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1. ORDERED SETS, ORDERED FIELDS, AND COMPLETENESS

1.1. Lecture 1: January 5, 2016.
• N, Z, Q, R, C.
• R is the “Réal numbers”. There is nothing real about them! That is the first, most important

lesson to learn in this class. We will encounter many “obvious” statements that are, in fact,
false. We will also see some counterintuitive statements that turn out to be true.

Date: March 9, 2016.
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• Mathematicians roughly split into two groups: analysts and algebraists. (There’s lots of
overlap, though.) Roughly speaking, algebraists are largely concerned about equalities,
while analysts are largely concerned about inequalities.

Definition 1.1. A total order is a binary relation < on a set S which satisfies:
1. transitive: if x, y, z ∈ S, x < y, and y < z, then x < z.
2. ordered: given any x, y ∈ S, exactly one of the following is true: x < y, x = y, or y < x.

The usual order relation on Q (and its subsets Z and N) is a total order. As usual, we write x > y
to mean y < x, and x ≤ y to mean “x < y or x = y”.

Definition 1.2. Let (S,<) be a totally ordered set. Let E ⊆ S. A lower bound for E is an element
α ∈ S with the property that α ≤ x for each x ∈ E. A upper bound for E is an element β ∈ S
with the property that x ≤ β for each x ∈ E. IfE possesses an upper bound, we sayE is bounded
above; if it possesses a lower bound, it is bounded below.

For example, the set N is bounded below in Z, but it is not bounded above. Any set that has a
maximal element is bounded above by its maximum; similarly, any set with a minimal element is
bounded below by its minimum.

Definition 1.3. Let (S,<) be a totally ordered set, and let E ⊆ S be bounded above. The least
upper bound or supremum of E, should it exist, is

supE ≡ min{β ∈ S : β is an upper bound of E}.
Similarly, if F is bounded below, the greatest lower bound or infimum of F , should it exsit, is

inf F ⊆ S ≡ max{α ∈ S : α is a lower bound of F}.

To work with the definition (of sup, say), we rewrite it slightly. A number σ ∈ S is the supre-
mum of E if the following two properties hold:

1. σ is an upper bound of E.
2. Given any s ∈ S with s < σ, s is not an upper bound of E; i.e. there exists some x ∈ E

with s < x ≤ σ.

Example 1.4. Consider the set E = { 1
n
: n ∈ N} ⊂ Q. This set has a maximal element: 1.

So 1 is an upper bound. Moreover, if s ∈ Q is < 1, then s is not an upper bound of E (since
1 ∈ E). Thus, 1 = supE. (This argument shows in general that, if E has a maximal element, then
maxE = supE.)

On the other hand, E has no minimal element. But note that all elements of E are positive, so
0 is a lower bound for E. If s is any rational number > 0, there is certainly some n ∈ N with
0 < 1

n
< s (this is the Archimedean property of the rational field). Hence, no such s is a lower

bound for E. This shows that 0 is the greatest lower bound: 0 = inf E.

Example 1.5. It is well known that
√
2 is not rational: in other words, there is no rational number

p satisfying p2 = 2. You probably saw this proof in high school. Suppose, for a contradiction, that
p2 = 2. Since p is rational, we can write it in lowest terms as p = m/n for m,n ∈ Z. So we have
m2

n2 = 2, or m2 = 2n2. Thus m2 is even, which means that m is even (since the square of an odd
integer is odd). So m = 2k for some k ∈ Z, meaning m2 = 4k2, and so 4k2 = 2n2, from which
it follows that n2 = 2k2 is even. As before, this imples that n is even. But then both m and n
are divisible by 2, which means they are not relatively prime. This contradicts the assumption that
p = m/n is in lowest terms.
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A finer analysis of this situation shows that Q has “holes”. Let

A = {r ∈ Q : r > 0, r2 < 2}, and B = {r ∈ Q : r > 0, r2 > 2}.
The set A is bounded above: if q ≥ 3

2
then q2 ≥ 9

4
> 2, meaning that q /∈ A; the contrapositive is

that if q ∈ A then q < 3
2
, so 3

2
is an upper bound for A. In fact, take any positive rational number

r; then r2 > 0 is also rational. By the total order relation, exactrly one of the following three
statements is true: r2 < 2, r2 = 2, or r2 > 2. In other words, Q>0 = A t {r ∈ Q : r > 0, r2 =
2} tB. We just showed that the middle set is empty, so

Q>0 = A tB.
• Every element b ∈ B is an upper bound for A. Indeed, if a ∈ A and b ∈ B, then
a2 < 2 < b2 so 0 < b2− a2 = (b− a)(b+ a), and dividing through by the positive number
b + a shows b − a > 0 so a < b. (This also shows that every element a ∈ A is a lower
bound for B.)
• On the other hand, if a ∈ A, then a is not an upper bound for A; i.e. given a ∈ A, there

exists a′ ∈ A with a < a′. To see this, we can just take

a′ = a+
2− a2

2 + a
=

2a+ 2

a+ 2
.

Since a ∈ A, we know a2 < 2 so 2 − a2 > 0, and the denominator 2 + a > 2 > 0, so
a′ > a. But we also have

2− (a′)2 =
2(a+ 2)2 − (2a+ 2)2

(a+ 2)2
=

2a2 + 8a+ 8− 4a2 − 8a− 4

(a+ 2)2
=

2(2− a2)
(a+ 2)2

> 0,

showing that a′ ∈ A, as claimed.
Thus, B is equal to the set of upper bounds of A in Q>0, and similarly A is equal to the set of lower
bounds of B in Q>0.

But then we have the following strange situation. The setA of lower bounds ofB has no greatest
element: we just showed that, given any a ∈ A, there is an a′ ∈ A with a′ > a. Hence, B has no
greatest lower bound: inf B does not exist in Q>0. Similarly, supA does not exists in Q>0.

Example 1.5 viscerally demonstrates that there is a “hole” in Q: the fact that r2 = 2 has no
solution in Q forces the ordered set to be disconnected into two pieces, each of which is very
incomplete: not only does each fail to possess a max/min, they also fail to possess a sup/inf.
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1.2. Lecture 2: January 7, 2016. We now set the stage for the formal study of the real numbers:
it is the (unique) complete ordered field. To understand these words, we begin with fields.

Definition 1.6. A field is a set F equipped with two binary operations +, · : F × F → F, called
addition and multiplication, satisfying the following properties.

(1) Commutativity: ∀a, b ∈ F, a+ b = b+ a and a · b = b · a.
(2) Associativity: ∀a, b, c ∈ F, (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c).
(3) Identity: there exists elements 0, 1 ∈ F s.t. ∀a ∈ F, 0 + a = a = 1 · a.
(4) Inverse: for any a ∈ F, there is an element denoted −a ∈ F with the property that

a+ (−a) = 0. For any a ∈ F \ {0}, there is an element denoted a−1 with the property that
a · a−1 = 1.

(5) Distributivity: ∀a, b, c ∈ F, a · (b+ c) = (a · b) + (a · c).

Example 1.7. Here are some examples of fields.
1. The field Zp = {[0], [1], . . . , [p− 1]} for any prime p, where the + and · are the usual ones

inherited from the + and · on Z (namely [a] + [b] = [a + b] and [a] · [b] = [a · b] – you
studied this field in Math 109). All finite fields have this form.

2. Q is a field.
3. Z is not a field: it fails item (4), lacking multiplicative inverses of all elements other than
±1.

4. Let Q(t) denote the set of rational functions of a single variable t with coefficients in Q:

Q(t) =

{
p(t)

q(t)
: p(t), q(t) are polynomials with coefficients in Q and q(t) is not identically 0

}
.

With the usual addition and multiplication of functions, Q(t) is a field. For example,(
p(t)
q(t)

)−1
= q(t)

p(t)
, which exists so long as p(t) is not identically 0 – i.e. as long as the

original rational function p(t)
q(t)

is not the 0 function.

Fields are the kinds of number systems that behave the way you’ve grown up believing numbers
behave, as summarized in the following lemma.

Lemma 1.8. Let F be a field. The following properties hold.
(1) Cancellation: ∀a, b, c ∈ F, if a+ b = a+ c then b = c. If a 6= 0, if a · b = a · c then b = c.
(2) Hungry Zero: ∀a ∈ F, 0 · a = 0.
(3) No Zero Divisors: ∀a, b ∈ F, if a · b = 0, then either a = 0 or b = 0.
(4) Negatives: ∀a, b ∈ F, (−a)b = −(ab), −(−a) = a, and (−a)(−b) = ab.

Proof. We’ll just prove (2), leaving the others to the reader. For any a ∈ F, note that

0 · a+ a = 0 · a+ 1 · a = (0 + 1) · a = 1 · a = a = 0 + a.

Hence, by (1) (cancellation), it follows that 0 · a = 0. �

Example 1.9. As in Example 1.7.1, we can consider Zn for any positive integer n. This satisfies
all of the properties of Definition 1.6 except (4): inverses don’t always exist. For example, if n can
be factored as n = km for two positive integers k,m > 1, then we have two nonzero elements
[k], [m] ∈ Zn such that [k] · [m] = [km] = [n] = [0], which contradicts Lemma 1.8(3) – there are
zero divisors. So Zn is not a field when n is composite.

Now, we combine fields with ordered sets.
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Definition 1.10. An ordered field is a field F which is an ordered set (F, <), where the order
relation also satisfies the following two properties:

(1) ∀a, b, c ∈ F, if a < b then a+ c < b+ c.
(2) ∀a, b ∈ F, if a > 0 and b > 0, then a · b > 0.

From here, all the usual properties mixing the order relation and the field operations follow. For
example:

Lemma 1.11. Let (F, <) be an ordered field. Then
(1) ∀a ∈ F, a > 0 iff −a < 0.
(2) ∀a ∈ F \ {0}, a2 > 0. In particular, 1 = 12 > 0.
(3) ∀a, b ∈ F, if a > 0 and b < 0, then a · b < 0.
(4) ∀a ∈ F, if a > 0 then a−1 > 0.

Proof. For (1), simply add −a to both sides of the inequality. Note, by the properties of <, this
means F is the union of three disjoint subsets: the positive elements a > 0, the negative elements
a < 0, and the zero element a = 0; and the operation of multiplication by −1 interchanges the
positive and negative elements. So, for (2), we note that our given a 6= 0 must be either positive or
negative; if a > 0 then a2 = a · a > 0 by Definition 1.10(2), while if a < 0 then a2 = (−a)2 > 0
by the same argument. For (3), we then have a > 0 and −b > 0, so −(ab) = a · (−b) > 0, which
means that ab < 0. Finally, for (4), suppose a−1 < 0. then by (3) we would have 1 = a · a−1 < 0;
but by (2) we know 1 > 0. This contradiction shows that a−1 > 0. �

Example 1.12. 1. Q is an ordered field, with its usual order: m1

n1
< m2

n2
iff m1n2 < m2n1. In

fact, this is the unique total order on the set Q which makes Q into an ordered field.
2. Zp is not an ordered field for any prime p. For suppose it were; then by Lemma 1.11(2)

we know that [1] > [0]. Then [2] = [1] + [1] > [1] + [0] = [1], and so by transitivity
[2] > [0]. Continuing this way by induction, we get to [p − 1] > [0]. But we also have
[0] = [1] + [p− 1] > [0] + [p− 1] = [p− 1]. This is a contradiction.

3. Let F be an ordered field. Denote by Fc the following set of 2× 2 matrices over F:

Fc =
{[

a −b
b a

]
: a, b ∈ F

}
.

The determinant of such a matrix is a2 + b2. In an ordered field, we know that a2 > 0 if
a 6= 0, and thus we have the usual property that a2 + b2 = 0 iff a = b = 0. It follows that
all nonzero matrices in Fc are invertible: we can easily verify that

(a2 + b2)−1
[

a b
−b a

] [
a −b
b a

]
=

[
1 0
0 1

]
.

