Solution sketch to 280B HW problems

1 Homework 1

1. Let X_{1}, X_{2}, \ldots be independent random variables with distribution function F. Let

$$
M_{n}=\max _{1 \leq m \leq n} X_{m}
$$

(a) Suppose $\alpha>0$ and $F(x)=1-x^{-\alpha}$ for $x \geq 1$. Suppose Y_{1} has distribution function F_{1}, where $F_{1}(x)=\exp \left(-x^{-\alpha}\right)$ for all $x>0$. Show that

$$
M_{n} / n^{1 / \alpha} \Rightarrow Y_{1}
$$

(b) Suppose $\beta>0$ and $F(x)=1-|x|^{\beta}$ for $-1 \leq x \leq 0$. Suppose Y_{2} has distribution function F_{2}, where $F_{2}(x)=\exp \left(-|x|^{\beta}\right)$ for all $x<0$. Show that n

$$
n^{1 / \beta} M_{n} \Rightarrow Y_{2}
$$

(c) Suppose $F(x)=1-e^{-x}$ for all $x \geq 0$. Suppose Y_{3} has distribution function F_{3}, where $F_{3}(x)=$ $\exp \left(-e^{-x}\right)$ for all $x \in \mathbb{R}$. Show that

$$
M_{n}-\log n \Rightarrow Y_{3}
$$

Solution:

Note that $\mathbb{P}\left(M_{n} \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right)^{n}=F(x)^{n}$. Plug in the given expression for $F(x)$ and pass to limit when $n \rightarrow \infty$.
2. Suppose $\left(X_{n}\right)_{n=1}^{\infty}$ and $\left(Y_{n}\right)_{n=1}^{\infty}$ are sequences of random variables, X is a random variable and $c \in \mathbb{R}$ is a constant. Show that if $X_{n} \Rightarrow X$ and $Y_{n} \rightarrow c$ in probability, then $X_{n} Y_{n} \Rightarrow c X$.

Solution:
Case (i): $c>0$. Take any $\epsilon>0$ any small constant, we have

$$
\mathbb{P}\left(X_{n} Y_{n} \leq c x\right) \leq \mathbb{P}\left(Y_{n} \leq c(1-\epsilon)\right)+\mathbb{P}\left(X_{n} \leq \frac{x}{1-\epsilon}\right)
$$

Using these $\epsilon>0$ such that $x /(1-\epsilon)$ is a continuity point of F_{X} and send n to ∞, we obtain

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n} Y_{n} \leq c x\right) \leq F_{X}\left(\frac{x}{1-\epsilon}\right)
$$

In the other direction,

$$
\mathbb{P}\left(X_{n} Y_{n} \leq c x\right) \geq \mathbb{P}\left(X_{n} \leq \frac{x}{1+\epsilon^{\prime}}\right)-\mathbb{P}\left(Y_{n} \geq c\left(1+\epsilon^{\prime}\right) \text { or } Y_{n} \leq 0\right)
$$

Choose $\epsilon^{\prime}>0$ such that $x /\left(1+\epsilon^{\prime}\right)$ is a continuity point of F_{X}, we have

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n} Y_{n} \leq c x\right) \geq F_{X}\left(\frac{x}{1+\epsilon^{\prime}}\right)
$$

Combine these two inequalities, we conclude that at continuity point x of $F_{X}, \lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n} Y_{n} \leq c x\right)=$ $F_{X}(x)=F_{c X}(c x)$.

