Math 280 A Homework 3

October 22, 2017

Exercise 1. (i) We show that the set of \mathcal{F}-measurable functions is closed in taking limits. It suffices to show that the set is closed in taking limsup. Note that

$$
\left\{x: \limsup f_{i}(x) \leq c\right\}=\cap_{j \geq 1} \cup_{n \geq 1} \cap_{k \geq n}\left\{x: f_{k}(x) \leq c+1 / j\right\}
$$

and $\left\{x: f_{k}(x) \leq c+1 / j\right\}$ is in \mathcal{F}, which is suffice to show the demanded result.
(ii) Assume f is \mathcal{F}-measurable. First decompose f into positive functions f^{+}and f^{-}, which represents the positive and negative parts of f. Then set $f_{n}^{+}=2^{-n}\left\lfloor 2^{n} f^{+}\right\rfloor \wedge n$. We see that f_{n}^{+}is simple, \mathcal{F}-measurable and converging to f^{+}. Thus f^{+}is \mathcal{F}-measurable. Similarly f^{-}is \mathcal{F}-measurable which completes the proof.

Exercise 2. (i) Borel sets are countably generated (proved before). Then just show that $X^{-1}(\cdot)$ operation preserves the complement and countable unions.
(ii) If side is straight forward by checking the preimage. Only if side we consider $Y=\lim _{i} Y_{i}$ where Y_{i} are simple functions on $\sigma(X)$. It is easy to see the simple functions on $\sigma(X)$ are measurable functions of X $\left(\mathbb{1}(A)=\mathbb{1}(X \in B)\right.$ where $\left.A=X^{-1}(B)\right)$, therefore the limit of simple functions is also a measurable function of X.

Exercise 3. Using Markov inequality:

$$
P(X \geq 1 / n) \leq n E(X)=0
$$

Therefore

$$
P(X \neq 0)=P\left(\cup_{n}\{X \geq 1 / n\}\right) \leq \sum_{n} P(X \geq 1 / n)=0
$$

which finishes the proof.

Exercise 4. (i) The critical point is to check the countable additivity (since other properties are easy to check). Assume $\left\{A_{i}\right\}$ are disjoint sets, and $A=\cup_{i} A_{i}$. By monotone convergence theorem:

$$
\begin{aligned}
\nu(A) & =\int f \mathbb{1}_{A} f d \mu=\int\left(\lim _{n} \sum_{i=1}^{n} \mathbb{1}_{A_{i}}\right) f d \mu \\
& =\lim _{n} \int\left(\sum_{i=1}^{n} \mathbb{1}_{A_{i}}\right) f d \mu=\lim _{n} \sum_{i=1}^{n} \int \mathbb{1}_{A_{i}} f d \mu=\sum_{i} \nu\left(A_{i}\right)
\end{aligned}
$$

(ii) Denote $E_{n}=\{\omega: f(\omega) \geq n\}$. By the fact that $\int f d \mu<\infty$, we have $\nu\left(E_{n}\right)=\int_{E_{n}} f d \mu \rightarrow 0$. Therefore choose N such that $\nu\left(E_{N}\right)<0.5 \varepsilon$. Now since

$$
\nu(A)=\nu\left(A \cap E_{N}\right)+\nu\left(A \backslash E_{N}\right) \leq \nu\left(E_{N}\right)+\int_{A \backslash E_{N}} f d \mu \leq 0.5 \varepsilon+N \mu(A)
$$

choose $\delta=\varepsilon / 2 N$ and the desired result is obtained.

Exercise 5. In order to use DCT we need to show that $\sum_{i}\left|f_{i}\right|$ is integrable. This is done by monotone convergence theorem:

$$
\int \sum_{i}\left|f_{i}\right| d \mu=\int \lim _{n} \sum_{i=1}^{n}\left|f_{i}\right| d \mu=\lim _{n} \sum_{i=1}^{n} \int\left|f_{i}\right| d \mu=\sum_{i} \int\left|f_{i}\right| d \mu<\infty
$$

Therefore since $\left|\sum_{i=1}^{n} f_{i}\right| \leq \sum_{i=1}^{n}\left|f_{i}\right| \leq \sum_{i}\left|f_{i}\right|$, we use DCT:

$$
\sum_{i} \int f_{i} d \mu=\lim _{n} \sum_{i=1}^{n} \int f_{i} d \mu=\lim _{n} \int \sum_{i=1}^{n} f_{i} d \mu=\int \lim _{n} \sum_{i=1}^{n} f_{i} d \mu=\int \sum_{i} f_{i} d \mu
$$

as desired.