If we define

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
then Fc = {aI + bJ : a, b ∈ F}. Note that J2 = −I . It is now an easy exercise to show
that Fc is a field, with +, · being given by matrix addition and multiplication, where I is the
multiplicative identity and the additive identity is the 2 × 2 zero matrix. (Note: this is not
generally true if F is not an ordered field. For example, in Z2 we have 12+(−1)2 = 0, and
as a result the matrix with a = b = 1 is not invertible in this case.) Fc is the complexification
of F. We will later construct the complex numbers C as C = Rc.
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3.5 If F is any ordered field, then Fc cannot be ordered – there is no order relation that makes
Fc into an ordered field. This is actually what Problem 4 on HW1 asks you to prove.

Item 2 above noted that the finite fields Zp are not ordered fields. In fact, ordered fields must be
infinite. The next results shows why this is true.

Lemma 1.13. Let (F, <) be an ordered field. Then, for any n ∈ Z \ {0}, n · 1F 6= 0F.

Here n · 1F = 1F + 1F + · · ·+ 1F. Note that this property is not automatic for fields: for example,
in Zp, p · [1] = [0].

Proof. First, 1 · 1F = 1F > 0F by Lemma 1.11(2). Proceeding by induction, suppose we’ve shown
that n · 1F 6= 0F. Then (n + 1) · 1F = n · 1F + 1F > 0 + 1F = 1F > 0F. Thus, for every n > 0,
n · 1F > 0F, meaning it is 6= 0. If, on the other hand, n < 0 in Z, then n · 1F = −(−n · 1F) < 0F,
so also it is 6= 0F. �

Corollary 1.14. Let F be an ordered field. The map ϕ : Q→ F given by ϕ(m
n
) = (m·1F)·(n·1F)−1

is an injective ordered field homomorphism.

An ordered field homomorphism is a function which preserves the field operations: ϕ(a + b) =
ϕ(a) + ϕ(b), ϕ(a · b) = ϕ(a) · ϕ(b), and ϕ(0) = 0 and ϕ(1) = 1; and preserves the order relation:
if a < b then ϕ(a) < ϕ(b). An injective ordered field homomorphism should be thought of as an
embedding: we realize Q as a subset of F, in a way that respects all the ordered field structure.

Proof. First we must check that ϕ is well defined: if m1

n1
= m2

n2
, then m1n2 = m2n1. It then follows

(by an easy induction) that (m1 · 1F) · (n2 · 1F) = (m2 · 1F) · (n1 · 1F). Dividing out on both
sides then shows that (m1 · 1F)(n1 · 1F)−1 = (m2 · 1F) · (n2 · 1F)−1. Thus, ϕ is well-defined. It is
similar and routine to verify that it is an ordered field homomorphism. Finally, to show it is one-
to-one, suppose that ϕ(q1) = ϕ(q2) for q1, q2 ∈ Q. Using the homomorphism property, this means
ϕ(q1−q2) = ϕ(q1)−ϕ(q2) = 0. Let q1−q2 = m

n
; thus, we have ϕ(m

n
) = (m ·1F) · (n ·1F)−1 = 0F.

But then, multiplying through by the non-zero (by Lemma 1.13) element n·1F, we havem·1F = 0F,
and again by Lemma 1.13, it follows that m = 0. but this means q1 − q2 = m

n
= 0, so q1 = q2.

Thus, ϕ is injective. �

Thus, we will from now on think if Q as a subset of any ordered field.

In Lecture 1, we saw that Q “has holes”. In example 1.5, we found two subsets A,B ⊂ Q with
the property that B = the set of upper bounds of A, A = the set of lower bounds of B, and A has
no maximal element, while B has no minimal element. Thus, supA and inf B do not exist. This
turns out to be a serious obstacle to doing the kind of analysis we’re used to in calculus, so we’d
like to fill in these holes. This motivates our next definition.
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1.3. Lecture 3: January 11, 2016.

Definition 1.15. An ordered set (S,<) is called complete if every nonempty subset ∅ 6= E ⊆ S
that is bounded above possesses a supremum supE ∈ S. We also denote this by saying that (S,<)
has the least upper bound property.

We could also formulate things in terms of inf, with the greatest lower bound property. Example
1.5 demonstrates how these two are typically related. In fact, they are equivalent.

Proposition 1.16. An ordered set (S,<) has the least upper bound property if and only if, for every
nonempty subset ∅ 6= F ⊆ S that is bounded below, inf F ∈ S exists.

Proof. We will argue the forward implication: the least upper bound property implies the greatest
lower bound property. The converse is very similar.

Let F 6= ∅ be bounded below; then L ≡ {lower bounds for F} is a nonempty subset of S. If
x ∈ L and y ∈ F , then x ≤ y, which shows that every y ∈ F is an upper bound for L. Thus, L is
bounded above and nonempty; by the least upper bound property of S, σ = supL ∈ S exists. By
definition of supremum, if x < σ then x is not an upper bound for L; since every element of F is
an upper bound for L, this means that such x is not in F . Taking contrapositives, this says that if
z ∈ F then x ≥ σ. So σ is a lower bound for F – i.e. σ ∈ L. This shows that σ = maxL: i.e. σ is
the greatest lower bound of F : σ = inf F . So inf F exists, as claimed. �

Let us now prove some important properties that complete ordered fields possess – properties
that are critical for doing all of analysis.

Theorem 1.17. Let F be a complete ordered field.
(1) (Archimedean) Let x, y ∈ F with x > 0. Then there exists n ∈ N so that nx > y.
(2) (Density of Q) Let x, y ∈ F, with x < y. Then there exists r ∈ Q so that x < r < y.

A field with property (1) is called Archimedean. It tells us (by setting x = 1) that the set N is
not bounded above in the field: there is no y ∈ F that is ≥ every integer. It also tells us (by setting
y = 1) that there are no “infinitesimals” – that is, no matter how small a positive number x is, there
is always a positive integer n such that 0 < 1

n
< x. This is an absolutely crucial property for a field

to have if we want to talk about limits. And it does not hold in every ordered field.

Example 1.18. In the field Q(t) of rational functions with rational coefficients, it is always possible
to uniquely express a function f(t) ∈ Q(t) in the form f(t) = λ · p(t)

q(t)
where λ ∈ Q and p(t), q(t)

are monic polynomials: their highest order terms have coefficient 1. This allows us to define an
order on Q(t): say f(t) < g(t) iff g(t) − f(t) = λp(t)

q(t)
where p(t), q(t) are monic and λ > 0.

(This is the same as insisting that the leading coefficients of the numerator and denominator of
f(t) − g(t) have the same sign.) For example t2−25t+7

t4−1023 > 0 while −t
2−25t+7
t4−1023 < 0. Then it is easy

but laborious to check that this makes Q(t) into an ordered field. Note: t − n = 1 · t−n
1

> 0
for any integer n; this means that, in the ordered field Q(t), the element t is greater than every
integer. I.e. the set Z ⊂ Q(t) actually has an upper bound (e.g. t) in Q(t). This means Q(t) is a
non-Archimedean field. In particular, by Theorem 1.17, Q(t) is not a complete ordered field.

Proof of Theorem 1.17. (1) Suppose, for a contradiction, there there is no such n: that is, nx ≤ y
for every n ∈ N. LetE = {nx : n ∈ N}. Then our assumption is that y is an upper bound forE, so
E is bounded above. It is also non-empty (it contains x, for example). Thus, since F is complete,
it follows that α = supE exists. In particular, since α − x < α, this means that α − x is not an
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upper bound for E, so there is some element e ∈ E with α− x < e. There is some integer m ∈ N
so that e = mx, so we have α − x < mx. But then α < (m + 1)x, and (m + 1)x ∈ E. This
contradicts α = supE being an upper bound. This contradiction proves the claim.

(2) Since y − x > 0, by (1) there is an n ∈ N so that n(y − x) > 1. Now, letting y = ±nx and
applying (1) again, we can find two positive integersm1,m2 ∈ N so thatm1 > nx andm2 > −nx;
in other words

−m2 < nx < m1.

This shows that the set {k ∈ Z : nx < k ≤ m1} is finite: it is contained in the finite set {−m2 +
1,−m2 +2, . . . ,m1}. So, let m = min{k ∈ Z : nx < k}. Then since m− 1 ∈ Z and m− 1 < m,
we must have m− 1 ≤ nx.

Thus, we have two inequalities:

n(y − x) > 1, m− 1 ≤ nx < m.

Combining these gives us
nx < m ≤ nx+ 1 < ny.

Dividing through by (the positive) n shows that x < m
n
< y, so setting r = m

n
completes the

proof. �

Here is another extremely important property that holds in ordered fields; this is crucial for doing
calculus.

Proposition 1.19. Let F be a complete ordered field. For each n ∈ N, let an, bn ∈ F satisfy

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ bn ≤ · · · ≤ b2 ≤ b1.

Further, suppose that bn − an < 1
n

. Then
⋂
n∈N[an, bn] is nonempty, and consists of exactly one

point.

This is sometimes called the nested intervals property. It is actually equivalent to the least upper
bound property. On HW2, you will prove the converse.

Proof. By construction, b1 is an upper bound for {an : n ∈ N}, which is a nonempty set. Thus,
by completeness, α = sup an exists in F. Since α is an upper bound for {an}, we have an ≤ α
for every n. On the other hand, since bm ≥ an for every m,n, bm is an upper bound for {an}, and
since α is the least upper bound, it follows that α ≤ bm as well. Thus α ∈ [an, bn] for every n, and
so it is in the intersection.

Now, suppose β ∈
⋂
n[an, bn]. Then either α < β, α > β, or α = β. Suppose, for the moment,

that α < β. Then we have an ≤ α < β ≤ bn for every n, and since bn − an <
1
n

, it follows
that 0 < β − α < 1

n
for every n. But this violates the Archimedean property of F. A similar

contradiction arises if we assume α > β. Thus α = β, and so α is the unique element of the
intersection. �

Note: in the setup of the lemma, it is similar to see that the intersection consists of infn bn; so
supn an = infn bn.



MATH 140A: FOUNDATIONS OF REAL ANALYSIS I 9

1.4. Lecture 4: January 14, 2014. We have now seen several properties possessed by complete
ordered fields. We would hope to find some examples as well. Here comes the big punchline.

Theorem 1.20. There exists exactly one complete ordered field. We call this field R, the Real
numbers.

We will talk about the proof of Theorem 1.20 as we proceed in the course. The textbook relegates
an existence proof to the end of Chapter 1, through Dedekind cuts. This is an old-fashioned proof,
and not very intuitive. We are not going to discuss it presently. Once we have developed a little
more technology, we will prove the existence claim of the theorem using Cauchy’s construction of
R (through sequences).

We can, however, prove the uniqueness claim. To be precise, here is what uniqueness means
in this case: suppose F and G are two complete ordered fields. Then there exists an ordered field
isomorphism ϕ : F→ G. That means ϕ is an ordered field homomorphism that is also a bijection.
So, from the point of view of ordered fields, F and G are indistinguishable.

The first question is: given two complete ordered fields F and G, how do we define ϕ : F→ G?
By Corollary 1.14, Q embeds in each of F and G via Q · 1F and Q · 1G. So we can define ϕ as a
partial function by its action on Q:

ϕ(r1F) = r1G, r ∈ Q.
The question is: how should we define ϕ on elements of F that are not necessarily in Q · 1F? Well,
let x ∈ F \Q. By Theorem 1.17(2), there are rationals an, bn ∈ Q such that

x− 1

2n
1F < an1F < x < bn1F < x+

1

2n
1F.

In particular, bn − an < 1
n

. We should do this carefully and also make sure that a1 ≤ a2 ≤
· · · ≤ b2 ≤ b1 – this can be achieved by choosing the an and bn successively, increasing the an
or decreasing the bn each step as needed. It follows from Proposition 1.19 that

⋂
n[an1G, bn1G]

contains exactly one point, α = supn(an1G) = infn(bn1G). So we define

ϕ(x) = α.