The case $c<0$ follows from taking $-Y_{n}$.
Case (ii): $c=0$, we need to show that $X_{n} Y_{n} \Rightarrow 0$, that is $\mathbb{P}\left(\left|X_{n} Y_{n}\right| \geq \epsilon\right) \rightarrow 0$. We have for any $M>0$,

$$
\mathbb{P}\left(\left|X_{n} Y_{n}\right| \geq \epsilon\right) \leq \mathbb{P}\left(\left|Y_{n}\right| \geq 1 / M\right)+\mathbb{P}\left(\left|X_{n}\right| \geq M \epsilon\right)
$$

Choose M such that $\pm M \epsilon$ are continuity point of F_{X}, we have $\lim \sup _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n} Y_{n}\right| \geq \epsilon\right) \leq F_{X}(-M \epsilon)+$ $1-F_{X}(M \epsilon)$. Send M to infinity we obtain the statement.
3. Let $\left(\mu_{n}\right)_{n=1}^{\infty}$ be a sequence of probability measures on \mathbb{R} and F_{n} be the distribution function of μ_{n}. Let μ be a measure on \mathbb{R} with $\mu(\mathbb{R})<1$, and let $F(x)=\mu((-\infty, x])$.
(a) Show that if for all continuous functions $g: \mathbb{R} \rightarrow \mathbb{R}$ having compact support (meaning there exists $M<\infty$ such that $g(x)=0$ for any $|x| \geq M)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} g(x) d \mu_{n}(x)=\int_{\mathbb{R}} g(x) d \mu(x) \tag{1}
\end{equation*}
$$

then $\mu_{n} \Rightarrow_{v} \mu$ in vague convergence, that is at continuity points x, y of $F, x<y$,

$$
\lim _{n \rightarrow \infty} \mu_{n}((x, y])=\mu((x, y])
$$

(The converse is also true, but you are not asked to show this.)
(b) Give an example in which $\mu_{n} \Rightarrow_{v} \mu$ but the convergence (1) fails for some bounded continuous g.

Solution:

(a) The same argument as in Theorem 3.2.3 in the textbook, applied to indicator $\mathbf{1}_{(x, y]}$ which results in continuous functions of compact support.
(b) Choose an example that fails to be tight.
4. Let X be a random variable with characteristic function φ.
(a) Show that $\varphi(t) \in \mathbb{R}$ for all t if and only if the distribution of X is symmetric, that is X and $-X$ has the same distribution.
(b) Show that there exists random variables Y and Z such that $\operatorname{Re}(\varphi)$ is the characteristic function of Y and $|\varphi|^{2}$ is the characteristic function of Z.

Solution:

(a) if direction: since X and $-X$ have the same distribution, $\varphi(t)=\mathbb{E}\left[e^{i t X}\right]=\frac{1}{2} \mathbb{E}\left[e^{i t X}+e^{-i t X}\right]$, which is real. Only if direction: use the inversion formula to show for example $\mathbb{P}(X \geq x)=\mathbb{P}(X \leq-x)$, $x>0$ a continuity point.
(b) Let B be a random variable such that $\mathbb{P}(B=1)=\mathbb{P}(B=-1)=1 / 2$ and B is independent of X. Then $Y=B X$ has ch.f. $\operatorname{Re}(\varphi)$.

Let X_{1}, X_{2} be two independent random variables with the same distribution as X. Then the ch.f. of $X_{1}-X_{2}$ is

$$
\mathbb{E}\left[e^{i t X_{1}-X_{2}}\right]=\mathbb{E}\left[e^{i t X_{1}}\right] \mathbb{E}\left[e^{-i t X_{2}}\right]=\varphi(t) \varphi(-t)=|\varphi(t)|^{2}
$$

5. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with characteristic function $\varphi, S_{n}=X_{1}+\ldots+X_{n}$. Show that if $\varphi^{\prime}(0)=i a, a \in \mathbb{R}$, then $S_{n} / n \rightarrow a$ in probability.

Solution:

It suffices to show $S_{n} / n \Rightarrow a$.

$$
\mathbb{E}\left[e^{i t S_{n} / n}\right]=\varphi(t / n)^{n}=\left(\varphi(0)+\varphi^{\prime}(0) \frac{t}{n}+o\left(\frac{t}{n}\right)\right)^{n} \rightarrow e^{\varphi^{\prime}(0) t} \text { as } n \rightarrow \infty
$$

The Dirac mass at a has ch.f. $e^{i a t}$, the claim follows.

