Math 140A: "Winter" 2016

Homework 2

$$
\begin{array}{|l|l||l|l|}
\hline \text { Available } & \text { Friday, January } 8 & \text { Due } & \text { Friday, January } 15 \\
\hline
\end{array}
$$

Turn in the homework by $5: 00 \mathrm{pm}$ on Friday, January 15, in the homework box in the basement of AP\&M. Late homework will not be accepted.

1. Exercise 1.6, p. 22 in Rudin.
2. Exercise 1.9, p. 22 in Rudin.
3. Let \mathbb{F} be an ordered field, and suppose \mathbb{F} has the nested intervals property: if $a_{n}, b_{n} \in \mathbb{F}$ satisfy

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots \leq b_{n} \leq \cdots \leq b_{2} \leq b_{1}
$$

and $b_{n}-a_{n}<\frac{1}{n}$ for each $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right]$ is nonempty, and consists of exactly one point. Prove that \mathbb{F} is a complete ordered field.
4. Let \mathbb{F} be a complete ordered field. Let $M \in \mathbb{F}$. For each n, let $a_{n} \in \mathbb{F}$ and $b_{n} \in \mathbb{F}$ satisfy $a_{0} \leq a_{1} \leq \cdots \leq a_{n} \leq \cdots \leq M$ and $b_{0} \leq b_{1} \leq \cdots \leq b_{n} \leq \cdots \leq M$. Prove that

$$
\begin{equation*}
\sup \left\{a_{n}+b_{n}: n \in \mathbb{N}\right\}=\sup \left\{a_{n}: n \in \mathbb{N}\right\}+\sup \left\{b_{n}: n \in \mathbb{N}\right\} . \tag{*}
\end{equation*}
$$

On the other hand, without the assumption that a_{n} and b_{n} are increasing, provide a counterexample to ($*$).

