Solution sketch to 280B HW problems

1 Homework 1

1. Let $X_1, X_2, ...$ be independent random variables with distribution function F. Let

$$M_n = \max_{1 \le m \le n} X_m.$$

(a) Suppose $\alpha > 0$ and $F(x) = 1 - x^{-\alpha}$ for $x \ge 1$. Suppose Y_1 has distribution function F_1 , where $F_1(x) = \exp(-x^{-\alpha})$ for all x > 0. Show that

$$M_n/n^{1/\alpha} \Rightarrow Y_1.$$

(b) Suppose $\beta > 0$ and $F(x) = 1 - |x|^{\beta}$ for $-1 \le x \le 0$. Suppose Y_2 has distribution function F_2 , where $F_2(x) = \exp(-|x|^{\beta})$ for all x < 0. Show that n

$$n^{1/\beta}M_n \Rightarrow Y_2.$$

(c) Suppose $F(x) = 1 - e^{-x}$ for all $x \ge 0$. Suppose Y_3 has distribution function F_3 , where $F_3(x) = \exp(-e^{-x})$ for all $x \in \mathbb{R}$. Show that

$$M_n - \log n \Rightarrow Y_3$$
.

Solution:

Note that $\mathbb{P}(M_n \leq x) = \mathbb{P}(X_1 \leq x)^n = F(x)^n$. Plug in the given expression for F(x) and pass to limit when $n \to \infty$.

2. Suppose $(X_n)_{n=1}^{\infty}$ and $(Y_n)_{n=1}^{\infty}$ are sequences of random variables, X is a random variable and $c \in \mathbb{R}$ is a constant. Show that if $X_n \Rightarrow X$ and $Y_n \to c$ in probability, then $X_n Y_n \Rightarrow c X$.

Solution:

Case (i): c > 0. Take any $\epsilon > 0$ any small constant, we have

$$\mathbb{P}(X_n Y_n \le cx) \le \mathbb{P}(Y_n \le c(1 - \epsilon)) + \mathbb{P}\left(X_n \le \frac{x}{1 - \epsilon}\right).$$

Using these $\epsilon > 0$ such that $x/(1-\epsilon)$ is a continuity point of F_X and send n to ∞ , we obtain

$$\limsup_{n \to \infty} \mathbb{P}\left(X_n Y_n \le cx\right) \le F_X\left(\frac{x}{1 - \epsilon}\right).$$

In the other direction,

$$\mathbb{P}(X_n Y_n \le cx) \ge \mathbb{P}\left(X_n \le \frac{x}{1+\epsilon'}\right) - \mathbb{P}(Y_n \ge c(1+\epsilon') \text{ or } Y_n \le 0).$$

Choose $\epsilon' > 0$ such that $x/(1+\epsilon')$ is a continuity point of F_X , we have

$$\liminf_{n \to \infty} \mathbb{P}\left(X_n Y_n \le cx\right) \ge F_X\left(\frac{x}{1 + \epsilon'}\right).$$

Combine these two inequalities, we conclude that at continuity point x of F_X , $\lim_{n\to\infty} \mathbb{P}(X_n Y_n \leq cx) = F_X(x) = F_{cX}(cx)$.

The case c < 0 follows from taking $-Y_n$.

Case (ii): c = 0, we need to show that $X_n Y_n \Rightarrow 0$, that is $\mathbb{P}(|X_n Y_n| \geq \epsilon) \to 0$. We have for any M > 0,

$$\mathbb{P}(|X_n Y_n| \ge \epsilon) \le \mathbb{P}(|Y_n| \ge 1/M) + \mathbb{P}(|X_n| \ge M\epsilon).$$

Choose M such that $\pm M\epsilon$ are continuity point of F_X , we have $\limsup_{n\to\infty} \mathbb{P}\left(|X_nY_n| \ge \epsilon\right) \le F_X(-M\epsilon) + 1 - F_X(M\epsilon)$. Send M to infinity we obtain the statement.