2 Homework 2

1. Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables such that $\mathbb{E}\left[X_{m}\right]=0$ and $E\left[X_{m}^{2}\right]=\sigma^{2}$ for all m, where $0<\sigma^{2}<\infty$. Show that

$$
\sum_{m=1}^{n} X_{m} /\left(\sum_{m=1}^{n} X_{m}^{2}\right)^{1 / 2} \Rightarrow Z
$$

Solution:

By SLLN,

$$
\frac{1}{n} \sum_{m=1}^{n} X_{m}^{2} \rightarrow \sigma^{2} \text { a.s. }
$$

The claim follows from CLT that $\frac{1}{\sqrt{n} \sigma} \sum_{m=1}^{n} X_{m} \Rightarrow Z, \sqrt{n} \sigma /\left(\sum_{m=1}^{n} X_{m}^{2}\right)^{1 / 2} \rightarrow 1$ a.s. and Problem 2 in HW1.
2. For $n \in \mathbb{N}$, suppose X_{n} has the binomial distribution with parameters n and p_{n}. This means that $X_{n}=\xi_{n, 1}+\ldots+\xi_{n, n}$, where $\xi_{n, j}, 1 \leq j \leq n$, are i.i.d. and $\mathbb{P}\left(\xi_{n, i}=1\right)=p_{n}$ and $\mathbb{P}\left(\xi_{n, i}=0\right)=1-p_{n}$.
(a) Show that if $\lim _{n \rightarrow \infty} n p_{n}\left(1-p_{n}\right)=\infty$, then

$$
\frac{X_{n}-n p_{n}}{\sqrt{n p_{n}\left(1-p_{n}\right)}} \Rightarrow Z
$$

(b) Show that if $\lim _{n \rightarrow \infty} n p_{n}=\lambda \in(0, \infty)$, then $X_{n} \Rightarrow \operatorname{Poisson}(\lambda)$.

Solution:

(a) check the conditions of Lindeberg-Feller Theorem 3.4.5. (b) Poisson approximation theorem 3.6.1.
3. Suppose X_{1}, X_{2}, \ldots are independent. Suppose $\mathbb{P}\left(X_{m}=-m\right)=\mathbb{P}\left(X_{m}=m\right)=m^{-2} / 2$ for all $m \geq 1$ and $\mathbb{P}\left(X_{m}=-1\right)=\mathbb{P}\left(X_{m}=1\right)=\left(1-m^{-2}\right) / 2$ for $m \geq 2$. Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that $\operatorname{var}\left(S_{n}\right) / n \rightarrow 2$ but $S_{n} / \sqrt{n} \Rightarrow Z$.

Solution:

For variance, $\operatorname{var}\left(X_{m}\right)=m^{2} \cdot m^{-2}+1-m^{-2}=2-m^{-2}$, by independence

$$
\operatorname{var}\left(S_{n}\right)=\sum_{m=1}^{n} \operatorname{var}\left(X_{m}\right)=2 n-\sum_{m=1}^{n} m^{-2}
$$

The summation converges to a constant when $n \rightarrow \infty$.
Write down the ch.f. of X_{m},

$$
\begin{aligned}
\varphi_{m}(t) & =\frac{1}{2 m^{2}}\left(e^{i t m}+e^{-i t m}\right)+\frac{1}{2}\left(1-\frac{1}{m^{2}}\right)\left(e^{i t}+e^{-i t}\right) \\
& =m^{-2} \cos (t m)+\left(1-m^{-2}\right) \cos (t)
\end{aligned}
$$

