Math 140A: "Winter" 2016

Homework 5

Available	Friday, January 29	Due	Friday, February 5

Turn in the homework by $5: 00 \mathrm{pm}$ on Friday, February 5, in the homework box in the basement of AP\&M. Late homework will not be accepted.

1. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R} (not necessarily bounded), and let

$$
A=\left\{x \in \mathbb{R}: a_{n} \geq x \text { for all sufficiently large } n\right\} .
$$

Show that $\sup A=\liminf _{n \rightarrow \infty} a_{n}$. [Hint: consider separately the cases when $\left(a_{n}\right)$ is bounded below or not. For the second case, recall the convention that $\sup (\varnothing)=-\infty$.]
2. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R} with $\lim _{n \rightarrow \infty} a_{n}=+\infty$. Show that $a_{n}>0$ for all sufficiently large n, and $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.
3. Let $J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and let $\theta \in \mathbb{R}$.
(a) Show that the matrix exponential $e^{\theta J}$ has the form

$$
e^{\theta J}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\cos \theta I+\sin \theta J .
$$

(b) Using part (a) and our construction of \mathbb{C}, show that every complex number z has a representation of the form $z=|z| e^{i \theta}$ for some $\theta \in[0,2 \pi)$, and this θ is unique if $z \neq 0$. (The angle θ is called the argument of $z, \theta=\operatorname{Arg}(z)$.)
4. (a) Show that there are exactly two complex numbers z so that $z^{2}=-1: z=i$ and $z=-i$.
(b) Show that the complex conjugation function $\mathfrak{c}: \mathbb{C} \rightarrow \mathbb{C}, \mathfrak{c}(z)=\bar{z}$, is a field isomorphism.
(c) It is a fact that any field isomorphism $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ must act as the identity on \mathbb{R} : for $x \in \mathbb{R}, \varphi(x)=x$; you do not need to prove this. Using this fact and part (a), show that the only field isomorphisms $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ are $\varphi(z)=z$ and $\varphi(z)=\mathfrak{c}(z)=\bar{z}$.

