
Solution sketch to 280B HW problems

1 Homework 1
1. Let X1, X2, ... be independent random variables with distribution function F . Let

Mn = max
1≤m≤n

Xm.

(a) Suppose α > 0 and F (x) = 1 − x−α for x ≥ 1. Suppose Y1 has distribution function F1, where
F1(x) = exp(−x−α) for all x > 0. Show that

Mn/n
1/α ⇒ Y1.

(b) Suppose β > 0 and F (x) = 1 − |x|β for −1 ≤ x ≤ 0. Suppose Y2 has distribution function F2,
where F2(x) = exp(−|x|β) for all x < 0. Show that n

n1/βMn ⇒ Y2.

(c) Suppose F (x) = 1 − e−x for all x ≥ 0. Suppose Y3 has distribution function F3, where F3(x) =
exp (−e−x) for all x ∈ R. Show that

Mn − log n⇒ Y3.

Solution:
Note that P (Mn ≤ x) = P(X1 ≤ x)n = F (x)n. Plug in the given expression for F (x) and pass to

limit when n→∞.

2. Suppose (Xn)∞n=1 and (Yn)∞n=1 are sequences of random variables, X is a random variable and
c ∈ R is a constant. Show that if Xn ⇒ X and Yn → c in probability, then XnYn ⇒ cX.

Solution:
Case (i): c > 0. Take any ε > 0 any small constant , we have

P (XnYn ≤ cx) ≤ P (Yn ≤ c(1− ε)) + P
(
Xn ≤

x

1− ε

)
.

Using these ε > 0 such that x/(1− ε) is a continuity point of FX and send n to ∞, we obtain

lim sup
n→∞

P (XnYn ≤ cx) ≤ FX
(

x

1− ε

)
.

In the other direction,

P (XnYn ≤ cx) ≥ P
(
Xn ≤

x

1 + ε′

)
− P (Yn ≥ c(1 + ε′) or Yn ≤ 0) .

Choose ε′ > 0 such that x/(1 + ε′) is a continuity point of FX , we have

lim inf
n→∞

P (XnYn ≤ cx) ≥ FX
(

x

1 + ε′

)
.
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Combine these two inequalities, we conclude that at continuity point x of FX , limn→∞ P (XnYn ≤ cx) =
FX(x) = FcX(cx).

The case c < 0 follows from taking −Yn.
Case (ii): c = 0, we need to show that XnYn ⇒ 0, that is P (|XnYn| ≥ ε) → 0. We have for any

M > 0,
P(|XnYn| ≥ ε) ≤ P (|Yn| ≥ 1/M) + P (|Xn| ≥Mε) .

ChooseM such that ±Mε are continuity point of FX , we have lim supn→∞ P (|XnYn| ≥ ε) ≤ FX(−Mε)+
1− FX(Mε). Send M to infinity we obtain the statement.

3. Let (µn)
∞
n=1 be a sequence of probability measures on R and Fn be the distribution function of µn.

Let µ be a measure on R with µ(R) < 1, and let F (x) = µ ((−∞, x]).
(a) Show that if for all continuous functions g : R→ R having compact support (meaning there exists

M <∞ such that g(x) = 0 for any |x| ≥M), we have

lim
n→∞

∫
R
g(x)dµn(x) =

∫
R
g(x)dµ(x), (1)

then µn ⇒v µ in vague convergence, that is at continuity points x, y of F , x < y,

lim
n→∞

µn((x, y]) = µ((x, y]).

(The converse is also true, but you are not asked to show this.)
(b) Give an example in which µn ⇒v µ but the convergence (1) fails for some bounded continuous g.
Solution:
(a) The same argument as in Theorem 3.2.3 in the textbook, applied to indicator 1(x,y] which results

in continuous functions of compact support.
(b) Choose an example that fails to be tight.

4. Let X be a random variable with characteristic function ϕ.
(a) Show that ϕ(t) ∈ R for all t if and only if the distribution of X is symmetric, that is X and −X

has the same distribution.
(b) Show that there exists random variables Y and Z such that Re(ϕ) is the characteristic function

of Y and |ϕ|2 is the characteristic function of Z.
Solution:
(a) if direction: since X and −X have the same distribution, ϕ(t) = E

[
eitX

]
= 1

2E
[
eitX + e−itX

]
,

which is real. Only if direction: use the inversion formula to show for example P(X ≥ x) = P(X ≤ −x),
x > 0 a continuity point.