For S_{n} / \sqrt{n} its ch.f. is

$$
\prod_{m=1}^{n} \varphi_{m}(t / \sqrt{n})=\prod_{m=1}^{n}\left(m^{-2} \cos \left(\frac{t m}{\sqrt{n}}\right)+\left(1-m^{-2}\right) \cos \left(\frac{t}{\sqrt{n}}\right)\right)
$$

For small m,

$$
m^{-2} \cos \left(\frac{t m}{\sqrt{n}}\right)+\left(1-m^{-2}\right) \cos \left(\frac{t}{\sqrt{n}}\right)=1-\frac{t^{2}}{n}+\frac{t^{2}}{2 n m^{2}}+o\left(t^{2} m^{2} / n\right)
$$

for large m, consider $m^{-2} \cos \left(\frac{t m}{\sqrt{n}}\right)+\left(1-m^{-2}\right) \cos \left(\frac{t}{\sqrt{n}}\right)$ as $m^{-2}\left[\cos \left(\frac{t m}{\sqrt{n}}\right)-\cos \left(\frac{t}{\sqrt{n}}\right)\right]+\cos \left(\frac{t}{\sqrt{n}}\right)$, a perturbation of $\cos \left(\frac{t}{\sqrt{n}}\right)$ with error bounded by $2 / m^{2}$. Divide the product at some L_{n}, say $L_{n}=n^{\alpha}$ with $\alpha<1 / 2$, use the two types of asymptotics.
4. Suppose X and Y are random variables such that $\mathbb{E}\left[X^{2}\right]<\infty$ and $\mathbb{E}\left[Y^{2}\right]<\infty$, and suppose \mathcal{G} is a σ-field. Show that if $\mathbb{E}[Y \mid \mathcal{G}]=X$ and $\mathbb{E}\left[Y^{2} \mid \mathcal{G}\right]=X^{2}$, then $X=Y$ a.s.

Solution:

From the assumption that $\mathbb{E}[Y \mid \mathcal{G}]=X$ we know that X is measurable with respect to \mathcal{G}. Then

$$
\begin{aligned}
\mathbb{E}\left[(Y-X)^{2} \mid \mathcal{G}\right] & =\mathbb{E}\left[Y^{2} \mid \mathcal{G}\right]-2 \mathbb{E}[X Y \mid \mathcal{G}]+\mathbb{E}\left[X^{2} \mid \mathcal{G}\right] \\
& =\mathbb{E}\left[Y^{2} \mid \mathcal{G}\right]-2 X \mathbb{E}[Y \mid \mathcal{G}]+X^{2}
\end{aligned}
$$

Plug in the assumptions we obtain that $\mathbb{E}\left[(Y-X)^{2} \mid \mathcal{G}\right]=0$ a.s. Therefore $\mathbb{E}\left[(Y-X)^{2}\right]=0$, it follows that $Y-X=0$ a.s.
5. If $\mathcal{F}_{1}, \mathcal{F}_{2}$, and \mathcal{G} are σ-fields, we say \mathcal{F}_{1} and \mathcal{F}_{2} are conditionally independent given \mathcal{G} if $\mathbb{P}(A \cap B \mid \mathcal{G})=$ $\mathbb{P}(A \mid \mathcal{G}) \mathbb{P}(B \mid \mathcal{G})$ for all $A \in \mathcal{F}_{1}$ and $B \in \mathcal{F}_{2}$. Prove that if $\mathbb{P}\left(A \mid \sigma\left(\mathcal{F}_{2}, \mathcal{G}\right)\right)=\mathbb{P}(A \mid \mathcal{G})$ for all $A \in \mathcal{F}_{1}$, where $\sigma\left(\mathcal{F}_{2}, \mathcal{G}\right)$ denotes the σ-field generated by \mathcal{F}_{2} and \mathcal{G}, then \mathcal{F}_{1} and \mathcal{F}_{2} are conditionally independent given \mathcal{G}.