Note: if x ∈ Q, then x · 1G is the unique element in the intersection, meaning that we can take the
above nested intervals definition as the formula for ϕ on all of F, not just the irrational elements.
This will be our starting point.

Theorem 1.21. If F and G are two complete ordered fields, then there exists an ordered field
isomorphism ϕ : F→ G.

Proof. Following our outline from above, we define ϕ as follows. To begin, using the denseness
of Q in F, select a1, b1 ∈ Q so that

x− 1

2
1F < a11F < x < b11F < x+

1

2
1F.

Now proceed inductively: once we’ve constructed a1, . . . , an−1 and b1, . . . , bn−1, choose an and bn
so that

max

{
x− 1

2n
1F, an−1

}
< an1F < x < bn1F < min

{
x+

1

2n
1F, bn−1

}
. (1.1)

Then we have a1 < a2 < · · · < an < · · · < bn < · · · < b2 < b1, and also

bn − an <
(
x+

1

2n
1F

)
−
(
x− 1

2n
1F

)
=

1

n
.
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So by the nested intervals property Proposition 1.19 applied in the field G, we have⋂
n∈N

[an1G, bn1G] = {α}

where α = supn an1G = infn bn1G. We thus define ϕ(x) = α.
Now we must verify that:
• ϕ is well-defined: if a′n, b

′
n are some other rational elements satisfying (1.1) then supn an1G =

supn a
′
n1G. In fact, this follows because we also then have the mixed inequalities

x− 1

2n
1F < a′n1F < x < bn1F < x+

1

2n
1F

and, as above, we have supn a
′
n1G = infn bn1G = supn an1G.

• ϕ is an ordered field homomorphism. This is laborious. Let’s check one of the field
homomorphism properties: preservation of addition. Let x, y ∈ F, and let an < x < bn
and cn < y < dn where bn − an < 1

2n
< 1

n
and dn − cn < 1

2n
< 1

n
. Then ϕ(x) = supn an

and ϕ(y) = supn cn. Now, on the other hand, we have

an+cn < x+y < bn+dn, and (bn+dn)−(an+cn) = (bn−an)+(dn−cn) <
1

2n
+

1

2n
=

1

n
.

It follows that ϕ(x+y) = sup(an+ cn). So, to see that ϕ(x+y) = ϕ(x)+ϕ(y), it suffices
to show that

if an ↑ & cn ↑ then sup
n
(an + cn) = sup

n
an + sup

n
cn.

This is also on HW2. The other ordered field homomorphism properties are verified simi-
larly.
• ϕ is a bijection. First, suppose that x 6= y ∈ F. Then either x < y or x > y; wlog x < y.

Since ϕ is an ordered field homomorphism, it follows that ϕ(x) < ϕ(y). In particular,
ϕ(x) 6= ϕ(y). A similar argument in the case x > y shows that ϕ is one-to-one.

Now, fix y ∈ G. For each n, choose an, bn ∈ Q nested so that bn − an < 1
n

and
an1G < y < bn1G. Mirroring the above arguments, we know that a = supn an1F ∈⋂
n[an1F, bn1F]. Since an1F < a < bn1F, we have an1G = ϕ(an1F) < ϕ(a) < ϕ(bn1F) =

bn1G. Thus ϕ(a) ∈
⋂
n[an1G, bn1G], and this intersection consists of the singleton element

y, by Proposition 1.19. Hence, ϕ(a) = y, and so ϕ is onto.
�

So, we see that there can be only one complete ordered field. (They’re like Highlanders.) A
priori, that doesn’t preclude the possibility that there aren’t any at all. To prove that R exists, we
need to first start talking about convergence properties of sequences. That will be our next task.

Before proceeding, let’s return to our motivation for studying sup and inf and introducing com-
pleteness: we wanted to fill the “hole” in Q where

√
2 should be. To see that we’ve filled at least

that hole, the next result shows that R (the complete ordered field) contains square roots, and in
fact nth roots, of all positive numbers. First, let’s state some standard results on “absolute value”.

Lemma 1.22. Let F be an ordered field. For x ∈ F, define (as usual)

|x| =

{
x, if x ≥ 0

−x, if x < 0
.

Then we have the following properties.
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(1) For all x ∈ F, |x| ≥ 0, and |x| = 0 iff x = 0.
(2) For all x, y ∈ F, |x+ y| ≤ |x|+ |y|.
(3) For all x, y ∈ F, |xy| = |x||y|.

All of these properties are straightforward but annoying to prove in cases. We will use the
absolute value frequently in all that follows.

Theorem 1.23. Let n ∈ N, n ≥ 1. For any x ∈ R, x > 0, there is a unique y ∈ R, y > 0, so that
yn = x. We denote it by y = x1/n.

Proof of Theorem 1.23. First, for uniqueness: let y1 6= y2 be two positive real numbers, wlog
y1 < y2. Then y21 = y1y1 < y1y2 < y2y2 = y22; continuing by induction, we see that yn1 < yn2 . That
is: the function y 7→ yn is strictly increasing. In particular, it is one-to-one. It follows that there
can be at most one y with yn = x.

Now for existence. Let E = {y ∈ R : y > 0, yn < x}.
• E 6= ∅: note that t = x

x+1
∈ (0, 1). This means that 0 < tn < t, and so since x

x+1
< x, we

have 0 < tn < x, meaning that t ∈ E.
• E is bounded above: let s = 1 + x. Then s > 1, and so sn > s > x. Thus, if y ∈ E, then
yn < x < sn, and so 0 < sn− yn = (s− y)(sn−1+ sn−2y+ · · ·+ yn−1). The sum of terms
is strictly positive, so we can divide out and find that s− y > 0. Thus s is an upper bound
for E.

Hence, by completeness of R, α = supE exists. Since α is the least upper bound, it follows that,
for each k, there is an element yk ∈ E such that yk > α− 1

k
. Since ynk < x, we therefore have(

α− 1

k

)n
< ynk < x, for all k ∈ N.

But we can expand(
α− 1

k

)n
=

n∑
j=0

(
n

j

)
αn−j

(
−1

k

)−j
= αn − 1

k

n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1
.

Thus, we have

αn < x+
1

k

n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1
and so, applying the triangle inequality – Lemma 1.22(2) – repeatedly, we have

αn < x+
1

k

∣∣∣∣∣
n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1∣∣∣∣∣ ≤ x+
1

k
·

n∑
j=1

(
n

j

)
αn−k

(
1

k

)j−1
.

Note that n is fixed, and 1
k
≤ 1, so for k ≥ 1 we have

(
1
k

)j−1 ≤ 1. Let M =
∑n

k=1

(
n
j

)
αn−k; then

we have

∀k ∈ N αn < x+
M

k
; i.e. αn − x < M

k
.

By the Archimedean property, it follows that αn − x ≤ 0; thus, we have shown that αn ≤ x.
On the other hand, let y ∈ E. Then for any k ∈ N we have, by similar calculations,(

y +
1

k

)n
= yn +

1

k

n∑
j=1

(
n

k

)
yn−j

(
1

k

)j−1
≤ yn +

1

k
·

n∑
j=1

(
n

j

)
yn−j.
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Since y ∈ E, we know yn < x, so ε = x − yn > 0. Let L =
∑n

j=1

(
n
j

)
yn−j , which is a positive

constant; by the Archimedean property, there is some k ∈ N so that 1
k
· L < ε. Thus, for such k,(

y +
1

k

)n
≤ yn +

L

k
< yn + ε = x.

That is: y + 1
k
∈ E. But y + 1

k
> y. That is, for any y ∈ E, there is y′ > y with y ∈ E. So E has

no maximal element. This shows that α /∈ E, and hence αn ≥ x.
In conclusion: we’ve shown that αn ≤ x and x ≤ αn. It follows that αn = x. �

On Homework 2, you will flesh out extending this argument to defining xr for x > 0 in R and
r ∈ Q, and then extending this further to define xy for x > 0 and y ∈ R. One can use similar
arguments to define logb(x) for x, b > 0. We will wait a little while until we have a firm grounding
in sequences and limits before rigorously developing the calculus of these well-known functions.
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2. SEQUENCES AND LIMITS

2.1. Lecture 5: January 19, 2016.

Definition 2.1. Let X be a set. A sequence in X is a function a : N → X . Instead of the usual
notation a(n) for the value of the function at n ∈ N, we usually use the notation an = a(n);
accordingly, we often refer to the function as (an)n∈N or {an}n∈N, or (when being sloppy) simply
(an) or {an}.

In ordered fields, we can talk about limits of sequences. The following definition took half a
century to finalize; its invention (by Weierstraß) is one of the greatest achievements of analysis.

Definition 2.2. Let F be an ordered field, and let (an) be a sequence in F. Let a ∈ F. Say that an
converges to a, written an → a or limn→∞ an = a, if the following holds true:

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N |an − a| < ε.

Let’s decode the three-quantifier sentence here. What this say is, no matter how small a tolerance
ε > 0 you want, there is some time N after which all the terms an (for n ≥ N ) are within ε of a.
Some convenient language for this is:

Given any ε > 0, we have |an − a| < ε for almost all n.
Here we colloquially say that a set S ⊆ N contains almost all positive integers if the complement
N \ S is finite. This is equivalent to saying that, after some N , all n ≥ N are in S. So, the limit
definition is that, for any positive tolerance, no matter how small, almost all of the terms are within
that tolerance of the limit.

If (an) is a sequence and there exists a so that an → a, we say that (an) converges; if there is
no such a, we say that (an) diverges. Here are some examples.

Example 2.3. Consider each of the following sequences in an Archimedean field.
(1) an = 1 converges to 1. More generally, if (an) is equal to a constant a for almost all n,

then an → a.
(2) an = 1

n
converges to 0.

(3) an = n+ 1
n

diverges.
(4) an = (−1)n diverges.
(5) an = 1 + 1

n
(−1)n converges to 1.

(6) an = 4n+1
7n−4 (defined for n ≥ 1) converges to 4

7
.

In all these examples, we proved convergence (when the sequences converged) to a given value.
However, a priori, it is not clear whether it might also have been possible to prove convergence to
a different value as well. This is not the case: limits are unique.

Lemma 2.4. Let F be an ordered field, and let (an) be a sequence in F. Suppose a, b ∈ F and
an → a and an → b. Then a = b.

Proof. Fix ε > 0. We know that there is N1 so that |an − a| < ε
2

for all n > N1, and there is N2 so
that |an − b| < ε

2
for all n > N2. Thus, for any n > max{N1, N2}, we have

|a− b| = |a− an + an − b| ≤ |a− an|+ |an − b| <
ε

2
+
ε

2
= ε.

Now, suppose that a 6= b. Thus a−b 6= 0, which means that |a−b| > 0. So we can take ε = |a−b|
above, and we find that |a− b| < |a− b| – a contradiction. Hence, it must be true that a = b. �
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Remark 2.5. Note, in an Archimedean field, we are free to restrict ε = 1
k

for some k ∈ N; that is,
an equivalent statement of an → a is

Given any k ∈ N, we have |an − a| < 1
k

for almost all n.
In non-Archimedean fields, this does not suffice. For example, in the field Q(t), to show an(t) →
a(t) it does not suffice to show that, for any k ∈ N, |an(t) − a(t)| < 1

k
for all sufficiently large n.

Indeed, what if an(t)− a(t) = 1
t
? This does not go to 0, but it is < 1

k
for all k ∈ N. Similarly, the

sequence an = 1
n

diverges in a non-Archimedean field.



