Math 140A: "Winter" 2016 Homework 2

Available Friday, January 8 Due Friday, January 15

Turn in the homework by 5:00pm on Friday, January 15, in the homework box in the basement of AP&M. Late homework will not be accepted.

- 1. Exercise 1.6, p. 22 in Rudin.
- 2. Exercise 1.9, p. 22 in Rudin.
- **3.** Let \mathbb{F} be an ordered field, and suppose \mathbb{F} has the nested intervals property: if $a_n, b_n \in \mathbb{F}$ satisfy

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots \leq b_n \leq \cdots \leq b_2 \leq b_1$$

and $b_n - a_n < \frac{1}{n}$ for each $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} [a_n, b_n]$ is nonempty, and consists of exactly one point. Prove that \mathbb{F} is a complete ordered field.

4. Let \mathbb{F} be a complete ordered field. Let $M \in \mathbb{F}$. For each n, let $a_n \in \mathbb{F}$ and $b_n \in \mathbb{F}$ satisfy $a_0 \leq a_1 \leq \cdots \leq a_n \leq \cdots \leq M$ and $b_0 \leq b_1 \leq \cdots \leq b_n \leq \cdots \leq M$. Prove that

$$\sup\{a_n + b_n \colon n \in \mathbb{N}\} = \sup\{a_n \colon n \in \mathbb{N}\} + \sup\{b_n \colon n \in \mathbb{N}\}.$$
(*)

On the other hand, without the assumption that a_n and b_n are increasing, provide a counterexample to (*).