Solution:

Let $A \in \mathcal{F}_{1}, B \in \mathcal{F}_{2}$. Then by the tower property, $\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B} \mid \mathcal{G}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B} \mid \sigma\left(\mathcal{G}, \mathcal{F}_{2}\right)\right] \mid \mathcal{G}\right]$. From the assumption $\mathbb{P}\left(A \mid \sigma\left(\mathcal{F}_{2}, \mathcal{G}\right)\right)=\mathbb{P}(A \mid \mathcal{G})$,

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B} \mid \sigma\left(\mathcal{G}, \mathcal{F}_{2}\right)\right] & =\mathbf{1}_{B} \mathbb{E}\left[\mathbf{1}_{A} \mid \sigma\left(\mathcal{G}, \mathcal{F}_{2}\right)\right] \\
& =\mathbf{1}_{B} \mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{G}\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{1}_{A} \mathbf{1}_{B} \mid \mathcal{G}\right] & =\mathbb{E}\left[\mathbf{1}_{B} \mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{G}\right] \mid \mathcal{G}\right] \\
& =\mathbb{E}\left[\mathbf{1}_{A} \mid \mathcal{G}\right] \mathbb{E}\left[\mathbf{1}_{B} \mid \mathcal{G}\right]
\end{aligned}
$$

which means they are conditionally independent given \mathcal{G}.
6. Suppose $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ is a measurable function, and X and Y are random variables with joint density f. Let $g(x)=\int_{\mathbb{R}} f(x, y) d y$, and for simplicity assume $g(x)>0$ for all $x \in \mathbb{R}$. Let $h(x, y)=f(x, y) / g(x)$. Now for $\omega \in \Omega$ and $B \in \mathcal{B}(\mathbb{R})$, let

$$
Q(\omega, B)=\int_{B} h(X(\omega), y) d y
$$

(a) Show that g is a density for X.
(b) Show that Q is a regular conditional distribution for Y given $\sigma(X)$.

Solution:

(a) note that $\mathbb{P}(X \leq x)=\mathbb{P}(X \leq x, Y \in \mathbb{R})=\int_{(-\infty, x] \times \mathbb{R}} f(x, y) d x d y$, then g is a density for X by Fubini theorem.
(b) check the definition of r.c.d.:
(i) for each $B, \omega \rightarrow Q(\omega, B)$ is a version of $\mathbb{P}(Y \in B \mid X)$. To see this, for any set in $\sigma(X)$, it is of the form $X^{-1}(A)$ for some Borel set A,

$$
\mathbb{P}(Y \in B, X \in A)=\int_{B} \int_{A} f(x, y) d x d y=\int_{A} g(x) \int_{B} h(x, y) d y d x=\mathbb{E}\left[\mathbf{1}_{\{X \in A\}} \int_{B} h(X, y) d y\right]
$$

(ii) for any given $\omega, h(X(\omega, y))=f(X(\omega), y) / g(X(\omega))$ is a density function.

3 Homework 3

1. Suppose $\left(X_{n}\right)_{n=0}^{\infty}$ and $\left(Y_{n}\right)_{n=0}^{\infty}$ are martingales with respect to filtration $\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$. Assume $\mathbb{E}\left[X_{n}^{2}\right]<\infty$ and $\mathbb{E}\left[Y_{n}^{2}\right]<\infty$ for all n.
(a) Show that for all n,

$$
\mathbb{E}\left[X_{n} Y_{n}-X_{0} Y_{0}\right]=\sum_{m=1}^{n} \mathbb{E}\left[\left(X_{m}-X_{m-1}\right)\left(Y_{m}-Y_{m-1}\right)\right]
$$

(b) Show that if $X_{0}=0$, then for all n,

$$
\mathbb{E}\left[X_{n}^{2}\right]=\sum_{m=1}^{n} \mathbb{E}\left[\left(X_{m}-X_{m-1}\right)^{2}\right]
$$

Solution:

