Exercise 1. Realize that
\[E(X) = E(X1(X > 0)) \]
and apply Cauchy-Schwartz inequality:
\[E(X)^2 = E(X1(X > 0))^2 \leq E(X^2)E((1(X > 0))^2) = E(X^2)P(X > 0). \]

Exercise 2. Start from \(g \) as indicator function (which is easy), and extend to \(g \) as simple functions. Now assume \(g \geq 0 \). Use a sequence of simple functions \(g_n \) to approach \(g \) pointwisely from below, and use MCT on both sides. Then for general \(g \), consider decomposition \(g = g^+ - g^- \) where both functions of the right hand side are non-negative. From \(\int |g(x)|\mu(dx) < \infty \) we may have both \(\int g^+(x)\mu(dx) \) and \(\int g^-(x)\mu(dx) \) finite. So we can do the subtraction and finish the work.

Exercise 3. Consider a 4 element space \(\Omega = \{a, b, c, d\} \) with each element weights with probability \(1/4 \). Now consider \(A_1 = \{\{a, b\}, \{b, c\}\} \) and \(A_2 = \{\{a, c\}, \{b, d\}\} \). It is easy to check the independence but \(\sigma(A_1) \) contains \(\{a\} \) which is not independent of \(\{b, d\} \in A_2 \).

Exercise 4. First we show \(Y_n \) are distributed as described. First extend \([0, 1]\) to \([0, 2^n]\) and see that for \(\omega * 2^n \in [2k, 2k+1) \) interval, \(Y(\omega) = 1 \). Clearly these \(\omega \) takes up half of the intervals (since intervals like \([2k, 2k+1) \) takes up half portion in \([0, 2^n]\). Therefore \(P(Y_n = 1) = 0.5 \).

Then we show the independence. This is equivalent to show that for a finite collection of integers \(n_1, \ldots, n_k \) and binaries \(i_1, \ldots, i_k \in \{0, 1\} \), we have \(P(Y_{n_1} = i_1, \ldots, Y_{n_k} = i_k) = \prod_j P(Y_{n_j} = i_j) \). Without loss of generality we assume \(n_j \) are monotone increasing, and this can be done by induction.

WLOG, set all \(i_j = 1 \). For \(Y_{n_1} \), find out the intervals such that \(Y_{n_1} = 1 \) and realize that inside each interval, there are half portion that makes \(Y_{n_2} = 1 \). Induct this to the general case and the proof is complete.

Exercise 5. (i) WLOG assume \(E(Y) = 0 \). Assume \(P(Y \neq 0) > 0 \). Then there exists some \(n \) and set \(A \) such that \(Y > 1/n \) on \(A \), with \(P(A) > 0 \). Then
\[P(X \in A, Y > 1/n) = P(X \in A)P(Y > 1/n) \]
by independence. However \(\{X \in A\} \) implies \(Y > 1/n \) therefore the LHS equals \(P(X \in A) \). Since \(P(A) \neq 0 \), we have \(P(Y > 1/n) = 1 \) which contradicts with \(E(Y) = 0 \).

(ii) Take \(Y = 1(X \geq 1/2) \). The critical point is that by observing \(Z \) only, one piece of \(X \) is missing and that is whether \(X \) is at the left or the right side of \(1/2 \).