Math 140A: "Winter" 2016 Homework 5

Available Friday, January 29 Due Friday, February 5

Turn in the homework by 5:00pm on Friday, February 5, in the homework box in the basement of AP&M. Late homework will not be accepted.

1. Let (a_n) be a sequence in \mathbb{R} (not necessarily bounded), and let

 $A = \{x \in \mathbb{R} \colon a_n \ge x \text{ for all sufficiently large } n\}.$

Show that $\sup A = \liminf_{n \to \infty} a_n$. [*Hint*: consider separately the cases when (a_n) is bounded below or not. For the second case, recall the convention that $\sup(\emptyset) = -\infty$.]

- **2.** Let (a_n) be a sequence in \mathbb{R} with $\lim_{n \to \infty} a_n = +\infty$. Show that $a_n > 0$ for all sufficiently large n, and $\lim_{n \to \infty} \frac{1}{a_n} = 0$.
- **3.** Let $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and let $\theta \in \mathbb{R}$.
 - (a) Show that the matrix exponential $e^{\theta J}$ has the form

$$e^{\theta J} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \cos \theta I + \sin \theta J.$$

- (b) Using part (a) and our construction of \mathbb{C} , show that every complex number z has a representation of the form $z = |z|e^{i\theta}$ for some $\theta \in [0, 2\pi)$, and this θ is unique if $z \neq 0$. (The angle θ is called the **argument** of z, $\theta = \operatorname{Arg}(z)$.)
- **4.** (a) Show that there are exactly two complex numbers z so that $z^2 = -1$: z = i and z = -i.
 - (b) Show that the complex conjugation function $\mathfrak{c} \colon \mathbb{C} \to \mathbb{C}$, $\mathfrak{c}(z) = \overline{z}$, is a field isomorphism.
 - (c) It is a fact that any field isomorphism $\varphi \colon \mathbb{C} \to \mathbb{C}$ must act as the identity on \mathbb{R} : for $x \in \mathbb{R}$, $\varphi(x) = x$; you do not need to prove this. Using this fact and part (a), show that the *only* field isomorphisms $\varphi \colon \mathbb{C} \to \mathbb{C}$ are $\varphi(z) = z$ and $\varphi(z) = \mathfrak{c}(z) = \overline{z}$.