf f(y)$, then there exists a subsequence of $y_{i_{j}} \rightarrow x$ such that $f(y) \rightarrow c<f(x)$. This shows that $A(c)$ is not closed.

Note that f maps (a, ∞) to an open set, and collections of sets like (a, ∞) generates the σ-algebra. Therefore f is measurable.

