Math 140A: "Winter" 2016 Homework 4

Available Friday, January 22 Due Friday, January 29

Turn in the homework by 5:00pm on Friday, January 29, in the homework box in the basement of AP&M. Late homework will not be accepted.

Throughout this homework set, assume all sequences are in \mathbb{R} .

- **1.** Suppose $a_n \ge 0$ for all sufficiently large *n*. Show that $\limsup_{n\to\infty} a_n = 0$ if and only iff $\lim_{n\to\infty} a_n = 0$. Does the same hold for $\liminf_{n\to\infty} a_n$?
- **2.** Let (a_n) and (b_n) be bounded sequences.
 - (a) Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

(b) Suppose that $a_n \ge 0$ and $b_n \ge 0$ for all sufficiently large *n*. Show that

 $\limsup_{n \to \infty} (a_n \cdot b_n) \le \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$

3. Let (a_n) be a bounded sequence. Show that $\overline{a} = \limsup_{n \to \infty} a_n$ and $\underline{a} = \liminf_{n \to \infty} a_n$ are the unique number with the following properties: for all $\epsilon > 0$,

 $a_n \leq \overline{a} + \epsilon$ for all sufficiently large *n*, and $a_n \geq \overline{a} - \epsilon$ for infinitely many *n*,

and

 $a_n \leq \underline{a} + \epsilon$ for infinitely many *n*, and $a_n \geq \underline{a} - \epsilon$ for all sufficiently large *n*.

4. Let (a_n) be a bounded sequence with the following property: all convergent subsequences of (a_n) converge to the same limit *a*. Prove that $a_n \rightarrow a$.