Math 280 A Homework 8

December 4, 2017

Exercise 1. Denote X_{i} as the return random variable as $X_{i}=1+a$ with probability $1 / 2+q$, and $X_{i}=1-a$ with probability $1 / 2-q$. The target is to maximize $Y=\prod_{i} X_{i}$ which is the aggregate return of the bet. It is equivalent to maximize $\log Y=\sum_{i} \log X_{i}$. Using SLLN, the expression $\log Y / n$ is very close to the quantity $E\left(\log X_{1}\right)$, which by calculation, is maximized when $a=2 q$.

Exercise 2. First if $\sum_{i} X_{i}<\infty$ a.s., by the three series theorem it is easy to have these two statements.
Reversely, by $\sum_{i} P\left(X_{i}>c\right)<\infty$ and Borel Cantelli Lemma, we know a.s. X_{i} will be no larger than c. Therefore $\sum_{i} X_{i}<\infty$ a.s. is equivalent to $\sum_{i} X_{i} \mathbb{1}\left(X_{i} \leq c\right)<\infty$ a.s.. Now by $\operatorname{MCT}, \sum_{i} E\left(X_{i} \mathbb{1}\left(X_{i} \leq c\right)\right)=$ $E\left(\sum_{i} X_{i} \mathbb{1}\left(X_{i} \leq c\right)\right)<\infty$, which indicates $\sum_{i} X_{i} \mathbb{1}\left(X_{i} \leq c\right)<\infty$ a.s..

Exercise 3. We aim to use three series theorem to show the convergence. First: $\infty>\sum_{n} E\left(\left|X_{n}\right| \mathbb{1}\left(\left|X_{n}\right|>\right.\right.$ $1)) \geq \sum_{n} P\left(\left|X_{n}\right|>1\right)$, so the first condition checked. Then by the fact that $\sum_{n} E\left(X_{n}\right)=0=\sum_{n} E\left(X_{n} \mathbb{1}\left(\left|X_{n}\right| \leq\right.\right.$ $1))+\sum_{n} E\left(X_{n} \mathbb{1}\left(\left|X_{n}\right|>1\right)\right)$, and the second part is controlled by $\sum_{n} E\left(\left|X_{n}\right| \mathbb{1}\left(\left|X_{n}\right|>1\right)\right)$ which is finite, therefore $\sum_{n} E\left(X_{n} \mathbb{1}\left(\left|X_{n}\right| \leq 1\right)\right)$ is also finite. So second condition checked. The third condition is done by combining the fact that $\sum_{n}\left(E\left(X_{n} \mathbb{1}\left(\left|X_{n}\right| \leq 1\right)\right)\right)^{2} \leq \sum_{n} E\left(\left|X_{n}\right| \mathbb{1}\left(\left|X_{n}\right| \leq 1\right)\right)<\infty$ and $\sum_{n} E\left(X_{n}^{2} \mathbb{1}\left(\left|X_{n}\right| \leq 1\right)\right)<\infty$.

Exercise 4. For all positive α, the first two conditions are easily checked. The third condition is satisfied if and only if $\sum_{n} E\left(X_{n}^{2} \mathbb{1}\left(\left|X_{n}\right| \leq 1\right)\right)<\infty$. And it is easily checked that this holds if and only if $\alpha>1 / 2$.

Exercise 5. Realize that $E\left(\left(\log \left|X_{1}\right|\right)_{+}\right)<\infty$ if and only if for any $c>0, E\left(\left(\log \left|X_{1}\right|\right)_{+} / c\right)<\infty$. Note that $E\left(\left(\log \left|X_{1}\right|\right)_{+} / c\right)<\infty$ if and only if $\sum_{n} P\left(\left(\log \left|X_{1}\right|\right) / c>n\right)=\sum_{n} P\left(\left(\log \left|X_{n}\right|\right)>n c\right)<\infty$. By Borel Cantelli Lemma, for any $s<1$, if $\sum_{n} P\left(\left(\log \left|X_{n}\right|\right)>n c\right)=\infty$, take $c=-\log s$ and a.s. $\left|X_{n}\right|>s^{-n}$ will happen infinitely many times, which means $\sum_{n}\left|X_{n}\right| s^{n}$ will contain infinitely many numbers larger than one, which is infinite. When $\sum_{n} P\left(\left(\log \left|X_{n}\right|\right)>n c\right)<\infty$, take $c=-\log s / 2$, and a.s. the sequence $\sum_{n}\left|X_{n}\right| s^{n}$ will be controlled by $\sum_{n}[\sqrt{s}]^{n}$ after some N, which indicates that $\sum_{n}\left|X_{n}\right| s^{n}<\infty$.