(a) by the martingale property check that $\mathbb{E}\left[X_{m} Y_{m}-X_{m-1} Y_{m-1}\right]=\mathbb{E}\left[\left(X_{m}-X_{m-1}\right)\left(Y_{m}-Y_{m-1}\right)\right]$, then sum up. (b) follows from (a) by taking $Y_{n}=X_{n}$.
2. Let $\left(S_{n}\right)_{n=0}^{\infty}$ be a simple random walk. That is, $S_{0}=0$ and, for $n \geq 1$, we have $S_{n}=\xi_{1}+\ldots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots are i.i.d. with $\mathbb{P}\left(\xi_{i}=1\right)=\mathbb{P}\left(\xi_{i}=-1\right)=1 / 2$.
(a) Show that $S_{n}^{2}-n$ is a martingale.
(b) Let $T=\inf \left\{n: S_{n} \notin(-a, a)\right\}$, where $a \in \mathbb{N}$. Show that $\mathbb{E}[T]=a^{2}$.

Solution:

(a) $\mathbb{E}\left[S_{n}^{2}-n \mid \mathcal{F}_{n-1}\right]=\mathbb{E}\left[\left(S_{n-1}+X_{n}\right)^{2}-n \mid \mathcal{F}_{n-1}\right]=S_{n-1}^{2}-n-2 S_{n-1} \mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]+\mathbb{E}\left[X_{n}^{2} \mid \mathcal{F}_{n-1}\right]$. Since X_{n} is independent of \mathcal{F}_{n-1}, we have $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=\mathbb{E}\left[X_{n}\right]=0$ and $\mathbb{E}\left[X_{n}^{2} \mid \mathcal{F}_{n-1}\right]=\mathbb{E}\left[X_{n}^{2}\right]=1$.
(b) Write $Y_{n}=S_{n}^{2}-n$ and consider the martingale $Y_{n \wedge T}$. From $\mathbb{E} Y_{n \wedge T}=0$ we have $\mathbb{E}\left[S_{n \wedge T}^{2}\right]=\mathbb{E}[T \wedge n]$. By bounded convergence theorem, $\lim _{n \rightarrow \infty} \mathbb{E}\left[S_{n \wedge T}^{2}\right]=\mathbb{E}\left[S_{T}^{2}\right]=a^{2}$. By monotone convergence theorem $\mathbb{E}[T]=\lim _{n \rightarrow \infty} \mathbb{E}[T \wedge n]=a^{2}$.
3. Let $a>0$, and let X_{1}, X_{2}, \ldots be i.i.d. random variables having a normal distribution with mean $\mu>0$ and variance 1. Let $S_{0}=a$, and let $S_{n}=a+X_{1}+\cdots+X_{n}$ for $n \in \mathbb{N}$.
(a) Let $Y_{n}=e^{-2 \mu S_{n}}$. Show that $\left(Y_{n}\right)_{n=0}^{\infty}$ is a martingale.
(b) Show that

$$
\mathbb{P}\left(S_{n} \leq 0 \text { for some } n\right) \leq e^{-2 \mu a}
$$

Solution:

(a) check that $\mathbb{E}\left[e^{-2 \mu X_{n}}\right]=1$ by plugging the density function of X_{n}.
(b) $\left\{S_{n} \leq 0\right\}=\left\{Y_{n} \geq 1\right\}$. Apply Doob's maximal inequality Theorem 5.4.2.
4. Let $\left(X_{n}\right)_{n=0}^{\infty}$ be a submartingale such that $X_{0}=0$ and

$$
\sup _{n \geq 0} X_{n}(\omega)<\infty
$$

for all $\omega \in \Omega$. Let $\xi_{n}=X_{n}-X_{n-1}$, and suppose $\mathbb{E}\left[\sup _{n \geq 0} \xi_{n}^{+}\right]<\infty$. Show that $\left(X_{n}\right)_{n=0}^{\infty}$ converges a.s.