(b) Let B be a random variable such that P(B = 1) = P(B = −1) = 1/2 and B is independent of X.
Then Y = BX has ch.f. Re(ϕ).

Let X1, X2 be two independent random variables with the same distribution as X. Then the ch.f. of
X1 −X2 is

E
[
eitX1−X2

]
= E

[
eitX1

]
E
[
e−itX2

]
= ϕ(t)ϕ(−t) = |ϕ(t)|2.

5. Let X1, X2, . . . be i.i.d. random variables with characteristic function ϕ, Sn = X1 + . . .+Xn. Show
that if ϕ′(0) = ia, a ∈ R, then Sn/n→ a in probability.

Solution:
It suffices to show Sn/n⇒ a.

E
[
eitSn/n

]
= ϕ(t/n)n =

(
ϕ(0) + ϕ′(0)

t

n
+ o(

t

n
)

)n
→ eϕ

′(0)t as n→∞.

The Dirac mass at a has ch.f. eiat, the claim follows.
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2 Homework 2
1. Suppose X1, X2, . . . are i.i.d. random variables such that E[Xm] = 0 and E[X2

m] = σ2 for all m, where
0 < σ2 <∞. Show that

n∑
m=1

Xm/

(
n∑

m=1

X2
m

)1/2

⇒ Z.

Solution:
By SLLN,

1

n

n∑
m=1

X2
m → σ2 a.s.

The claim follows from CLT that 1√
nσ

∑n
m=1Xm ⇒ Z,

√
nσ/

(∑n
m=1X

2
m

)1/2 → 1 a.s. and Problem 2 in
HW1.

2. For n ∈ N, suppose Xn has the binomial distribution with parameters n and pn. This means that
Xn = ξn,1 + . . .+ ξn,n, where ξn,j , 1 ≤ j ≤ n, are i.i.d. and P(ξn,i = 1) = pn and P(ξn,i = 0) = 1− pn.

(a) Show that if limn→∞ npn(1− pn) =∞, then

Xn − npn√
npn(1− pn)

⇒ Z.

(b) Show that if limn→∞ npn = λ ∈ (0,∞), then Xn ⇒ Poisson(λ).

Solution:
(a) check the conditions of Lindeberg-Feller Theorem 3.4.5. (b) Poisson approximation theorem 3.6.1.

3. Suppose X1, X2, ... are independent. Suppose P(Xm = −m) = P(Xm = m) = m−2/2 for all m ≥ 1 and
P(Xm = −1) = P(Xm = 1) = (1−m−2)/2 for m ≥ 2. Let Sn = X1 + . . .+Xn. Show that var(Sn)/n→ 2
but Sn/

√
n⇒ Z.

Solution:
For variance, var(Xm) = m2 ·m−2 + 1−m−2 = 2−m−2, by independence

var(Sn) =

n∑
m=1

var(Xm) = 2n−
n∑

m=1

m−2.

The summation converges to a constant when n→∞.
Write down the ch.f. of Xm,

ϕm(t) =
1

2m2

(
eitm + e−itm

)
+

1

2

(
1− 1

m2

)(
eit + e−it

)
= m−2 cos(tm) + (1−m−2) cos(t).

For Sn/
√
n its ch.f. is

n∏
m=1

ϕm
(
t/
√
n
)

=

n∏
m=1

(
m−2 cos

(
tm√
n

)
+ (1−m−2) cos

(
t√
n

))
.

For small m,

m−2 cos

(
tm√
n

)
+ (1−m−2) cos

(
t√
n

)
= 1− t2

n
+

t2

2nm2
+ o(t2m2/n);
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for large m, consider m−2 cos
(
tm√
n

)
+ (1 −m−2) cos

(
t√
n

)
as m−2

[
cos
(
tm√
n

)
− cos

(
t√
n

)]
+ cos

(
t√
n

)
,

a perturbation of cos
(

t√
n

)
with error bounded by 2/m2. Divide the product at some Ln, say Ln = nα

with α < 1/2, use the two types of asymptotics.