MATH 140A: FOUNDATIONS OF REAL ANALYSIS I 15

2.2. Lecture 6: January 21, 2016.

Proposition 2.6. Let F be a complete ordered field. Let (an) be a sequence in F, and suppose an ↑
(i.e. an ≤ an+1 for all n) and bounded above. Let α = sup{an}. Then an → α. Similarly, if bn ↓
and bounded below, then β = inf{bn} exists and bn → β.

Proof. Since F is a complete field, α = sup{an} exists in F. Let ε > 0. Then α− ε < α, and so by
definition there exists some element aN ∈ {an} so that α − ε < aN ≤ α. Now, suppose n ≥ N ;
then an ≤ α of course, but also since an ↑ we have an ≥ aN > α − ε. Thus, we have shown that
|an − α| = α− an < ε for all n ≥ N , which is to say that an → α.

The decreasing case is similar; alternatively, one can look at an = −bn, which is increasing
and bounded above; then we have by the first part that −bn = an → α where α = sup{−bn} =
− inf{an} = −β. It follows that bn → −β, using the limit theorems below.

�

In the proposition, we needed (an) to be bounded (above or below); indeed, the sequence an = n
is increasing, but not convergent. This is generally true: for any sequence to be convergent, it must
be bounded (above and below). A sequence that is either increasing or decreasing is called mono-
tone. So the proposition shows that monotone sequences either converge, or grow (in absolute
value) without bound.

This gives us a new perspective on the motivating example that began our discussion of sup and
inf. Consider, again, the sets A = {r ∈ Q : r > 0, r2 < 2} and B = {r ∈ Q : r > 0, r2 > 2}. We
saw that the set of positive rationals is equal to A t B, and therefore supA and inf B do not exist
in Q. Note that the sequence 1, 1.4, 1.41, 1.414, 1.4142, 1.42431, . . . is in the set A. We recognize
the terms as the decimal approximations to

√
2. This sequence looks like it’s going somewhere;

but in fact the only place it can go is stuck in between A and B, which is not in Q. The question
is: why does it look like it’s going somewhere?

Definition 2.7. A sequence (an) in an ordered set is called Cauchy, or is said to be a Cauchy
sequence, if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N |an − am| < ε.

That is: a sequence is Cauchy if its terms get and stay close to each other. That is: for any given
tolerance ε > 0, there is some time N after which all the terms are within distance ε of aN . This
notion is very close to convergence. Indeed:

Lemma 2.8. Any convergent sequence is Cauchy.

Proof. Let (an) be a convergent sequence, with limit a. Fix ε > 0, and choose N large enough so
that |an − a| < ε

2
for n > N . Then for any n,m > N ,

|an − am| = |an − a+ a− am| ≤ |an − a|+ |am − a| <
ε

2
+
ε

2
= ε.

Hence, (an) is Cauchy. �

But the converse need not be true.

Example 2.9. In Q, the sequence 1, 1.4, 1.41, 1.414, 1.4142, 1.42431, . . . is Cauchy. Indeed, by the
definition of decimal expansion, if an is the n-decimal expansion of a number, then an+1 and an
agree on the first n digits. This means exactly that |am − an| < 1

10n
for any m > n. So, fix ε > 0.

We can certainly find N so that 1
10N

< ε (since, for example, 1
10N

< 1
N

). Thus, for n,m > N , we
have |an − am| < 1

10min{m,n} <
1

10N
< ε.
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Here are some more important facts about Cauchy sequences. Note that, by Lemma 2.8, any
fact about Cauchy sequences is also a fact about convergent sequences.

Proposition 2.10. Let (an) be a Cauchy sequences. Then (an) is bounded: there is a constant
M > 0 so that |an| ≤M for all n.

Proof. Taking ε = 1, it follows from the definition of Cauchy that there is some N ∈ N so that
|an − am| < 1 for all n,m > N . In particular, this shows that |an − aN+1| < 1 for all n > N ,
which is to say that aN+1 − 1 < an < aN+1 + 1. Hence |an| < max{|aN+1 − 1|, |aN+1 + 1|}
for n > N . So, define M = max{|a1|, . . . , |aN |, |aN+1 − 1|, |aN+1 + 1|}. If n ≤ N, then
|an| ≤ M since |an| appears in this list we maximize over; if n > N then, as just shown, |an| <
max{|aN+1 − 1|, |aN+1 + 1|} ≤M . The result follows. �

Another useful concept when working with sequences is subsequences.

Definition 2.11. Let {nk : k ∈ N} be a set of positive integers with the property that nk < nk+1

for all k; that is nk is an increasing sequence in N. Let (an) be a sequence. The function k 7→ ank

is called a subsequence of (an), usually denoted (ank
).

Example 2.12. (a) Let an = 1
n

. Then a2n = 1
2n

and a2n = 1
2n

are subsequences. However

bn =

{
an if n is odd
an/2 if n is even

is not a subsequence of (an). Indeed, bk = ank
where (nk)∞k=1 = (1, 1, 3, 2, 5, 3, 7, 4, 9, 5, . . .),

and this is not an increasing sequence of integers.
(b) Let an = (−1)n. Then a2n = 1 and a2n+1 = −1 are subsequences.

Here is an extremely useful fact about the indices of subsequences: if (nk) is an increasing
sequence in N, then nk ≥ k for every k. (This follows by a simple induction.)

Proposition 2.13. Let (an) be a sequence in an ordered set, and (ank
) a subsequence.

(1) If (an) is Cauchy, then (ank
) is Cauchy.

(2) If (an) is convergent with limit a, then (ank
) is convergent with limit a.

(3) If (an) is Cauchy, and (ank
) is convergent with limit a, then (an) is convergent with limit a.

Proof. For (1): fix ε > 0 and let N ∈ N be chosen so that |an − am| < ε for n,m > N . Then
whenever k, ` > N , we have nk ≥ k > N and n` ≥ ` > N , so by definition |ank

− an`
| < ε. Thus

(an) is Cauchy. The proof of (2) is very similar. Item (3) is on HW3. �

Before proceeding with the theory of Cauchy sequences, here are some useful facts about con-
vergent sequences sequences.

Theorem 2.14. Let (an) and (bn) be convergent sequences in an ordered field F.
(1) If an ≤ bn for all sufficiently large n, then limn an ≤ limn bn.
(2) (Squeeze Theorem) Suppose also that limn an = limn bn. If (cn) is another sequence, and

an ≤ cn ≤ bn for all sufficiently large n, then (cn) is convergent, and limn cn = limn an =
limn bn.

Proof. Let a = limn an and b = limn bn. For (1), fix ε > 0. There is Na ∈ N so that |an − a| < ε
2

for n > Na, and there is Nb ∈ N so that |bn−b| < ε
2

for n > Nb. Thus, letting N = max{Na, Nb},
we have an − a > − ε

2
and bn − b < ε

2
for n > N . But then

an − bn > a− ε

2
− b− ε

2
= a− b− ε.
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Since an ≤ bn for all large n, we therefore have 0 ≥ an − bn > a− b− ε for such n, and therefore
a− b− ε < 0. This is true for any ε > 0, and therefore a− b ≤ 0, as claimed.

For (2), we have a = b. Choosing Na, Nb, and N as above, we have − ε
2
< an − a ≤ cn − a ≤

bn − a < ε
2

for all n ≥ N . That is: |cn − a| < ε
2
< ε for all n ≥ N . This shows cn → a, as

claimed. �

Cauchy sequences give us a way of talking about completeness that is not so wrapped up in the
order properties. As discussed in Example 2.9 last lecture, the “hole” in Q where

√
2 should be is

the limit of a sequence in Q which is Cauchy, but does not converge in Q. Instead of filling in the
holes by demanding bounded nonempty sets have suprema, we could instead demand that Cauchy
sequences have limits.

Definition 2.15. Let S be an ordered set. Call S Cauchy complete if every Cauchy sequence in S
actually converges in S.

Q is not Cauchy complete. But, as we will see, R is. In fact, Cauchy completeness is equivalent
to the least upper bound property in any Archimedean field. We can prove half of this assertion
now.
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2.3. Lecture 7: January 26, 2016.

Theorem 2.16. Let F be an Archimedean field. If F is Cauchy complete, then F has the nested
intervals property and hence is complete in the sense of Definition 1.15.

Proof. That the nested intervals property implies the least upper bound property is the content
HW2 Exercise 3; so it suffices to verify that F has the nested intervals property. Let (an) and (bn)
be sequences in F with an ↑, bn ↓, an ≤ bn, and bn − an < 1

n
. Fix ε > 0, and let N ∈ N be large

enough that 1
N
< ε (here is where the Archimedean property is needed). Thus, for n ≥ N , we have

bn − an < 1
n
≤ 1

N
< ε. Then for m,n > N , wlog m ≥ n, we have

an ≤ am ≤ bn

and so it follows that |an − am| = am − an ≤ bn − an < ε. Thus (an) is a Cauchy sequence. By
the Cauchy completeness assumption on F, we conclude that a = limn an exists in F.

Now, fix n0, and note that since an ≥ an0 for n ≥ n0, Theorem 2.14(1) shows that a = limn an ≥
an0 (thinking of an0 as the limit of the constant sequences (an0 , an0 , . . .)). Similarly, since an ≤ bn0

for all n, it follows that a ≤ bn0 . Thus a ∈
⋂
n[an, bn], proving this intersection is nonempty. As

usual, it follows that the intersection consists only of {a}. Indeed, if x, y ∈
⋂
n[an, bn], without

loss of generality label them so that x ≤ y. Thus an ≤ x ≤ y ≤ bn for every n. For given ε > 0,
choose n so that bn−an < ε; then y−x < ε. So 0 ≤ y−x < ε for all ε > 0; it follows that x = y.
This concludes the proof of the nested intervals property for S. �

Remark 2.17. The use of the Archimedean property is very subtle here. It is tempting to think
that we can do without it. This is true if we replace the nested intervals property by a slightly
weaker version: say an ordered S satisfies the weak nested intervals property if, given an ↑, bn ↓,
an ≤ bn, and bn − an → 0, then

⋂
n[an, bn] contains exactly one point. (This is weaker than the

nested intervals property, because the assumption is stronger: we’re assuming bn − an → 0 here,
while in the usual nested intervals property we assume that bn − an < 1

n
, which does not imply

bn − an → 0 in the non-Archimedean setting.) The trouble is: this weak nested intervals property
does not imply the least upper bound property in the absence of the Archimedean property. In
fact, there do exist non-Archimedean fields (which therefore do not have the least upper bound
property), but are Cauchy complete. (We may explore this a little later.) This is a prime example
of how counterintuitive analysis can be without the Archimedean property. Soon enough, we will
once-and-for-all demand that it holds true (in the Real numbers), and dispense with these weird
pathologies.

We would like to show the converse is true: that the least upper bound property implies Cauchy
completeness. (This turns out to be true in any ordered set: after all, the least upper bound prop-
erty implies the Archimedean property in an ordered field.) Then we could characterize the real
numbers as the unique Archimedean field that is Cauchy complete. To do this, we need to dig a
little deeper into the connection between limits and suprema / infima.

Definition 2.18. Let S be an ordered set with the least upper bound property. Let (an) be a
bounded sequence in S. Define two new sequences from (an):

ak = sup{an : n ≥ k}, ak = inf{ak : n ≥ k}.
Since {an} is bounded above (and nonempty), by the least upper bound property ak exists for each
k. Similarly, by Proposition 1.16, ak exists for each k.

Note that {an : n ≥ k + 1} ⊆ {an : n ≥ k}. Thus ak is an upper bound for {an : n ≥ k + 1}.
It follows that ak is ≥ the least upper bound of {an : n ≥ k + 1}, which is defined to be ak+1.
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This means that ak ≥ ak+1: the sequence ak is monotone decreasing. Similarly, the sequence ak is
monotone increasing.

By assumption, {an} is bounded. Thus there is a lower bound an ≥ L for all n. Since a1 ≥
ak ≥ ak ≥ L for all k, the sequence ak is also bounded. Similarly, the sequence ak is bounded.