- 3. Let $(\mu_n)_{n=1}^{\infty}$ be a sequence of probability measures on \mathbb{R} and F_n be the distribution function of μ_n . Let μ be a measure on \mathbb{R} with $\mu(\mathbb{R}) < 1$, and let $F(x) = \mu((-\infty, x])$.
- (a) Show that if for all continuous functions $g: \mathbb{R} \to \mathbb{R}$ having compact support (meaning there exists $M < \infty$ such that g(x) = 0 for any $|x| \ge M$), we have

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) d\mu_n(x) = \int_{\mathbb{R}} g(x) d\mu(x), \tag{1}$$

then $\mu_n \Rightarrow_v \mu$ in vague convergence, that is at continuity points x, y of F, x < y,

$$\lim_{n \to \infty} \mu_n((x, y]) = \mu((x, y])$$

(The converse is also true, but you are not asked to show this.)

- (b) Give an example in which $\mu_n \Rightarrow_v \mu$ but the convergence (1) fails for some bounded continuous g. Solution:
- (a) The same argument as in Theorem 3.2.3 in the textbook, applied to indicator $\mathbf{1}_{(x,y]}$ which results in continuous functions of compact support.
 - (b) Choose an example that fails to be tight.
 - 4. Let X be a random variable with characteristic function φ .
- (a) Show that $\varphi(t) \in \mathbb{R}$ for all t if and only if the distribution of X is symmetric, that is X and -X has the same distribution.
- (b) Show that there exists random variables Y and Z such that $Re(\varphi)$ is the characteristic function of Y and $|\varphi|^2$ is the characteristic function of Z.

Solution:

- (a) if direction: since X and -X have the same distribution, $\varphi(t) = \mathbb{E}\left[e^{itX}\right] = \frac{1}{2}\mathbb{E}\left[e^{itX} + e^{-itX}\right]$, which is real. Only if direction: use the inversion formula to show for example $\mathbb{P}(X \ge x) = \mathbb{P}(X \le -x)$, x > 0 a continuity point.
- (b) Let B be a random variable such that $\mathbb{P}(B=1) = \mathbb{P}(B=-1) = 1/2$ and B is independent of X. Then Y = BX has ch.f. $Re(\varphi)$.

Let X_1, X_2 be two independent random variables with the same distribution as X. Then the ch.f. of $X_1 - X_2$ is

$$\mathbb{E}\left[e^{itX_1-X_2}\right] = \mathbb{E}\left[e^{itX_1}\right]\mathbb{E}\left[e^{-itX_2}\right] = \varphi(t)\varphi(-t) = |\varphi(t)|^2.$$

5. Let X_1, X_2, \ldots be i.i.d. random variables with characteristic function φ , $S_n = X_1 + \ldots + X_n$. Show that if $\varphi'(0) = ia$, $a \in \mathbb{R}$, then $S_n/n \to a$ in probability.

Solution:

It suffices to show $S_n/n \Rightarrow a$.

$$\mathbb{E}\left[e^{itS_n/n}\right] = \varphi(t/n)^n = \left(\varphi(0) + \varphi'(0)\frac{t}{n} + o(\frac{t}{n})\right)^n \to e^{\varphi'(0)t} \text{ as } n \to \infty.$$

The Dirac mass at a has ch.f. e^{iat} , the claim follows.

2 Homework 2

1. Suppose X_1, X_2, \ldots are i.i.d. random variables such that $\mathbb{E}[X_m] = 0$ and $E[X_m^2] = \sigma^2$ for all m, where $0 < \sigma^2 < \infty$. Show that

$$\sum_{m=1}^{n} X_m / \left(\sum_{m=1}^{n} X_m^2\right)^{1/2} \Rightarrow Z.$$

Solution:

By SLLN,

$$\frac{1}{n} \sum_{m=1}^{n} X_m^2 \to \sigma^2 \ a.s.$$

The claim follows from CLT that $\frac{1}{\sqrt{n}\sigma}\sum_{m=1}^{n}X_{m}\Rightarrow Z, \sqrt{n}\sigma/\left(\sum_{m=1}^{n}X_{m}^{2}\right)^{1/2}\rightarrow 1$ a.s. and Problem 2 in HW1

2. For $n \in \mathbb{N}$, suppose X_n has the binomial distribution with parameters n and p_n . This means that $X_n = \xi_{n,1} + \ldots + \xi_{n,n}$, where $\xi_{n,j}$, $1 \le j \le n$, are i.i.d. and $\mathbb{P}(\xi_{n,i} = 1) = p_n$ and $\mathbb{P}(\xi_{n,i} = 0) = 1 - p_n$.

