Math 280 A Homework 7

November 26, 2017

Exercise 1. It is clear that $\left(X-X_{n}\right) \leq X$ therefore $\left(X-X_{n}\right)_{+} \leq X$, which means $E\left(\left(X-X_{n}\right)_{+} \mathbb{1}((X-\right.$ $\left.\left.\left.X_{n}\right)_{+} \geq M\right)\right) \leq E(X \mathbb{1}(X \geq M))$. This indicates that $\left(X-X_{n}\right)_{+}$is u.i. since $E(X)<\infty$. Also $X_{n} \rightarrow X$ in probability implies $\left(X-X_{n}\right)_{+} \rightarrow 0$ in probability. Therefore $\left(X-X_{n}\right)_{+} \rightarrow 0$ in L_{1}. Now realize that

$$
E\left|X_{n}-X\right|=E\left(\left(X-X_{n}\right)_{+}\right)+E\left(\left(X-X_{n}\right)_{-}\right)=2 E\left(\left(X-X_{n}\right)_{+}\right)-E\left(X_{n}-X\right)
$$

The right hand side goes to zero, which proves what desired.

Exercise 2. (I) It is trivial to show the unboundedness of $E\left(\left|X_{i}\right|\right)$, as $\sum_{k=1}^{K} 1 / k \log k \approx \log (\log K) \rightarrow \infty$.
(II) We will construct triangular array to apply the weak law of large numbers in triangular arrays. Denote $X_{i, j}=X_{j} \mathbb{1}\left(\left|X_{j}\right| \leq i\right)$. To apply the theorem, we need to check: (1) $n P\left(\left|X_{i}\right| \geq n\right) \rightarrow 0$. This is because $n P\left(\left|X_{i}\right| \geq n\right)=n \sum_{k=n}^{\infty} 1 / k^{2} \log k \leq n / \log n \sum_{k=n}^{\infty} 1 / k^{2} \approx 1 / \log n \rightarrow 0$. (2) $n E\left(X_{i, n}^{2}\right) / n^{2} \rightarrow 0$. This is equivalent to $\frac{1}{n} \sum_{k=2}^{n} 1 / \log n \leq[\log (\log n)]^{2} / n \rightarrow 0$. Now apply the weak law of large number of triangular array we see that $S_{n} / n \rightarrow \mu$ in probability where μ is defined as $\sum_{k=2}^{\infty}(-1)^{k} / k \log k$.

Exercise 3. (I) It suffices to show that $M(s) / s \rightarrow 0$. This is done by rewrite $M(s)=\int_{0}^{s}(F(s)-F(t)) d t=$ $s F(s)-\int_{0}^{s} F(t) d t$. The first part gives 1 when divided by s. The second part also gives one since we can have some N such that $F(N) \geq 1-\epsilon$. Then take $N^{\prime}=N^{2}$ and $\int_{0}^{N^{2}} F(t) d t / N^{2} \geq N(N-1)(1-\epsilon) / N^{2} \approx 1-\epsilon$, so the limit is 1 .
(II) Just check the conditions for weak law of large numbers for triangular array. The first condition is given. The second one is

$$
n E\left(X_{i}^{2} \mathbb{1}\left(X_{i}^{2} \leq b_{n}\right)\right) / b_{n}^{2} \rightarrow 0
$$

First realize that $b_{n}=n M(n)$ always holds, since function $f(s)=s / M(s)$ is right continuous and only jumps down when there is a discontinuous point. Therefore the junction point of f and n is always a solid point, which means the equality always holds. Now since $j P\left(X_{1}>b_{j}\right) \rightarrow 0$, there is some N such that for all $n \geq N, P\left(X_{1}>b_{n}\right) \leq \varepsilon / n$. Consider another large integer T, and use the fact that $E\left(X_{i}^{2} \mathbb{1}\left(X_{i}^{2} \leq b_{n}\right)\right) \leq$ $\int_{0}^{b_{n}} 2 y P\left(X_{1}>y\right) d y \approx \sum_{n} 2 P\left(X_{1}>b_{n}\right)\left(b_{n+1}^{2}-b_{n}^{2}\right)$, we have when $n=T N$:

$$
T N E\left(X_{i}^{2} \mathbb{1}\left(X_{i}^{2} \leq b_{T N}\right)\right) \leq \frac{2 T N \sum_{n \leq N} P\left(X_{1}>b_{n}\right)\left(b_{n+1}^{2}-b_{n}^{2}\right)}{b_{T N}^{2}}+\frac{2 T N \sum_{n=N+1}^{T N} P\left(X_{1}>b_{n}\right)\left(b_{n+1}^{2}-b_{n}^{2}\right)}{b_{T N}^{2}}
$$

The first part is less than $2 T N b_{N}^{2} / b_{T N}^{2}$ and by plugging in $b_{n}=n M(n)$, we have the first part controlled by $2 N / T$. The second part is controlled by plugging in $P\left(X_{1}>b_{n}\right) \leq \varepsilon / n$, which is

$$
\frac{2 T N \sum_{n=N+1}^{T N} b_{j}^{2} / j(j+1)}{b_{T N}^{2}} \leq \frac{2 \varepsilon \sum_{n=N+1}^{T N} M^{2}\left(b_{j}\right)}{T N M^{2}\left(b_{T N}\right)} \leq 2 \varepsilon
$$

Taking $T=2 N / \varepsilon$ and we will have the whole thing controlled by 4ε, which is what we need.
Now apply the weak law of large numbers and by using $b_{n}=n M(n)$ the result follows.

Exercise 4. First realize that $Y_{n}=X_{n} /\left|X_{n-1}\right|$ is IID with uniform distribution on the unit ball. And then $\log \left|X_{n}\right|=\sum_{i=1}^{n} \log \left|Y_{n}\right|$. In order to use the strong law of large numbers we need to specify the distribution of $\left|Y_{n}\right|$. In fact:

$$
P\left(\left|Y_{n}\right| \leq x\right)=P\left(\left|X_{1}\right| \leq x\right)=\pi x^{2} / \pi=x^{2}
$$

Therefore the density for $\left|Y_{i}\right|$ is $f(y)=2 y$, and the expectation of Y_{i} is $\int_{0}^{1} \log y \cdot 2 y d y=-1 / 2$. So $\log \left|X_{n}\right| / n \rightarrow$ $-1 / 2$ almost surely.

Exercise 5. Divide the upper and lower side by n, and the lower side goes to $E X_{1}$ almost surely by strong law of large numbers. Therefore it suffices to show that almost surely $\max _{i \leq n}\left|X_{i}\right| / n \rightarrow 0$. To see this, let $\lambda_{n}=\varepsilon n$, and observe that $\sum_{n} P\left(\left|X_{n}\right|>\lambda_{n}\right)=\sum_{n} P\left(\left|X_{i}\right| / \varepsilon>n\right) \approx \bar{E}\left(\left|X_{i}\right| / \varepsilon\right)<\infty$. By Borel-Cantelli Lemma, this implies $P\left(\left|X_{n}\right|>\lambda_{n}\right.$ i.o. $)=0$. By a previous exercise, this also implies $P\left(\max _{i \leq n}\left|X_{i}\right|>\lambda_{n} \quad\right.$ i.o. $)=0$. Therefore $\lim \sup _{n}\left[\max _{i \leq n}\left|X_{i}\right| / n\right] \leq \varepsilon$ almost surely for arbitrary ε, which is $\max _{i \leq n}\left|X_{i}\right| / n \rightarrow 0$ with probability one.

