Math 280 A Homework 3

October 22, 2017

Exercise 1. (i) We show that the set of \mathcal{F} -measurable functions is closed in taking limits. It suffices to show that the set is closed in taking limsup. Note that

$$\{x : \limsup f_i(x) \le c\} = \bigcap_{j \ge 1} \bigcup_{n \ge 1} \bigcap_{k \ge n} \{x : f_k(x) \le c + 1/j\},\$$

and $\{x: f_k(x) \le c + 1/j\}$ is in \mathcal{F} , which is suffice to show the demanded result.

(ii) Assume f is \mathcal{F} -measurable. First decompose f into positive functions f^+ and f^- , which represents the positive and negative parts of f. Then set $f_n^+ = 2^{-n} \lfloor 2^n f^+ \rfloor \wedge n$. We see that f_n^+ is simple, \mathcal{F} -measurable and converging to f^+ . Thus f^+ is \mathcal{F} -measurable. Similarly f^- is \mathcal{F} -measurable which completes the proof.

Exercise 2. (i) Borel sets are countably generated (proved before). Then just show that $X^{-1}(\cdot)$ operation preserves the complement and countable unions.

(ii) If side is straight forward by checking the preimage. Only if side we consider $Y = \lim_i Y_i$ where Y_i are simple functions on $\sigma(X)$. It is easy to see the simple functions on $\sigma(X)$ are measurable functions of X ($\mathbb{1}(A) = \mathbb{1}(X \in B)$ where $A = X^{-1}(B)$), therefore the limit of simple functions is also a measurable function of X.

Exercise 3. Using Markov inequality:

$$P(X \ge 1/n) \le nE(X) = 0.$$

Therefore

$$P(X \neq 0) = P(\bigcup_n \{X \ge 1/n\}) \le \sum_n P(X \ge 1/n) = 0,$$

which finishes the proof.

Exercise 4. (i) The critical point is to check the countable additivity (since other properties are easy to check). Assume $\{A_i\}$ are disjoint sets, and $A = \bigcup_i A_i$. By monotone convergence theorem:

$$\nu(A) = \int f \mathbb{1}_A f d\mu = \int (\lim_n \sum_{i=1}^n \mathbb{1}_{A_i}) f d\mu$$
$$= \lim_n \int (\sum_{i=1}^n \mathbb{1}_{A_i}) f d\mu = \lim_n \sum_{i=1}^n \int \mathbb{1}_{A_i} f d\mu = \sum_i \nu(A_i)$$

(ii) Denote $E_n = \{\omega : f(\omega) \ge n\}$. By the fact that $\int f d\mu < \infty$, we have $\nu(E_n) = \int_{E_n} f d\mu \to 0$. Therefore choose N such that $\nu(E_N) < 0.5\varepsilon$. Now since

$$\nu(A) = \nu(A \cap E_N) + \nu(A \setminus E_N) \le \nu(E_N) + \int_{A \setminus E_N} f d\mu \le 0.5\varepsilon + N\mu(A),$$

choose $\delta = \varepsilon/2N$ and the desired result is obtained.

Exercise 5. In order to use DCT we need to show that $\sum_i |f_i|$ is integrable. This is done by monotone convergence theorem:

$$\int \sum_{i} |f_{i}| d\mu = \int \lim_{n} \sum_{i=1}^{n} |f_{i}| d\mu = \lim_{n} \sum_{i=1}^{n} \int |f_{i}| d\mu = \sum_{i} \int |f_{i}| d\mu < \infty.$$

Therefore since $|\sum_{i=1}^{n} f_i| \le \sum_{i=1}^{n} |f_i| \le \sum_{i} |f_i|$, we use DCT:

$$\sum_{i} \int f_i d\mu = \lim_n \sum_{i=1}^n \int f_i d\mu = \lim_n \int \sum_{i=1}^n f_i d\mu = \int \lim_n \sum_{i=1}^n f_i d\mu = \int \sum_i f_i d\mu$$

as desired.