(a) Show that if $\lim_{n\to\infty} np_n(1-p_n) = \infty$, then

$$\frac{X_n - np_n}{\sqrt{np_n(1 - p_n)}} \Rightarrow Z.$$

(b) Show that if $\lim_{n\to\infty} np_n = \lambda \in (0,\infty)$, then $X_n \Rightarrow \text{Poisson}(\lambda)$.

Solution:

(a) check the conditions of Lindeberg-Feller Theorem 3.4.5. (b) Poisson approximation theorem 3.6.1.

3. Suppose $X_1, X_2, ...$ are independent. Suppose $\mathbb{P}(X_m = -m) = \mathbb{P}(X_m = m) = m^{-2}/2$ for all $m \ge 1$ and $\mathbb{P}(X_m = -1) = \mathbb{P}(X_m = 1) = (1 - m^{-2})/2$ for $m \ge 2$. Let $S_n = X_1 + ... + X_n$. Show that $\text{var}(S_n)/n \to 2$ but $S_n/\sqrt{n} \Rightarrow Z$.

Solution:

For variance, $var(X_m) = m^2 \cdot m^{-2} + 1 - m^{-2} = 2 - m^{-2}$, by independence

$$var(S_n) = \sum_{m=1}^{n} var(X_m) = 2n - \sum_{m=1}^{n} m^{-2}.$$

The summation converges to a constant when $n \to \infty$.

Write down the ch.f. of X_m ,

$$\varphi_m(t) = \frac{1}{2m^2} \left(e^{itm} + e^{-itm} \right) + \frac{1}{2} \left(1 - \frac{1}{m^2} \right) \left(e^{it} + e^{-it} \right)$$
$$= m^{-2} \cos(tm) + (1 - m^{-2}) \cos(t).$$

For S_n/\sqrt{n} its ch.f. is

$$\prod_{m=1}^{n} \varphi_m \left(t / \sqrt{n} \right) = \prod_{m=1}^{n} \left(m^{-2} \cos \left(\frac{tm}{\sqrt{n}} \right) + (1 - m^{-2}) \cos \left(\frac{t}{\sqrt{n}} \right) \right).$$

For small m,

$$m^{-2}\cos\left(\frac{tm}{\sqrt{n}}\right) + (1 - m^{-2})\cos\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{n} + \frac{t^2}{2nm^2} + o(t^2m^2/n);$$

for large m, consider $m^{-2}\cos\left(\frac{tm}{\sqrt{n}}\right) + (1-m^{-2})\cos\left(\frac{t}{\sqrt{n}}\right)$ as $m^{-2}\left[\cos\left(\frac{tm}{\sqrt{n}}\right) - \cos\left(\frac{t}{\sqrt{n}}\right)\right] + \cos\left(\frac{t}{\sqrt{n}}\right)$, a perturbation of $\cos\left(\frac{t}{\sqrt{n}}\right)$ with error bounded by $2/m^2$. Divide the product at some L_n , say $L_n = n^{\alpha}$ with $\alpha < 1/2$, use the two types of asymptotics.

4. Suppose X and Y are random variables such that $\mathbb{E}[X^2] < \infty$ and $\mathbb{E}[Y^2] < \infty$, and suppose \mathcal{G} is a σ -field. Show that if $\mathbb{E}[Y|\mathcal{G}] = X$ and $\mathbb{E}[Y^2|\mathcal{G}] = X^2$, then X = Y a.s.