Thus, ak is a decreasing, bounded-below sequence. By Proposition 2.6, limk→∞ ak exists, and
is equal to inf{ak}. Similarly, limk→∞ ak exists, and is equal to sup{ak}. We define

lim sup
n→∞

an = lim
n→∞

an = lim
k→∞

sup{an : n ≥ k} = inf
k∈N

sup
n≥k

an

lim inf
n→∞

an = lim
n→∞

an = lim
k→∞

inf{an : n ≥ k} = sup
k∈N

inf
n≥k

an.

Example 2.19. Let an = (−1)n. Note that −1 ≤ an ≤ 1 for all n. Now, for any k, there is
some k′ ≥ k so that bk′ = 1. Thus bk = supn≥k ak = 1. Similarly bk = −1 for all k. Thus
lim supn bn = 1 and lim inf bn = −1.

Here are a few more examples computing lim sup and lim inf.

Example 2.20. (1) Let an = 1
n

. Since an ↓, ak = supn≥k an = ak = 1
k
. Thus lim supn an =

limk ak = 0. On the other hand, for any k, infk ak = 0 (by the Archimedean property), and
so lim infn an = limk 0 = 0. In this case, the lim sup and lim inf agree.

(2) Let bn = (−1)n
n

. Note that −1 ≤ bn ≤ 1 for all n, and more generally |bn| ≤ 1
n

. For any k,
we therefore have bk = sup{bn : n ≥ k} ≤ sup{|bn| : n ≥ k} = 1

k
and similarly bk ≥ − 1

k
.

Now, bk ≤ bk (the sup of any set is ≥ its inf). Thus

−1

k
≤ bk ≤ bk ≤

1

k
.

Since ± 1
k
→ 0, it follows from the Squeeze Theorem that limk bk = limk bk = 0. Thus

lim supn bn = lim infn bn = 0.
(3) The sequence (1, 2, 3, 1, 2, 3, 1, 2, 3, . . .) has lim sup = 3 and lim inf = 1.
(4) Let cn = n. This is not a bounded sequence, so it doesn’t fit the mold for lim sup and

lim inf. Indeed, for any k, supn≥k n does not exist for any k, and so lim supn cn does not
exist. On the other hand, infn≥k an = k does exists, but this sequence is unbounded and
has no limit, so lim inf cn does not exist. This highlights the fact that we need both and
upper and a lower bound in order for either lim sup or lim inf to exist.

In (1) and (2) in the example, lim sup and lim inf agree. This will always happen for a convergent
sequence.

Proposition 2.21. Let (an) be a bounded sequence. Then limn an exists iff lim supn an = lim infn an,
in which case all three limits have the same value.

Proof. Suppose that lim supn an = lim infn an. Thus ak and ak both converge to the same value.
Since ak ≤ ak ≤ ak for each k, by the Squeeze Theorem, ak also converges to this value, as
claimed. Conversely, suppose that limn an = a exists. Let ε > 0, and choose N ∈ N large enough
that |an − a| < ε for all n ≥ N . That is

a− ε < an < a+ ε, n ≥ N.

It follows that
a− ε ≤ inf

n≥k
an ≤ sup

n≥k
an ≤ a+ ε, k ≥ N



20 TODD KEMP

which shows that both ak and ak are in [a− ε, a+ ε] for k ≥ N . Thus they both converge to a, as
claimed. �

As with sup and inf, there is a useful trick for transforming statements about lim sup into state-
ments about lim inf.

Proposition 2.22. Let (an) be a bounded sequence. Then lim infn(−an) = − lim supn an.

Proof. Recall that, for any bounded set A, if −A = {−a : a ∈ A}, then sup(−A) = − inf A and
inf(−A) = − supA. Now, Let bn = −an. Then bk = inf{bn : n ≥ k} = inf{−an : n ≥ k} =
− sup{an : n ≥ k} = −ak. Thus

lim inf
n→∞

bn = sup{bk : k ∈ N} = sup{−ak : k ∈ N} = − inf{ak : k ∈ N} = − lim sup
n→∞

an.

�

Here is a useful characterization of lim sup and lim inf.

Proposition 2.23. Let (an) be a bounded sequence in a complete ordered field. Denote a =
lim supn an and a = lim infn an. Then a and a are uniquely determined by the following proper-
ties: for all ε > 0,

an ≤ a+ ε for all sufficiently large n, and
an ≥ a− ε for infinitely many n,

and

an ≤ a+ ε for infinitely many n, and
an ≥ a− ε for all sufficiently large n.

Proof. This is an exercise on HW4. �

To put this into words: there are many “approximate eventual upper bounds” for the sequence:
numbers a large enough that the sequence eventually never gets much bigger than a. The lim sup,
a, is the smallest approximate eventual upper bound: it is the unique number that the sequence
eventually never strays far above, but also regularly gets close to from below. Similarly, the lim inf,
a, is the largest approximate eventual lower bound.
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2.4. Lecture 8: January 28, 2016. This brings us to an important understanding of lim sup and
lim inf: they are the maximal and minimal subsequential limits.

Theorem 2.24. Let (an) be a bounded sequence in a complete ordered field. There exists a subse-
quence of (an) that converges to lim supn an, and there exists a subsequence of (an) that converges
to lim infn an. Moreover, if (bk) is any convergent subsequence of (an), then

lim inf
n→∞

an ≤ lim
k→∞

bk ≤ lim sup
n→∞

an.

Proof. Let a = lim supn an. By Proposition 2.23, for any k ∈ N there are infinitely many n so that
an ≥ a − 1

k
. So, we proceed inductively: choose some n1 so that an1 ≥ a − 1. Then, since there

are infiniely many of them, we can find some n2 > n1 so that an2 ≥ a− 1
2
. Proceeding, we find an

increasing sequence n1 < n2 < · · · < nk < · · · so that ank
≥ a− 1

k
for each k ∈ N. We therefore

have
a− 1

k
≤ ank

≤ sup
m≥nk

am = ank
. (2.1)

Note that (ank
) is a subsequence of (an) which converges to a; thus, by Proposition 2.13, limk ank

=
a. Hence, by (2.1) and the Squeeze Thoerem, it follows that ank

→ a, and we have constructed the
desired subsequence. The proof for lim inf is very similar; alternatively, it can be reasoned using
Proposition 2.22.

Now to prove the inequalities. Let (bk) be a subsequence, so bk = amk
for some m1 < m2 <

m3 < · · · . Then
amk

= inf
n≥mk

an ≤ bk ≤ sup
n≥mk

an = amk
.

Thus, applying the Squeeze theorem, it follows that

lim inf
n→∞

an = lim
k→∞

amk
≤ lim

k→∞
bk ≤ lim

k→∞
amk

= lim sup
n→∞

an

as desired. �

This allows us to immediately prove our first “named theorem” in Real Analysis: the Bolzano-
Weierstrass Theorem.

Theorem 2.25 (Bolzano-Weierstrass). Let (an) be a bounded sequence in a complete ordered field,
with an ∈ [α, β] for all n. Then (an) possesses a convergent subsequence, with limit in [α, β].

Proof. Let a = lim supn an. By Theorem 2.24, there is a subsequence (ank
) of (an) that converges

to a. Note, then, since α ≤ ank
≤ β for all k, it follows from the Squeeze Theorem that α ≤

limk ank
= a ≤ β, concluding the proof. �

This finally leads us to the converse of Theorem 2.16.

Theorem 2.26. Let F be a complete ordered field (i.e. possessing the least upper bound property).
Then F is Cauchy complete.

Proof. Let (an) be a Cauchy sequence in F. By Proposition 2.10, (an) is bounded. Thus, by
the Bolzano-Weierstrass theorem, there is a subsequence ank

that converges. It then follows from
Proposition 2.13 that (an) is convergent, concluding the proof. �

To summarize: we now have three equivalent characterizations of the notion of “completeness”
in an Archimedean field:

least upper bound property ⇐⇒ nested intervals property ⇐⇒ Cauchy completeness.
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We also know, by the half of Theorem 1.20 we’ve proved, that such a field is unique. So, to finally
prove the existence of R, it will suffice to give a construction of a Cauchy complete field that is
Archimedean. The supplementary notes “Construction of R” describe how this is done in gory
detail.

Henceforth, we will deal with the field R, which satisfies all of the three equivalent complete-
ness properties.

Now comfortably working in R, let us state a few more (standard) limit theorems.

Theorem 2.27 (Limit Theorems). Let (an) and (bn) be convergent sequences in R, with an → a
and bn → b.

(1) The sequence cn = an + bn converges to a+ b.
(2) The sequence dn = anbn converges to ab.
(3) If b 6= 0, then bn 6= 0 for almost all n, and en = an

bn
converges to a

b
.

Proof. For (1), choose Na, Nb ∈ N so that |an − a| < ε
2

if n ≥ Na and |bn − b| < ε
2

for n ≥ Nb.
For any n ≥ N = max{Na, Nb}, we then have |cn − (a + b)| = |(an − a) + (bn − b)| ≤
|an − a|+ |bn − b| < ε

2
+ ε

2
= ε, proving that limn cn = a+ b.

For (2), we need to be slightly more clever. Note that

|dn − ab| = |anbn − ab| = |anbn − anb+ anb− ab| ≤ |an||bn − b|+ |an − a||b|.
By Proposition 2.10, there is some constant M > 0 so that |an| ≤ M for all n. So, for ε > 0, fix
N1 large enough that |bn− b| < ε

2M
for all n ≥ N1, and fix N2 large enough that |an− a| < ε

2|b| for
all n ≥ N2. (If b = 0, we can take N2 to be any number we like.) Then for N = max{N1, N2}, if
n ≥ N we have

|dn − ab| ≤ |an||bn − b|+ |an − a||b| < M · ε

2M
+

ε

2|b|
· |b| = ε,

proving that limn dn = ab.
For (3), first we need to show that (en) even makes sense. Note that en = an

bn
is not well-defined

for any n for which bn = 0. But we’re only concerned about tails of sequences for limit statements,
so once we’ve proven that bn 6= 0 for almost all n, we know that en is well-defined for all large
n. For this, we use the assumption that b 6= 0, and so |b| > 0. Since limn bn = b, there is an
N0 ∈ N so that, for n > N0, |bn − b| < |b|

2
; i.e. − |b|

2
< bn − b < |b|

2
, and so bn < b + |b|

2
and

also bn > b − |b|
2

. Now, b 6= 0 so either b < 0 or b > 0. If b < 0, then |b| = −b in which case
bn < b + |b|

2
= b − b

2
= b

2
< 0; that is, for n > N0, bn < 0. If, on the other hand, b > 0, then

|b| = b, and so bn > b − |b|
2

= b − b
2
= b

2
> 0; that is, for n > N0, bn > 0. Thus, in all cases,

bn 6= 0 for n > N0, proving the first claim.
For the limit statement, note that en = an · 1

bn
. So, by (2), it suffices to show that 1

bn
→ 1

b
.

Compute that ∣∣∣∣ 1bn − 1

b

∣∣∣∣ = |bn − b||bn||b|
.

As shown above, there is N0 so that, for n > N0, then bn > b
2
= |b|

2
if bn > 0 and bn < b

2
= − |b|

2
if

bn < 0; i.e. this means that |bn| > |b|
2

for n > N0. Hence, we have∣∣∣∣ 1bn − 1

b

∣∣∣∣ = |bn − b||bn||b|
< 2
|bn − b|
|b|2

, n > N0.
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By assumption, bn → b, and so we can choose N ′ large enough that |bn − b| < |b|2
2
ε for n > N ′.

Thus, letting N = max{N0, N
′}, we have∣∣∣∣ 1bn − 1

b

∣∣∣∣ < 2
|bn − b|
|b|2

<
2

|b|2
· |b|

2

2
ε = ε, n > N.

This proves that 1
bn
→ 1

b
as claimed. �

One might hope that Theorem 2.27 carries over to lim sup and lim inf; but this is not the case.

