Math 280 A Homework 5

November 6, 2017

Exercise 1. By Fubini, we have

$$\int F(x+c) - F(x)dx = \int \int \mathbb{1}_{(x,x+c]} dF dx = \int \int \mathbb{1}_{(x,x+c]} dx dF = \int c dF = c.$$

Exercise 2. Denote $\mathcal{F}_1, \mathcal{F}_2$ as σ -algebras on Ω_1, Ω_2 respectively. We would like to prove $\mathcal{F} = \mathcal{F}_0$, where \mathcal{F} as the σ -algebra generated by rectangle sets and denote \mathcal{F}_0 as the smallest σ -algebra that makes π_1, π_2 measurable. Note that \mathcal{F} is the smallest σ -algebra that contains $\mathcal{A} = \{E_1 \times E_2, E_1 \in \mathcal{F}_1, E_2 \in \mathcal{F}_2\}$. Take π_1 as an example, the preimage of $E_1 \in \mathcal{F}_1$, is $E_1 \times \Omega_2$. Therefore, \mathcal{F}_0 is the smallest σ -algebra that contains $\mathcal{B} = \{E_1 \times \Omega_2, E_1 \in \mathcal{F}_1\} \cup \{\Omega_1 \times E_2, E_2 \in \mathcal{F}_2\}$.

Notice that \mathcal{A} contains \mathcal{B} , and any element in \mathcal{A} is an intersection of two elements in \mathcal{B} , therefore $\mathcal{F} = \mathcal{F}_0$ by the standard inclusion argument.

Exercise 3. (i) By Fubini's theorem:

$$\int_{(a,b]} F(y) - F(a) dG(y) = \int \int \mathbb{1}_{(a,b]}(y) \mathbb{1}_{(a,y]}(x) dF(x) dG(y)$$
$$= \int_{\mathbb{R}^2} \mathbb{1}_{a < x \le y \le b}(x,y) d(\mu \times \nu)$$
$$= (\mu \times \nu)(a < x \le y \le b)$$

(ii) By part (i) we have

$$\int_{(a,b]} F(y) dG(y) = F(a)G(b) - F(a)G(a) + (\mu \times \nu)(a < x \le y \le b).$$

By symmetry we have

$$\int_{(a,b]} G(y) dG(y) = G(a)F(b) - F(a)G(a) + (\mu \times \nu)(a < y \le x \le b)$$

Add up both sides, notice that the addition of the last part gives measure $\mu \times \nu$ on the rectangle $(a, b] \times (a, b]$, plus the diagonal $\{(x, x), a < x \leq b\}$. The rectangle part will give (F(b) - F(a))(G(b) - G(a)). Denote A as the set of discontinuities inside (a, b] of F, we have

$$\begin{aligned} (\mu \times \nu)((x,x), a < x \le b) &= \int_{(a,b]} \mathbb{1}_{\{y\}}(x) dF(x) dG(y) \\ &= \int \mu(\{y\}) dG(y) = \int_A \mu(\{y\}) dG(y) + \int_{A^c} \mu(\{y\}) dG(y) \end{aligned}$$

The first part is a summation of countably many points, and the second part is 0 due to the integrand is 0. Now by MCT:

$$\int_{A} \mu(\{y\}) dG(y) = \int_{(a,b]} \sum_{i} \mathbb{1}_{\{a_i\}} \mu(\{y\}) dG(y) = \sum_{i} \int \mathbb{1}_{\{a_i\}} \mu(\{y\}) dG(y) = \sum_{i} \mu(\{a_i\}) \nu(\{a_i\}).$$

Combine the equations and the result follows.

(iii) The desired probability is

$$P(X_1 \le X_2) = \int P(X_1 \le x) dF(x) = \int F(x) dF(x)$$

Send $a \to -\infty$, $b \to \infty$ in the result of (ii), and the result follows.

Exercise 4. If $P(A_i \ i.o.) = 1$, then for all elements in set $E = \{A_i \ i.o.\}$, there is some A_i containing this element, therefore it is easy to see that $P(\cup_i A_i) = 1$. On the other side, if $P(\cup_i A_i) = 1$, $P(\cap_i A_i^c) = 0$. By independence we have $\prod_{i=1}^{\infty} P(A_i^c) = 0$. Notice that all $P(A_i^c) > 0$ by the fact that $P(A_i) < 1$, then for all positive integer k we have $\prod_{i=k}^{\infty} P(A_i^c) = 0$. Now

$$P(\bigcap_{i=1}^{\infty} \cup_{n \ge i} A_n) = 1 - P(\bigcup_{i=1}^{\infty} \cap_{n \ge i} A_n^c) = 1 - \lim_{i} \prod_{n \ge i} P(A_i^c) = 1$$

If we allow $P(A_i) = 1$, just choose $A_1 = \Omega$ and all other $A_i = \emptyset$ and the relation is violated.

Exercise 5. Denote event $A_i = \{|X_n|/c_n > 1/n\}$. If $P(A_i \quad i.o.) = 0$, for almost every ω , $X_n/c_n \to 0$ is guaranteed. By Borel-Cantelli Lemma, choose c_n such that $P(|X_n|/c_n > 1/n) < 1/n^2$. Now $\sum_n P(A_n) < \infty$, and $P(A_i \quad i.o.) = 0$ is ensured