Solution:

Follow the reasoning of Theorem 5.3.1. Let $0<K<\infty$ and let $N=\inf \left\{n: X_{n} \geq K\right\}$. Consider $X_{n \wedge N}-K$, it is a submartingale satisfying the property that

$$
\left(X_{n \wedge N}-K\right)^{+} \leq \sup _{1 \leq j \leq n} \xi_{j}^{+}
$$

therefore

$$
\sup \mathbb{E}\left(X_{n \wedge N}-K\right)^{+} \leq \mathbb{E} \sup _{n} \xi_{n}^{+}<\infty
$$

By the martingale convergence theorem 5.2.8. $\lim X_{n}$ exists on the event $N=\infty$. Letting $K \rightarrow \infty$, limit exists on the event $\left\{\lim \sup X_{n}<\infty\right\}$, which is assumed.
5. Let $\left(X_{n}\right)_{n=0}^{\infty}$ be a martingale such that $X_{0}=0$ and $\left|X_{n+1}-X_{n}\right| \leq r$ for all n, where r is a positive real number.
(a) Show that

$$
\mathbb{E}\left[\max _{0 \leq m \leq n} X_{m}^{2}\right] \leq 4 r^{2} n
$$

(b) Show that if $x>0$, then

$$
\mathbb{P}\left(\max _{0 \leq m \leq n}\left|X_{m}\right|>x \sqrt{n}\right) \leq \frac{r^{2}}{x^{2}}
$$

Solution:

(a) Note that $\mathbb{E}\left[X_{n}^{2}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\left(X_{j}-X_{j-1}\right)^{2}\right] \leq r^{2} n$. The statement follows from Doob's L^{2} maximal inequality.
(b) Follows from Doob's maximal inequality 5.4 .2 applied to the submartingale X_{n}^{2}.
6. Let $\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$ be a filtration, and let $\mathcal{F}_{\infty}=\sigma\left(\cup_{n=0}^{\infty} \mathcal{F}_{n}\right)$. Let A be an event such that $A \in \mathcal{F}_{\infty}$ but A is independent of \mathcal{F}_{0}. Suppose $\mathbb{P}(A)=1 / 2$. Let $X_{n}=\mathbb{P}\left(A \mid \mathcal{F}_{n}\right)$ for all $n \geq 0$.
(a) Show that if $\frac{1}{2} \leq x \leq 1$, then

$$
\mathbb{P}\left(\sup _{n \geq 0} X_{n} \geq x\right) \leq \frac{1}{2 x}
$$

(b) Show that

$$
\frac{3}{4} \leq \mathbb{E}\left[\sup _{n \geq 0} X_{n}\right] \leq \frac{1+\log 2}{2}
$$

Solution:

(a) X_{n} is a non-negative martingale, $\mathbb{E} X_{n}=\mathbb{P}(A)=1 / 2$. By Doob's maximal inequality

$$
x \mathbb{P}\left(\max _{0 \leq j \leq n} X_{j} \geq x\right) \leq \mathbb{E} X_{n}=1 / 2
$$

Let $n \rightarrow \infty$ we obtain (a).
(b) Upper bound follows from integrating the tail bound in (a).

By Levy $0-1$ law $\lim _{n \rightarrow \infty} X_{n}=\mathbf{1}_{A}$ a.s. Note that since A is independent of \mathcal{F}_{0}, X_{0} is constant $1 / 2$. Then

$$
\begin{aligned}
\mathbb{E}\left[\sup _{n \geq 0} X_{n}\right] & \geq \mathbb{E}\left[\max \left\{X_{0}, \lim _{n} X_{n}\right\}\right] \\
& =\mathbb{E}\left[\max \left\{1 / 2, \mathbf{1}_{A}\right\}\right]=1 / 2 \mathbb{P}\left(A^{c}\right)+\mathbb{P}(A)=3 / 4
\end{aligned}
$$