Example 2.28. Consider the sequences an = (−1)n and bn = −an = (−1)n+1. Then lim supn an =
lim sup bn = 1, lim infn an = lim infn bn = −1, but an + bn = 0 so lim supn(an + bn) =
lim infn(an + bn) = 0. Hence, in this example we have

−2 = lim inf
n→∞

an+lim inf
n→∞

bn < lim inf
n→∞

(an+bn) = 0 = lim sup
n→∞

(an+bn) < lim sup
n→∞

an+lim sup
n→∞

bn = 2.

The inequalities in the example do turn out to be true in general.

Proposition 2.29. Let (an) and (bn) be bounded sequences in R The following always hold true.

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn, and

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

If an ≥ 0 and bn ≥ 0 for all sufficiently large n, we also have the following.

lim inf
n→∞

(an · bn) ≥ lim inf
n→∞

an · lim inf
n→∞

bn, and

lim sup
n→∞

(an · bn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn.

Proof. The proofs of the lim sup inequalities are exercises on HW4. Assuming these, the lim inf
statements follow from Proposition 2.22. For example, we have

lim inf
n→∞

(an + bn) = lim inf
n→∞

[−(−an − bn)] = − lim sup
n→∞

[(−an) + (−bn)].

Since lim supn[(−an) + (−bn)] ≤ lim supn(−an) + lim supn(−bn) by HW4, taking negatives
reverses the inequality, giving

− lim sup
n→∞

[(−an) + (−bn)] ≥ − lim sup
n→∞

(−an)− lim sup
n→∞

(−bn).

Now using Proposition 2.22 again on each term, we then have

lim inf
n→∞

(an + bn) ≥ − lim sup
n→∞

(−an)− lim sup
n→∞

(−bn) = lim inf
n→∞

an + lim inf
n→∞

bn

as claimed. The proof of the inequality for products is very similar. �

Let us close out our discussion (for now) of limits of real sequences with a rigorous treatment
of the following special kinds of sequences.

Proposition 2.30. Let p > 0 and α ∈ R.

(1) lim
n→∞

1

np
= 0.

(2) lim
n→∞

p1/n = 1.

(3) lim
n→∞

n1/n = 1.
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(4) If p > 1 and α ∈ R, then lim
n→∞

nα

pn
= 0.

(5) If |p| < 1, then lim
n→∞

pn = 0.

Proof. For (1): fix ε > 0, and choose N ∈ N large enough that 1
N
< ε1/p. Then for n ≥ N ,

1
n
≤ 1

N
< ε1/p, and so 0 < 1

np =
(
1
n

)p
< ε. This shows that 1

np → 0 as claimed.
For (2): as above, in the case p = 1 the sequence is constant 11/n = 1 with limit 1. If p > 1, put

xn = p1/n − 1. Since p > 1 we have p1/n > 1 and so xn > 0. From the binomial theorem, then,

(1 + xn)
n =

n∑
k=0

(
n

k

)
xkn ≥ 1 + nxn.

By definition (1 + xn)
n = p, and so

0 < xn <
(1 + xn)

n − 1

n
=
p− 1

n
.

Knowing that p−1
n
→ 0, it now follows from the Squeeze Theorem that xn → 0. This proves the

limit in the case p > 1. If, on the other hand, 0 < p < 1, then r = 1
p
> 1, and p1/n =

(
1
r

)1/n
= 1

r1/n
.

We have just proved that r1/n → 1, and so it follows from Theorem 2.27(3) that p1/n → 1
1
= 1.

For (3): we follow a similar outline. Let xn = n1/n − 1, which is ≥ 0 (and > 0 for n > 1). We
use the binomial theorem again, this time estimating with the quadratic term:

n = (1 + xn)
n =

n∑
k=1

(
n

k

)
xkn ≥

(
n

2

)
x2n =

n(n− 1)

2
x2n.

Thus, we have (for n ≥ 2)

0 ≤ xn ≤
√

2

n− 1
and by the Squeeze Theorem xn → 0.

For (4): Choose a positive integer ` > α. Let p = 1 + r, so r > 0. Applying the binomial
theorem again, when n > ` we have

pn = (1 + r)n =
n∑
k=0

(
n

k

)
rk >

(
n

`

)
r` =

n(n− 1) · · · (n− `+ 1)

`!
r`.

Now, if we choose n ≥ 2`, each term n− `+ j ≥ n
2

for 1 ≤ j ≤ `, and so in this range

pn >
1

`!

(n
2

)`
r`.

Hence, for n ≥ 2`, we have
nα

pn
< nα · `!2

`

n`r`
=
`!2`

r`
· nα−`.

This is a constant `!2`

r`
times nα−`, where α − ` < 0; applying part (1) with p = α − ` proves the

result.
Finally, for (5): the special case of (4) with α = 0 yields 1

rn
→ 0 when r > 1. Thus, with

|p| < 1, setting r = 1
|p| gives us |pn| = |p|n → 0. The reader should prove (if they haven’t already)

that |an| → 0 iff an → 0, so it follows that pn → 0 as claimed. �
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3. EXTENSIONS OF R: THE EXTENDED REAL NUMBERS R AND THE COMPLEX NUMBERS C

3.1. Lecture 9: February 2, 2016. Now that we have a good understanding of real numbers,
it is convenient to extend them a little bit to give us language about certain kinds of divergent
sequences.

Definition 3.1. Let (an) be a sequence in R. Say that an diverges to +∞ or an → +∞ if

∀M > 0 ∃N ∈ N s.t.∀n ≥ N an > M.

That is: no matter how large a bound M we choose, it is a lower bound for an for all sufficiently
large n. Similarly, we say that an diverges to −∞ if −an → +∞; this is equivalent to

∀M > 0 ∃N ∈ N s.t.∀n ≥ N an < −M.

The expressions an → ±∞ are also sometimes written as lim
n→∞

an = ±∞, and accordingly it is
sometimes pronounced as an converges to ±∞.

Example 3.2. The sequence an = np diverges to +∞ for any p > 0. Indeed, fix a large M > 0.
Then M1/p > 0, and by the Archimedean property there is an N ∈ N with N > M1/p. Thus, for
n ≥ N , n > M1/p, and so an = np > (M1/p)p =M , as desired.

On the other hand, the sequence (an) = (1, 0, 2, 0, 3, 0, 4, 0, . . .) does not diverge to +∞: no
matter how large N is, there is some integer n ≥ N with an = 0. (Indeed, we can either take
n = N or n = N + 1.) This sequence diverges, but it does not diverge to +∞.

This suggests the we include the symbols±∞ in the field R. We must be careful how to do this,
however. We have already proved that R is the unique complete ordered field, so no matter how
we add ±∞, the resulting object cannot be a complete ordered field. In fact, it won’t be a field at
all, for we won’t always be able to do algebraic operations.

Definition 3.3. Let R = R ∪ {−∞,+∞}. We make R into an ordered set as follows: given
x, y ∈ R, if in fact x, y ∈ R then we use the order relation from R to compare x, y. If one of the
two (say x) is in R, then we declare −∞ < x < +∞. Finally, we declare −∞ < +∞.

We make the following conventions. If a ∈ R with a > 0, then ±∞ · a = a · ±∞ = ±∞; if
a ∈ R with a < 0 then ±∞ · a = a · ±∞ = ∓∞. We also declare that a+ (±∞) = ±∞ for any
a ∈ R, and that (+∞) + (+∞) = +∞ while (−∞) + (−∞) = −∞. We leave all the following
expressions undefined:

(+∞) + (−∞), (−∞) + (∞),
∞
∞
, 0 · (±∞), and (±∞) · 0.

Example 3.4. Let α, β ∈ R with α > 0, and let an = n while bn = −αn+ β. Then

lim
n→∞

(an + bn) =


+∞, if α < 1

β, if α = 1

−∞, if α > 1

.

Hence the value of the limit of the sum depends on the value of α. However, Example 3.2 shows
that an → +∞ while a similar argument shows that bn → −∞ for any α, β. So we ought to have

lim
n→∞

an + lim
n→∞

bn“ = ”(+∞) + (−∞).

This highlights why it is important to leave such expressions undefined: there is no way to consis-
tently define them that respects the limit theorems.
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We can also use these conventions to extend the notions of sup and inf to unbounded sets, and
the notions of lim sup and lim inf to unbounded sequences.

Definition 3.5. Let E ⊆ R be any nonempty subset. If E is not bounded above, declare supE =
+∞; ifE is not bounded below, declare inf E = −∞. We also make the convention that sup(∅) =
−∞ while inf(∅) = +∞. (Note: this means that, in the one special case E = ∅, it is not true
that inf E ≤ supE.)

Similarly, let (an) be any sequence in R. If (an) is not bounded above, declare lim supn an =
+∞; if (an) is not bounded below, declare lim infn an = −∞.

With these conventions, essentially all of the theorems involving limits extend to unbounded
sequences.

Proposition 3.6. Using the preceding conventions, Lemma 2.4, Proposition 2.6, Proposition 2.13(2),
Squeeze Theorem 2.14, Proposition 2.21, Proposition 2.22, and Theorem 2.24 all generalize to the
cases where the limits in the statements are allowed to be in R rather than just R. Moreover, Theo-
rem 2.27 and Proposition 2.29 also hold in this more general setting whenever the statements make
sense: i.e. excluding the cases when the involved expressions are undefined (like (+∞) + (−∞)).

Proof. It would take many pages to prove all of the special cases of all of these results remain valid
in the extended reals. Let us choose just one to illustrate: Theorem 2.27(1): if limn an = a and
limn bn = b, then limn(an + bn) = a + b. We already know this holds true when a, b ∈ R. If
a = +∞ and b = −∞, or a = −∞ and b = +∞, the sum a + b is undefined, and so we exclude
these cases from the statement of the theorem. So we only need to consider the cases that a ∈ R
and b = ±∞, a = ±∞ and b ∈ R, or a = b = ±∞.

• a ∈ R and b = +∞: Since (an) is convergent in R, it is bounded; thus say |an| ≤ L. Then
fixM > 0 and chooseN so that bn > M+L for n ≥ N . Thus an+bn > −L+(M+L) =
M for n ≥ N , and so an + bn → +∞. The argument is similar when b = −∞.
• a = ±∞ and b ∈ R: this is the same as the previous case, just reverse the roles of an and
bn and a and b.
• a = b = +∞: let M > 0, and choose N1 so that an > M/2 for n ≥ N1; choose
N2 so that bn > M/2 for n ≥ N2. Thus, for n ≥ N = max{N1, N2}, it follows that
an + bn ≥ M/2 +M/2 = M , proving that an + bn → +∞ as required. The argument
when a = b = −∞ is very similar.

�

Now we turn to a very different extension of R: the Complex Numbers. We’ve already discussed
them a little bit, in Example 1.12(3-3.5) and HW1.4, so we’ll start by reiterating that discussion.
We will rely on our knowledge of linear algebra.

Definition 3.7. Let C denote the following set of 2× 2 matrices over R:

C =

{[
a −b
b a

]
: a, b ∈ R

}
.

Then C = spanR{I, J}, where

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
.
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As is customary, we denote I = 1 and J = i. We can compute that J2 = −I , so i2 = −1. Every
complex number has the form a1 + bi for unique a, b ∈ R; we often suppress the 1 and write this
as a+ ib. We think of R ⊂ C via the identification a↔ a+ i0 (so a is the matrix aI).

It is convenient to construct C this way, since, as a collection of matrices, we already have
addition and multiplication built in; and we have all the tools of linear algebra to prove properties
of C.

Proposition 3.8. Denote 1C = I and 0C the 2× 2 zero matrix. Define + and · on C by their usual
matrix definitions. Then C is a field.