Solution:

From the assumption that $\mathbb{E}[Y|\mathcal{G}] = X$ we know that X is measurable with respect to \mathcal{G} . Then

$$\mathbb{E}\left[(Y-X)^2|\mathcal{G}\right] = \mathbb{E}\left[Y^2|\mathcal{G}\right] - 2\mathbb{E}\left[XY|\mathcal{G}\right] + \mathbb{E}\left[X^2|\mathcal{G}\right]$$
$$= \mathbb{E}\left[Y^2|\mathcal{G}\right] - 2X\mathbb{E}[Y|\mathcal{G}] + X^2.$$

Plug in the assumptions we obtain that $\mathbb{E}\left[(Y-X)^2|\mathcal{G}\right]=0$ a.s. Therefore $\mathbb{E}\left[(Y-X)^2\right]=0$, it follows that Y-X=0 a.s.

5. If \mathcal{F}_1 , \mathcal{F}_2 , and \mathcal{G} are σ -fields, we say \mathcal{F}_1 and \mathcal{F}_2 are conditionally independent given \mathcal{G} if $\mathbb{P}(A \cap B | \mathcal{G}) = \mathbb{P}(A | \mathcal{G})\mathbb{P}(B | \mathcal{G})$ for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. Prove that if $\mathbb{P}(A | \sigma(\mathcal{F}_2, \mathcal{G})) = \mathbb{P}(A | \mathcal{G})$ for all $A \in \mathcal{F}_1$, where $\sigma(\mathcal{F}_2, \mathcal{G})$ denotes the σ -field generated by \mathcal{F}_2 and \mathcal{G} , then \mathcal{F}_1 and \mathcal{F}_2 are conditionally independent given \mathcal{G} .

Solution:

Let $A \in \mathcal{F}_1$, $B \in \mathcal{F}_2$. Then by the tower property, $\mathbb{E}\left[\mathbf{1}_A\mathbf{1}_B|\mathcal{G}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_A\mathbf{1}_B|\sigma(\mathcal{G},\mathcal{F}_2)\right]|\mathcal{G}\right]$. From the assumption $\mathbb{P}(A|\sigma(\mathcal{F}_2,\mathcal{G})) = \mathbb{P}(A|\mathcal{G})$,

$$\mathbb{E}\left[\mathbf{1}_{A}\mathbf{1}_{B}|\sigma(\mathcal{G},\mathcal{F}_{2})\right] = \mathbf{1}_{B}\mathbb{E}\left[\mathbf{1}_{A}|\sigma(\mathcal{G},\mathcal{F}_{2})\right]$$
$$= \mathbf{1}_{B}\mathbb{E}\left[\mathbf{1}_{A}|\mathcal{G}\right].$$

Therefore

$$\mathbb{E}\left[\mathbf{1}_{A}\mathbf{1}_{B}|\mathcal{G}\right] = \mathbb{E}\left[\mathbf{1}_{B}\mathbb{E}\left[\mathbf{1}_{A}|\mathcal{G}\right]|\mathcal{G}\right]$$
$$= \mathbb{E}\left[\mathbf{1}_{A}|\mathcal{G}\right]\mathbb{E}\left[\mathbf{1}_{B}|\mathcal{G}\right],$$

which means they are conditionally independent given \mathcal{G} .

6. Suppose $f: \mathbb{R}^2 \to [0, \infty)$ is a measurable function, and X and Y are random variables with joint density f. Let $g(x) = \int_{\mathbb{R}} f(x,y) dy$, and for simplicity assume g(x) > 0 for all $x \in \mathbb{R}$. Let h(x,y) = f(x,y)/g(x). Now for $\omega \in \Omega$ and $B \in \mathcal{B}(\mathbb{R})$, let

$$Q(\omega, B) = \int_{B} h(X(\omega), y) dy.$$

- (a) Show that q is a density for X.
- (b) Show that Q is a regular conditional distribution for Y given $\sigma(X)$.

Solution:

- (a) note that $\mathbb{P}(X \leq x) = \mathbb{P}(X \leq x, Y \in \mathbb{R}) = \int_{(-\infty,x]\times\mathbb{R}} f(x,y) dx dy$, then g is a density for X by Fubini theorem.
 - (b) check the definition of r.c.d.:
- (i) for each $B, \omega \to Q(\omega, B)$ is a version of $\mathbb{P}(Y \in B|X)$. To see this, for any set in $\sigma(X)$, it is of the form $X^{-1}(A)$ for some Borel set A,

$$\mathbb{P}(Y \in B, X \in A) = \int_{B} \int_{A} f(x, y) dx dy = \int_{A} g(x) \int_{B} h(x, y) dy dx = \mathbb{E} \left[\mathbf{1}_{\{X \in A\}} \int_{B} h(X, y) dy \right].$$

(ii) for any given ω , $h(X(\omega,y)) = f(X(\omega),y)/g(X(\omega))$ is a density function.