4. Suppose X and Y are random variables such that E[X2] <∞ and E[Y 2] <∞, and suppose G is a
σ-field. Show that if E[Y |G] = X and E[Y 2|G] = X2, then X = Y a.s.

Solution:
From the assumption that E[Y |G] = X we know that X is measurable with respect to G. Then

E
[
(Y −X)2|G

]
= E

[
Y 2|G

]
− 2E [XY |G] + E

[
X2|G

]
= E

[
Y 2|G

]
− 2XE[Y |G] +X2.

Plug in the assumptions we obtain that E
[
(Y −X)2|G

]
= 0 a.s. Therefore E

[
(Y −X)2

]
= 0, it

follows that Y −X = 0 a.s.

5. If F1, F2, and G are σ-fields, we say F1 and F2 are conditionally independent given G if P(A∩B|G) =
P(A|G)P(B|G) for all A ∈ F1 and B ∈ F2. Prove that if P(A|σ(F2,G)) = P(A|G) for all A ∈ F1, where
σ(F2,G) denotes the σ-field generated by F2 and G, then F1 and F2 are conditionally independent given
G.

Solution:
Let A ∈ F1, B ∈ F2. Then by the tower property, E [1A1B |G] = E [E [1A1B |σ(G,F2)] |G]. From the

assumption P(A|σ(F2,G)) = P(A|G),

E [1A1B |σ(G,F2)] = 1BE [1A|σ(G,F2)]

= 1BE [1A|G] .

Therefore

E [1A1B |G] = E [1BE [1A|G] |G]

= E [1A|G]E [1B |G] ,

which means they are conditionally independent given G.

6. Suppose f : R2 → [0,∞) is a measurable function, and X and Y are random variables with joint
density f . Let g(x) =

∫
R f(x, y)dy, and for simplicity assume g(x) > 0 for all x ∈ R. Let

h(x, y) = f(x, y)/g(x). Now for ω ∈ Ω and B ∈ B(R), let

Q(ω,B) =

∫
B

h(X(ω), y)dy.

(a) Show that g is a density for X.

(b) Show that Q is a regular conditional distribution for Y given σ(X).

Solution:
(a) note that P(X ≤ x) = P(X ≤ x, Y ∈ R) =

∫
(−∞,x]×R f(x, y)dxdy, then g is a density for X by

Fubini theorem.
(b) check the definition of r.c.d.:
(i) for each B, ω → Q(ω,B) is a version of P(Y ∈ B|X). To see this, for any set in σ(X), it is of the

form X−1(A) for some Borel set A,

P(Y ∈ B,X ∈ A) =

∫
B

∫
A

f(x, y)dxdy =

∫
A

g(x)

∫
B

h(x, y)dydx = E
[
1{X∈A}

∫
B

h(X, y)dy

]
.

(ii) for any given ω, h(X(ω, y)) = f(X(ω), y)/g(X(ω)) is a density function.
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3 Homework 3
1. Suppose (Xn)

∞
n=0 and (Yn)

∞
n=0 are martingales with respect to filtration (Fn)

∞
n=0. Assume E[X2

n] <∞
and E[Y 2

n ] <∞ for all n.

(a) Show that for all n,

E[XnYn −X0Y0] =

n∑
m=1

E [(Xm −Xm−1)(Ym − Ym−1)] .

(b) Show that if X0 = 0, then for all n,

E[X2
n] =

n∑
m=1

E[(Xm −Xm−1)2].

Solution:
(a) by the martingale property check that E[XmYm − Xm−1Ym−1] = E [(Xm −Xm−1)(Ym−Ym−1)],

then sum up. (b) follows from (a) by taking Yn = Xn.

2. Let (Sn)∞n=0 be a simple random walk. That is, S0 = 0 and, for n ≥ 1, we have Sn = ξ1 + . . .+ ξn,
where ξ1, ξ2, . . . are i.i.d. with P(ξi = 1) = P(ξi = −1) = 1/2.

(a) Show that S2
n − n is a martingale.

(b) Let T = inf{n : Sn /∈ (−a, a)},where a ∈ N. Show that E[T ] = a2.