Proof. Most of the work is done for us, since + and · of matrices are associative and distributive,
and + is commutative, and 1C and 0C are multiplicative and additive identities. All that we are left
to verify are the following three properties:

• C is closed under + and ·, i.e. we need to check that if z, w ∈ C then z + w ∈ C and
z · w ∈ C. Setting z = a+ ib and w = c+ id, we simply compute

z + w =

[
a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −b− d
b+ d a+ c

]
= (a+ c) + (b+ d)i ∈ C,

z · w =

[
a −b
b a

] [
c −d
d c

]
=

[
ac− bd −ad− bc
ad+ bc ac− bd

]
= (ac− bd) + (ad+ bc)i ∈ C.

• · is commutative: this follows from the computation above: if we exchange z ↔ w, mean-
ing a↔ c and b↔ d, the value of the product z · w is unaffected, so z · w = w · z.
• If z ∈ C \ {0C} then z−1 exists: here we use the criterion that a matrix z is invertible iff
det(z) 6= 0. We can readily compute that, for z ∈ C,

det(z) = det

[
a −b
b a

]
= a2 + b2

and this = 0 iff a = b = 0 meaning a+ ib = 0C.
�

Now more notation.

Definition 3.9. Let z = a+ib ∈ C. We denote a = Re(z) and b = Im(z), the Real and Imaginary
parts of z. Define the modulus or absolute value of z to be

|z| =
√

det(z) =
√
a2 + b2 =

√
Re(z)2 + Im(z)2.

For z ∈ C, its complex conjugate z is the complex number z = Re(z) − iIm(z); in terms of
matrices, this is just the transpose z = z>.

Note that z + z = 2Re(z) and z − z = 2iIm(z). Since i is invertible (indeed i−1 = −i), it
follows that

Re(z) =
z + z

2
, Im(z) =

z − z
2i

. (3.1)

Note that, if z ∈ C happens to be in R (meaning that Imz = 0 so z = Re(z)), then |z| =√
Re(z)2 + 0 =

√
z2 = |z| corresponds to the absolute value in R; so the complex modulus

generalizes the familiar absolute value.
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3.2. Lecture 10: February 4, 2016. Here are some important properties of modulus and complex
conjugate.

Lemma 3.10. Let z, w ∈ C. Then we have the following.
(1) z = z.
(2) z + w = z + w and zw = z · w.
(3) zz = |z|2.
(4) |z| = |z|.
(5) |zw| = |z||w|, and so |zn| = |z|n for all n ∈ N.
(6) |Re(z)| ≤ |z| and |Im(z)| ≤ |z|.
(7) |z + w| ≤ |z|+ |w|.
(8) |z| = 0 iff z = 0.
(9) If z 6= 0 then z−1 (which we also write as 1

z
) is given by

z−1 =
z

|z|2
.

(10) If z 6= 0 then |z−1| = |z|−1, and so |zn| = |z|n for all n ∈ Z.

Proof. (1) is the familiar linear algebra fact that (z>)> = z, and (2) follows similarly from linear
algebra (and the commutativity of · in C): z + w = (z + w)> = z> + w> = z + w, and zw =
(zw)> = w>z> = z>w> = zw. For (3), writing z = a+ ib we have

zz = (a+ ib)(a− ib) = a2 + b2 + (ab− ab)i = a2 + b2 = |z|2.
(4) then follows that from this and (1), and commutativity of complex multiplication: |z|2 =
zz = zz = zz = |z|2; taking square roots (using the fact that |z| ≥ 0) shows that |z| = |z|.
(Alternatively, for (4), we simply note that |z| = det(z>) = det(z) = |z|.)

(5) is a well-known property of determinants: |zw| = det(zw) = det(z) det(w) = |z||w|;
taking z = w and doing induction shows that |zn| = |z|n. (6) follows easily from the fact that
|z| =

√
|Re(z)|2 + |Im(z)|2. For (7), we have

|z +w|2 = (z +w)(z + w) = (z +w)(z +w) = zz + zw +wz +ww = |z|2 + zw +wz + |w|2.

The two middle terms can be written as zw+wz = zw+(zw) and, by (3.1), this equals 2Re(zw).
Now, any real number x is ≤ |x|, and so

|z + w|2 = |z|2 + 2Re(zw) + |w|2 ≤ |z|2 + 2|Re(zw)|+ |w|2 ≤ |z|2 + 2|zw|2 + |w|2

where we have used (6). From (4) and (5), |zw| = |z||w| = |z||w|, and so finally we have

|z + w|2 ≤ |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2.
Taking square roots proves the result.

For (8), it is immediate that |0| = 0; the converse was shown in the proof of Proposition 3.8:
|z| = det(z) = 0 iff (Re(z))2 + (Im(z))2 = 0 which happens only when Re(z) = Im(z) = 0, so
z = 0. Part (9) follows similarly from the matrix representation; alternatively we can simply check
from (3) that

z · z

|z|2
=

zz

|z|2
= 1

showing that z−1 = z
|z|2 . Finally, for (10), using (5) we have

|z−1||z| = |z−1z| = |1| = 1
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so |z|−1 = |z−1|. An induction argument combining this with (5) shows that |z|−n = |z−n| for
n ∈ N, and coupling this with the second statement of (5) concludes the proof. �

Items (7) and (8) of Lemma 3.10 show that the complex modulus behaves just like the real
absolute value: it satisfies the triangle inequality, and is only 0 at 0. These properties are all that
were necessary to make most of the technology of limits of sequences in R work, and so we can
now use the complex modulus to extend these notions to C.

Definition 3.11. Let (zn) be a sequence in C. Given z ∈ C, say that lim
n→∞

zn = z iff

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N |zn − z| < ε.

Say that (zn) is a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N |zn − zm| < ε.

Note that these are, symbolically, exactly the same as the definitions (6.1 and 2.7) of limits
and Cauchy sequences of real numbers; the only difference is, we now interpret |z| to mean the
modulus of the complex number z rather than the absolute value of a real number.

The properties of complex modulus mirroring those of real absolute value allow us to prove the
results of Lemmas 2.4 and 2.8, Propositions 2.10 and 2.13, and the Limit Theorems (Theorem
2.27) with nearly identical proofs. To summarize:

Theorem 3.12. (1) Limits are unique: if zn → z and zn → w, then z = w.
(2) Every convergent sequence in C is Cauchy.
(3) Every Cauchy sequence in C is bounded.
(4) (a) If zn → z then any subsequence of (zn) converges to z.

(b) If (zn) is Cauchy then any subsequence of (zn) is Cauchy.
(c) If (zn) is Cauchy and has a convergent subsequence with limit z, then zn → z.

(5) If zn → z and wn → w, then zn +wn → z +w, znwn → zw, and if z 6= 0 then zn 6= 0 for
sufficiently large n and 1

zn
→ 1

z
.

To illustrate how to handle complex modulus in these proofs, let us look at the analog of Proposi-
tion 2.10: that Cauchy sequences are bounded. As before, we set ε = 1 and let N be large enough
that |zn − zm| < 1 whenever n,m > N . Thus, taking m = N + 1, for any n > N we have
|zn − zN+1| < 1. Now, zn = (zn − zN+1) + zN+1, and so by the triangle inequality

|zn| = |(zn − zN+1) + zN+1| ≤ |zn − zN+1|+ |zN+1| < 1 + |zN+1|, ∀n > N.

So, as in the previous proof, if we set M = max{|z1|, |z2|, . . . , |zN |, 1 + |zN+1|} then |zn| ≤ M
for all n.

In fact, convergence and Cauchy-ness of complex sequences boils down to convergence and
Cauchy-ness of the real and imaginary parts separately.

Proposition 3.13. Let (zn) be a sequence in C. Then (zn) is Cauchy iff the two real sequences
(Re(an)) and (Im(bn)) are Cauchy, and zn → z iff Re(zn)→ Re(z) and Im(zn)→ Im(z).

Proof. Let zn = an + ibn. Suppose (an) and (bn) are Cauchy. Fix ε > 0 and choose N1 large
enough that |an − am| < ε

2
for n,m > N1, and choose N2 large enough that |bn − bm| < ε

2
for
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n,m > N2. Then for n,m > N = max{N1, N2}, we have

|zn − zm| = |(an + ibn)− (am + ibm)| = |(an − am) + i(bn − bm)| ≤ |an − am|+ |i(bn − bm)|
= |an − am|+ |bn − bm|

<
ε

2
+
ε

2
= ε

where, in the second last step, we used the fact that |i(bn − bm)| = |i||bn − bm| and |i| = 1. Thus,
(zn) is Cauchy. For the converse, suppose that (zn) is Cauchy. Fix ε > 0, and choose N large
enough that |zn − zm| < ε for n,m > N . Then we also have

|Re(zn)− Re(zm)| = |Re(zn − zm)| ≤ |zn − zm| < ε, and

|Im(zn)− Im(zm)| = |Im(zn − zm)| ≤ |zn − zm| < ε

for n,m > N . Thus, both (Re(zn)) and (Im(zn)) are Cauchy, as claimed.
The proof of the limit statements is very similar, and is left as a homework exercise (on HW6).

�

Now, C is not an ordered field (you proved this on HW1), so it does not even make sense to ask
if it has the least upper bound property (and likewise we cannot talk about a Squeeze Theorem,
or lim sup and lim inf). This is one of the main reasons we gave an equivalent characterization of
the least upper bound property – Cauchy completeness – that does not explicitly require an order
relation.

Theorem 3.14. The field C is Cauchy complete: any Cauchy sequence is convergent.

Proof. Let (zn) be a Cauchy sequence in C. By Proposition 3.13, the two real sequences (Re(zn))
and (Im(zn)) are both Cauchy. Since R is Cauchy complete, it follows that there are real numbers
a, b ∈ R so that Re(zn) → a and Im(zn) → b. It then follows, again by Proposition 3.13, that
zn → a+ ib. �

In R, we proved the Bolzano-Weierstrass theorem (that bounded sequences have convergent
subsequences) using the technology of lim sup and lim inf. As noted, since C is not ordered, there
is no way to talk about lim sup and lim inf for a complex sequence. Nevertheless, the Bolzano-
Weierstrass theorem holds true in C. We conclude our discussion of C (for now) with its proof.

Theorem 3.15 (Bolzano-Weierstrass). Every bounded sequence in C contains a convergent sub-
sequence.

Proof. Let (zn) be a bounded sequence. Letting zn = an+ ibn, since |an| ≤ |zn| and |bn| ≤ |zn|, it
follows that (an) and (bn) are bounded sequences in R. Now, by the Bolzano-Weierstrass theorem
for R, there is a subsequence ank

of (an) that converges to some real number a. Consider now the
subsequence bnk

of (bn). Since (bn) is bounded, so is (bnk
), and so again applying the Bolzano-

Weierstrass theorem for R, there is a further subsequence (bnk`
) that converges to some b ∈ R. The

subsequence (ank`
) is a subsequence of the convergent sequence ank

and hence also converges to
a. Thus, by Propostion 3.13, the subsequence znk`

converges to a+ ib as `→∞. �

Remark 3.16. This proof highlights an important technique with subsequences in higher dimen-
sional spaces. We chose the second subsequence as a subsubsequence, not only a subsequence.
Had we tried to select the subsequences of the real and imaginary parts independently, we could not
have concluded anything about the two together. Indeed, the Bolzano-Weierstrass theorem gives
us a convergent subsequence ank

and also gives us a convergent subsequence bmk
. But we need to



MATH 140A: FOUNDATIONS OF REAL ANALYSIS I 31

use the same index n for both an and bn, which might not be possible with independent choices
like this. A priori, the chosen convergent subsequence of an might have been (a1, a3, a5, . . .), while
from bn we might have chosen (b2, b4, b6, . . .), ne’er the ’tween shall meet.
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4. SERIES

4.1. Lecture 11: February 9, 2016. We now turn to a special class of sequences called series.

Definition 4.1. Let (an) be a sequence in R or C. The series associated to (an) is the new sequence
(sn) given by

sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an.