$\mathbf{3}$ Homework 3

- 1. Suppose $(X_n)_{n=0}^{\infty}$ and $(Y_n)_{n=0}^{\infty}$ are martingales with respect to filtration $(\mathcal{F}_n)_{n=0}^{\infty}$. Assume $\mathbb{E}[X_n^2] < \infty$ and $\mathbb{E}[Y_n^2] < \infty$ for all n.
- (a) Show that for all n,

$$\mathbb{E}[X_n Y_n - X_0 Y_0] = \sum_{m=1}^n \mathbb{E}[(X_m - X_{m-1})(Y_m - Y_{m-1})].$$

(b) Show that if $X_0 = 0$, then for all n,

$$\mathbb{E}[X_n^2] = \sum_{m=1}^n \mathbb{E}[(X_m - X_{m-1})^2].$$

Solution:

- (a) by the martingale property check that $\mathbb{E}[X_m Y_m X_{m-1} Y_{m-1}] = \mathbb{E}[(X_m X_{m-1})(Y_m Y_{m-1})],$ then sum up. (b) follows from (a) by taking $Y_n = X_n$.
- 2. Let $(S_n)_{n=0}^{\infty}$ be a simple random walk. That is, $S_0 = 0$ and, for $n \ge 1$, we have $S_n = \xi_1 + \ldots + \xi_n$, where $\xi_1, \xi_2,...$ are i.i.d. with $\mathbb{P}(\xi_i = 1) = \mathbb{P}(\xi_i = -1) = 1/2$.
- (a) Show that $S_n^2 n$ is a martingale.
- (b) Let $T = \inf\{n : S_n \notin (-a, a)\}$, where $a \in \mathbb{N}$. Show that $\mathbb{E}[T] = a^2$.

- (a) $\mathbb{E}\left[S_n^2 n|\mathcal{F}_{n-1}\right] = \mathbb{E}\left[(S_{n-1} + X_n)^2 n|\mathcal{F}_{n-1}\right] = S_{n-1}^2 n 2S_{n-1}\mathbb{E}[X_n|\mathcal{F}_{n-1}] + \mathbb{E}[X_n^2|\mathcal{F}_{n-1}].$ Since X_n is independent of \mathcal{F}_{n-1} , we have $\mathbb{E}[X_n|\mathcal{F}_{n-1}] = \mathbb{E}[X_n] = 0$ and $\mathbb{E}[X_n^2|\mathcal{F}_{n-1}] = \mathbb{E}[X_n^2] = 1.$ (b) Write $Y_n = S_n^2 n$ and consider the martingale $Y_{n \wedge T}$. From $\mathbb{E}Y_{n \wedge T} = 0$ we have $\mathbb{E}[S_{n \wedge T}^2] = \mathbb{E}[T \wedge n].$ By bounded convergence theorem, $\lim_{n \to \infty} \mathbb{E}[S_{n \wedge T}^2] = \mathbb{E}[S_T^2] = a^2$. By monotone convergence theorem $\mathbb{E}[T] = \lim_{n \to \infty} \mathbb{E}[T \land n] = a^2.$
- 3. Let a > 0, and let $X_1, X_2, ...$ be i.i.d. random variables having a normal distribution with mean $\mu > 0$ and variance 1. Let $S_0 = a$, and let $S_n = a + X_1 + \cdots + X_n$ for $n \in \mathbb{N}$.
- (a) Let $Y_n = e^{-2\mu S_n}$. Show that $(Y_n)_{n=0}^{\infty}$ is a martingale.
- **(b)** Show that

$$\mathbb{P}(S_n \leq 0 \text{ for some } n) \leq e^{-2\mu a}.$$

Solution:

- (a) check that $\mathbb{E}[e^{-2\mu X_n}] = 1$ by plugging the density function of X_n .
- (b) $\{S_n \leq 0\} = \{Y_n \geq 1\}$. Apply Doob's maximal inequality Theorem 5.4.2.
- 4. Let $(X_n)_{n=0}^{\infty}$ be a submartingale such that $X_0 = 0$ and

$$\sup_{n\geq 0} X_n(\omega) < \infty$$

for all $\omega \in \Omega$. Let $\xi_n = X_n - X_{n-1}$, and suppose $\mathbb{E}[\sup_{n \geq 0} \xi_n^+] < \infty$. Show that $(X_n)_{n=0}^{\infty}$ converges a.s. Solution:

Follow the reasoning of Theorem 5.3.1. Let $0 < K < \infty$ and let $N = \inf\{n : X_n \ge K\}$. Consider $X_{n \wedge N} - K$, it is a submartingale satisfying the property that

$$(X_{n \wedge N} - K)^+ \le \sup_{1 \le j \le n} \xi_j^+,$$

therefore

$$\sup \mathbb{E} (X_{n \wedge N} - K)^{+} \leq \mathbb{E} \sup_{n} \xi_{n}^{+} < \infty.$$

By the martingale convergence theorem 5.2.8. $\lim X_n$ exists on the event $N = \infty$. Letting $K \to \infty$, limit exists on the event $\{\lim \sup X_n < \infty\}$, which is assumed.

5. Let $(X_n)_{n=0}^{\infty}$ be a martingale such that $X_0 = 0$ and $|X_{n+1} - X_n| \le r$ for all n, where r is a positive real number.

(a) Show that

$$\mathbb{E}\left[\max_{0\le m\le n} X_m^2\right] \le 4r^2n.$$

(b) Show that if x > 0, then

$$\mathbb{P}\left(\max_{0 \le m \le n} |X_m| > x\sqrt{n}\right) \le \frac{r^2}{x^2}.$$

Solution:

(a) Note that $\mathbb{E}[X_n^2] = \sum_{j=1}^n \mathbb{E}\left[(X_j - X_{j-1})^2\right] \leq r^2 n$. The statement follows from Doob's L^2 -maximal inequality.

(b) Follows from Doob's maximal inequality 5.4.2 applied to the submartingale X_n^2 .

6. Let $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration, and let $\mathcal{F}_{\infty} = \sigma(\cup_{n=0}^{\infty} \mathcal{F}_n)$. Let A be an event such that $A \in \mathcal{F}_{\infty}$ but A is independent of \mathcal{F}_0 . Suppose $\mathbb{P}(A) = 1/2$. Let $X_n = \mathbb{P}(A|\mathcal{F}_n)$ for all $n \geq 0$.

(a) Show that if $\frac{1}{2} \le x \le 1$, then

$$\mathbb{P}\left(\sup_{n>0} X_n \ge x\right) \le \frac{1}{2x}.$$

(b) Show that

$$\frac{3}{4} \le \mathbb{E} \left[\sup_{n > 0} X_n \right] \le \frac{1 + \log 2}{2}.$$

Solution:

(a) X_n is a non-negative martingale, $\mathbb{E}X_n = \mathbb{P}(A) = 1/2$. By Doob's maximal inequality

$$x\mathbb{P}(\max_{0 \le j \le n} X_j \ge x) \le \mathbb{E}X_n = 1/2.$$

Let $n \to \infty$ we obtain (a).

(b) Upper bound follows from integrating the tail bound in (a).

By Levy 0-1 law $\lim_{n\to\infty} X_n = \mathbf{1}_A$ a.s. Note that since A is independent of \mathcal{F}_0 , X_0 is constant 1/2. Then

$$\mathbb{E}\left[\sup_{n\geq 0} X_n\right] \geq \mathbb{E}\left[\max\left\{X_0, \lim_n X_n\right\}\right]$$
$$= \mathbb{E}[\max\left\{1/2, \mathbf{1}_A\right\}] = 1/2\mathbb{P}(A^c) + \mathbb{P}(A) = 3/4.$$