Solution:
(a) E

[
S2
n − n|Fn−1

]
= E

[
(Sn−1 +Xn)2 − n|Fn−1

]
= S2

n−1 − n − 2Sn−1E[Xn|Fn−1] + E[X2
n|Fn−1].

Since Xn is independent of Fn−1, we have E[Xn|Fn−1] = E[Xn] = 0 and E[X2
n|Fn−1] = E[X2

n] = 1.
(b) Write Yn = S2

n−n and consider the martingale Yn∧T . From EYn∧T = 0 we have E[S2
n∧T ] = E[T∧n].

By bounded convergence theorem, limn→∞ E[S2
n∧T ] = E[S2

T ] = a2. By monotone convergence theorem
E[T ] = limn→∞ E[T ∧ n] = a2.

3. Let a > 0, and let X1, X2, ... be i.i.d. random variables having a normal distribution with mean µ > 0
and variance 1. Let S0 = a, and let Sn = a+X1 + · · ·+Xn for n ∈ N.

(a) Let Yn = e−2µSn . Show that (Yn)
∞
n=0 is a martingale.

(b) Show that
P (Sn ≤ 0 for some n) ≤ e−2µa.

Solution:
(a) check that E[e−2µXn ] = 1 by plugging the density function of Xn.
(b) {Sn ≤ 0} = {Yn ≥ 1}. Apply Doob’s maximal inequality Theorem 5.4.2.

4. Let (Xn)∞n=0 be a submartingale such that X0 = 0 and

sup
n≥0

Xn(ω) <∞

for all ω ∈ Ω. Let ξn = Xn −Xn−1, and suppose E[supn≥0 ξ
+
n ] <∞. Show that (Xn)∞n=0 converges a.s.

Solution:
Follow the reasoning of Theorem 5.3.1. Let 0 < K < ∞ and let N = inf{n : Xn ≥ K}. Consider

Xn∧N −K, it is a submartingale satisfying the property that

(Xn∧N −K)
+ ≤ sup

1≤j≤n
ξ+j ,
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therefore
supE (Xn∧N −K)

+ ≤ E sup
n
ξ+n <∞.

By the martingale convergence theorem 5.2.8. limXn exists on the event N =∞. Letting K →∞, limit
exists on the event {lim supXn <∞}, which is assumed.

5. Let (Xn)
∞
n=0 be a martingale such that X0 = 0 and |Xn+1 −Xn| ≤ r for all n, where r is a positive

real number.

(a) Show that

E
[

max
0≤m≤n

X2
m

]
≤ 4r2n.

(b) Show that if x > 0, then

P
(

max
0≤m≤n

|Xm| > x
√
n

)
≤ r2

x2
.

Solution:
(a) Note that E[X2

n] =
∑n
j=1 E

[
(Xj −Xj−1)

2
]
≤ r2n. The statement follows from Doob’s L2-

maximal inequality.
(b) Follows from Doob’s maximal inequality 5.4.2 applied to the submartingale X2

n.

6. Let (Fn)
∞
n=0 be a filtration, and let F∞ = σ(∪∞n=0Fn). Let A be an event such that A ∈ F∞ but A is

independent of F0. Suppose P(A) = 1/2. Let Xn = P (A|Fn) for all n ≥ 0.

(a) Show that if 1
2 ≤ x ≤ 1, then

P
(

sup
n≥0

Xn ≥ x
)
≤ 1

2x
.

(b) Show that
3

4
≤ E

[
sup
n≥0

Xn

]
≤ 1 + log 2

2
.

Solution:
(a) Xn is a non-negative martingale, EXn = P(A) = 1/2. By Doob’s maximal inequality

xP( max
0≤j≤n

Xj ≥ x) ≤ EXn = 1/2.

Let n→∞ we obtain (a).
(b) Upper bound follows from integrating the tail bound in (a).
By Levy 0− 1 law limn→∞Xn = 1A a.s. Note that since A is independent of F0, X0 is constant 1/2.

Then

E
[
sup
n≥0

Xn

]
≥ E

[
max

{
X0, lim

n
Xn

}]
= E[max {1/2,1A}] = 1/2P(Ac) + P(A) = 3/4.
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