Math 280 A Homework 5

November 6, 2017

Exercise 1. By Fubini, we have

$$
\int F(x+c)-F(x) d x=\iint \mathbb{1}_{(x, x+c]} d F d x=\iint \mathbb{1}_{(x, x+c)} d x d F=\int c d F=c .
$$

Exercise 2. Denote $\mathcal{F}_{1}, \mathcal{F}_{2}$ as σ-algebras on Ω_{1}, Ω_{2} respectively. We would like to prove $\mathcal{F}=\mathcal{F}_{0}$, where \mathcal{F} as the σ-algebra generated by rectangle sets and denote \mathcal{F}_{0} as the smallest σ-algebra that makes π_{1}, π_{2} measurable. Note that \mathcal{F} is the smallest σ-algebra that contains $\mathcal{A}=\left\{E_{1} \times E_{2}, E_{1} \in \mathcal{F}_{1}, E_{2} \in \mathcal{F}_{2}\right\}$. Take π_{1} as an example, the preimage of $E_{1} \in \mathcal{F}_{1}$, is $E_{1} \times \Omega_{2}$. Therefore, \mathcal{F}_{0} is the smallest σ-algebra that contains $\mathcal{B}=\left\{E_{1} \times \Omega_{2}, E_{1} \in \mathcal{F}_{1}\right\} \cup\left\{\Omega_{1} \times E_{2}, E_{2} \in \mathcal{F}_{2}\right\}$.

Notice that \mathcal{A} contains \mathcal{B}, and any element in \mathcal{A} is an intersection of two elements in \mathcal{B}, therefore $\mathcal{F}=\mathcal{F}_{0}$ by the standard inclusion argument.

Exercise 3. (i) By Fubini's theorem:

$$
\begin{aligned}
\int_{(a, b]} F(y)-F(a) d G(y) & =\iint \mathbb{1}_{(a, b]}(y) \mathbb{1}_{(a, y]}(x) d F(x) d G(y) \\
& =\int_{\mathbb{R}^{2}} \mathbb{1}_{a<x \leq y \leq b}(x, y) d(\mu \times \nu) \\
& =(\mu \times \nu)(a<x \leq y \leq b)
\end{aligned}
$$

(ii) By part (i) we have

$$
\int_{(a, b]} F(y) d G(y)=F(a) G(b)-F(a) G(a)+(\mu \times \nu)(a<x \leq y \leq b) .
$$

By symmetry we have

$$
\int_{(a, b]} G(y) d G(y)=G(a) F(b)-F(a) G(a)+(\mu \times \nu)(a<y \leq x \leq b) .
$$

Add up both sides, notice that the addition of the last part gives measure $\mu \times \nu$ on the rectangle ($a, b] \times(a, b]$, plus the diagonal $\{(x, x), a<x \leq b\}$. The rectangle part will give $(F(b)-F(a))(G(b)-G(a))$. Denote A as the set of discontinuities inside $(a, b]$ of F, we have

$$
\begin{aligned}
(\mu \times \nu)((x, x), a<x \leq b) & =\int_{(a, b]} \mathbb{1}_{\{y\}}(x) d F(x) d G(y) \\
& =\int \mu(\{y\}) d G(y)=\int_{A} \mu(\{y\}) d G(y)+\int_{A^{c}} \mu(\{y\}) d G(y)
\end{aligned}
$$

The first part is a summation of countably many points, and the second part is 0 due to the integrand is 0 . Now by MCT:

$$
\int_{A} \mu(\{y\}) d G(y)=\int_{(a, b]} \sum_{i} \mathbb{1}_{\left\{a_{i}\right\}} \mu(\{y\}) d G(y)=\sum_{i} \int \mathbb{1}_{\left\{a_{i}\right\}} \mu(\{y\}) d G(y)=\sum_{i} \mu\left(\left\{a_{i}\right\}\right) \nu\left(\left\{a_{i}\right\}\right)
$$

Combine the equations and the result follows.
(iii) The desired probability is

$$
P\left(X_{1} \leq X_{2}\right)=\int P\left(X_{1} \leq x\right) d F(x)=\int F(x) d F(x)
$$

Send $a \rightarrow-\infty, b \rightarrow \infty$ in the result of (ii), and the result follows.

Exercise 4. If $P\left(\begin{array}{ll}A_{i} & i . o .\end{array}\right)=1$, then for all elements in set $E=\left\{\begin{array}{ll}A_{i} & i . o .\end{array}\right\}$, there is some A_{i} containing this element, therefore it is easy to see that $P\left(\cup_{i} A_{i}\right)=1$. On the other side, if $P\left(\cup_{i} A_{i}\right)=1, P\left(\cap_{i} A_{i}^{c}\right)=0$. By independence we have $\prod_{i=1}^{\infty} P\left(A_{i}^{c}\right)=0$. Notice that all $P\left(A_{i}^{c}\right)>0$ by the fact that $P\left(A_{i}\right)<1$, then for all positive integer k we have $\prod_{i=k}^{\infty} P\left(A_{i}^{c}\right)=0$. Now

$$
P\left(\cap_{i=1}^{\infty} \cup_{n \geq i} A_{n}\right)=1-P\left(\cup_{i=1}^{\infty} \cap_{n \geq i} A_{n}^{c}\right)=1-\lim _{i} \prod_{n \geq i} P\left(A_{i}^{c}\right)=1
$$

If we allow $P\left(A_{i}\right)=1$, just choose $A_{1}=\Omega$ and all other $A_{i}=\emptyset$ and the relation is violated.

Exercise 5. Denote event $A_{i}=\left\{\left|X_{n}\right| / c_{n}>1 / n\right\}$. If $P\left(A_{i}\right.$ i.o. $)=0$, for almost every $\omega, X_{n} / c_{n} \rightarrow 0$ is guaranteed. By Borel-Cantelli Lemma, choose c_{n} such that $P\left(\left|X_{n}\right| / c_{n}>1 / n\right)<1 / n^{2}$. Now $\sum_{n} P\left(A_{n}\right)<\infty$, and $P\left(\begin{array}{ll}A_{i} & \text { i.o. })=0 \text { is ensured }\end{array}\right.$