It is a bit of a misnomer to refer to series as special kinds of sequences; indeed, any sequence is
the series associated to some other sequence. For let (an) be a sequence. Define a new sequence
(bn) by

b1 = a1, bn = an − an−1 for n > 1.

Then a1 = b1 =
∑1

k=1 bk, and for n > 1 we compute that
n∑
k=1

bk = b1 + b2 + · · ·+ bk = a1 + (a2 − a1) + (a3 − a2) + · · ·+ (an − an−1) = an.

Thus, (an) (the arbitrary sequence we started with) is the series associated to the sequence (bn).
We will see, however, that the concept of convergence is quite different when applied to the

series associated to a sequence rather than the sequence itself.

Definition 4.2. Let (an) be a sequence in R or C, and let sn =
∑n

k=1 ak be its series. We say that
the series converges if the sequence (sn) converges. If the limit is s = limn→∞ sn, we denote it by

s =
∞∑
n=1

an = lim
n→∞

n∑
k=1

ak.

In this case, we will often use the cumbersome-but-standard notation “the series
∑∞

n=1 an con-
verges”.

Example 4.3 (Geometric Series). Let r ∈ C, and consider the sequence an = rn (in this case it
is customary to start at n = 0). We can compute the terms in the series exactly, following a trick
purportedly invented by Gauss at age 10.

sn =
n∑
k=0

ak = 1 + r + r2 + · · ·+ rn.

∴ rsn = r + r2 + · · ·+ rn + rn+1.

So, subtracting the two lines, we have

(1− r)sn = sn − rsn = 1− rn+1.

Now, if r = 1, this gives no information. In that degenerate case, we simply have sn = 1 + 1 +
· · ·+ 1 = n, and this series does not converge. In all other cases, we have the explicit formula

sn =
1− rn+1

1− r
.

Using the limit theorems, we can decide whether this converges, and to what, just looking at the
shifted sequence an+1 = rn+1. If |r| < 1, then this converges to 0. If |r| ≥ 1, this sequence does
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not converge. (This is something you should work out.) Thus, we have
∞∑
n=0

rn =
1

1− r
, if |r| < 1

while the series diverges if |r| ≥ 1.

Example 4.4. Consider the sequence an = 1
n(n+1)

. We can employ a trick here: the partial fractions
decomposition:

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus, taking the series sn =
∑n

k=1 an, we have

sn =
n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
.

This is a telescoping sum: all terms except for the first and the last cancel in pairs. Thus, we have
a closed formula

sn = 1− 1

n+ 1
.

Hence, the series converges, and we have explicitly
∞∑
n=1

= lim
n→∞

sn = lim
n→∞

(
1− 1

n+ 1

)
= 1.

Example 4.5 (Harmonic Series). Consider the series sn =
∑n

k=1
1
k
. That is

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

If you add up the first billion terms (i.e. s109) you get about 21.3. This seems to suggest conver-
gence; after all, the terms are getting arbitrarily small. However, this series does not converge. To
see why, look at terms sN with N = 2m+2m−1 + · · ·+2+1 for some positive integer m. (By the
way, from the previous example, this could be written explicitly as N = 2m+1 − 1.) Then we can
group terms as

sN = (1) +

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ · · ·+

(
1

2m + 1
+

1

2m + 2
+ · · ·+ 1

2m+1 − 1

)
.

That is: we break up the sum into m+1 groups, the first group with 1 term, the second with 2, the
third with 4, up to the last with 2m terms. Now, 1 > 1

2
. In the sec ond group of terms, both 1

2
and 1

3

are > 1
4
. In the next group, each of the four terms is > 1

8
. That is, we have

sN >

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2m+1
+

1

2m+1
+ · · ·+ 1

2m+1

)
=

1

2
+

1

2
+

1

2
+ · · ·+ 1

2
=
m+ 1

2
.

Now, sn+1 = sn +
1

n+1
≥ sn, so (sn) is an increasing sequence. We’ve just shown that, for any

integer m, we can find some time N so that sN ≥ m+1
2

, and so it follows that for all larger n ≥ N ,
sn ≥ sN ≥ m+1

2
. Since m+1

2
is arbitrarily larger, we’ve just proved that sn → +∞ as n→∞. So

the series diverges.
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In Example 4.3, we were able to compute the nth term in the series as a closed formula, and
compute the limit directly. It is rare that we can do this explicitly; more often, we will need to
make estimates like we did in Example 4.5. So we now begin to discuss some general tools for
attacking such limits.

Proposition 4.6 (Cauchy Criterion). Let an be a sequence in R or C. Then the series
∑∞

n=1 an
converges if and only if: for every ε > 0, there is a natural number N ∈ N so that, for all
m ≥ n ≥ N , ∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ < ε.

Proof. This is just a restatement of the Cauchy completeness of R and C. Let sn =
∑n

k=1 ak. Then

m∑
k=n+1

= an+1 + · · ·+ am = sm − sn.

Thus, having decided to always use m to denote the larger of m,n, the statement is that, for every
ε > 0 there is N ∈ N such that, for m ≥ n ≥ N , |sm − sn| < ε; this is precisely the statement that
(sn) is a Cauchy sequence. In R or C, this is equivalent to (sn) being convergent, as desired. �

Corollary 4.7. Let (an) be a sequence such that the series
∑∞

n=1 an converges. Then an → 0.

Proof. By the Cauchy Criterion (Proposition 4.6), given ε > 0 we may find N ∈ N so that (letting
n = m− 1) for m > N ,

ε >

∣∣∣∣∣∣
m∑

k=(m−1)+1

ak

∣∣∣∣∣∣ = |am|.
This is precisely the statement that am → 0 as m→∞. �

As Example 4.5 points out, the converse to Corollary 4.7 is false: there are sequences, such as
an = 1

n
, that tend to 0, but for which the series

∑∞
n=1 an diverges.

It is often impossible to compute the exact value of the sum
∑∞

n=1 an of a convergent series.
More often, we use estimates to approximate the value. More basically, we use estimates to de-
termine whether the series converges or not, without any direct knowledge of the value if it does
converge. The most basic test for convergence is the comparison theorem.

Theorem 4.8 (Comparison). Let (an) and (bn) be sequences in C.

(1) If bn ≥ 0 and
∑

n bn converges, and if |an| ≤ bn for all sufficiently large n, then
∑

n an
converges, and |

∑
n an| ≤

∑
n bn.

(2) If an ≥ bn ≥ 0 for all sufficiently large n and
∑

n bn diverges, then
∑

n an diverges.

Proof. For item 1: by assumption
∑

n bn converges, and so by the Cauchy criterion, for given ε > 0
we can choose N0 ∈ N so that, for m ≥ n ≥ N0,

m∑
k=n+1

bk < ε
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(here we have used the fact that bn ≥ 0 to drop the modulus). Now, let N1 be large enough that
|an| ≤ bn for n ≥ N1. Then for m ≥ n ≥ max{N0, N1}, we have∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ≤
m∑

k=n+1

bk < ε.

So the series
∑

n an satisfies the Cauchy criterion, and therefore is convergent.
Item 2 follows from item 1 by contrapositive: if

∑
n an converges, then since bn = |bn| ≤ an for

all large n, we have just proven that
∑

n bn converges. Thus, if
∑

n bn diverges, so must
∑

n an. �

Example 4.9. The series
∑

n
1√
n

diverges, since 1√
n
≥ 1

n
and, by Example 4.5,

∑
n

1
n

diverges. On
the other hand, note that

n2 =
1

2
n2 +

1

2
n2 ≥ 1

2
n2 +

1

2
n =

1

2
n(n+ 1)

for n ≥ 1. Thus 1
n2 ≤ 2

n(n+1)
. As we computed in Example 4.4,

∑∞
n=1

1
n(n+1)

= 1, so by the limit
theorems,

∑∞
n=1

2
n(n+1)

= 2. That is: this series converges. It follows from the comparison test
that

∑∞
n=1

1
n2 converges.

In showing that the harmonic series diverges, we broke the terms up into groups of exponentially
increasing size. This is an important trick known as the lacunary technique, and it works well
when the sequence of terms is positive and decreasing.

Proposition 4.10 (Lacunary Series). Suppose (an) is a sequence of non-negative numbers that is
decreasing: an ≥ an+1 ≥ 0 for all n. Then

∑∞
n=1 an converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.

Proof. Since ak ≥ 0 for all k, the series of partial sums sn =
∑n

k=1 ak is monotone increasing.
Hence, convergence of sn is equivalent to the boundedness of (sn). Let tk = a1 + 2a2 + 4a4 +
· · ·+ 2kak. We will show that (sn) is bounded iff (tk) is bounded.

Note that 2k ≤ 2k+1 − 1, and so if n < 2k then n < 2k+1 − 1. Then we have for such n

sn = a1 + a2 + a3 + · · ·+ an ≤ a1 + a2 + a3 + · · ·+ a2k+1−1

= (a1) + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2ka2k = tk.

(In the last inequality, we used the fact that an is decreasing.) This shows that if (tk) is bounded,
then so is (sn). For the converse, we just group terms slightly differently (exactly as we did in the
proof of the divergence of the harmonic series): if n > 2k, then

sn = a1 + a2 + a3 + · · ·+ an ≥ a1 + a2 + a3 + · · ·+ a2k

= (a1) + (a2) + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a1 + a2 + 2a4 · · ·+ 2k−1a2k =

1

2
tk.

Thus tk ≤ 2sn whenever n > 2k. This shows that if (sn) is bounded then so is (tk), concluding the
proof. �



36 TODD KEMP

Example 4.11. Let p ∈ R, and consider the series
∑∞

n=1
1
np . We’ve already seen that this series

diverges when p = 1. If p < 1, then 1
np ≥ 1

n
; it follows by the comparison theorem that the series∑∞

n=1
1
np diverges for p ≤ 1.

On the other hand, consider p > 1. Here the sequence of terms an = 1
np is positive and

decreasing, so we may use the lacunary series test to determine whether the series converges.
Compute that

∞∑
k=0

2ka2k =
∞∑
k=0

2k
1

2kp
=
∞∑
k=0

2(1−p)k.

This is a geometric series, with base r = 21−p. So 0 < r < 1 provided that p > 1, in which
case the series converges. Hence, by Proposition 4.10, the series

∑∞
n=1

1
np converges if and only if

p > 1.
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4.2. Lecture 12: February 11, 2016. Two generally effective tools for deciding convergence,
that you already saw in your calculus class, are the Root Test and the Ratio Test. Both of them are
predicated on rough comparison with a geometric series, cf. Example 4.3. If an = rn, then

∑
n an

converges iff |r| < 1. Now, note for this series that this important constant |r| can be computed
either as |an|1/n or as |an+1

an
|. Even when these quantities are not constant, they still can give a lot

of information about the convergence of the series.

Theorem 4.12 (Root Test). Let (an) be a sequence in C. Define

α = lim sup
n→∞

|an|1/n.

If α < 1, then
∑

n an converges. If α > 1, then
∑

n an diverges.

Remark 4.13. It is important to note that the theorem gives no information when α = 1. Indeed,
consider Examples 4.5 and 4.9, showing that

∑∞
n=1

1
n

diverges, while
∑∞

n=1
1
n2 converges. But, in

both cases, we have

lim
n→∞

(
1

n

)1/n

= lim
n→∞

(
1

n2

)1/n

= 1

(see Theorem 3.20(c) in Rudin). Thus, lim supn |an|1/n = 1 can happen whether
∑

n an converges
or diverges.

Proof. Suppose α < 1. Then choose any r ∈ R with α < r < 1. That is, we have lim supn |an|1/n <
r. Let bn = |an|1/n; then the statement is that lim supn bn = limn bn < r. That means that, for all
sufficiently large n, bn < r, and so since bn ≤ bn, we have |an|1/n < r for all sufficiently large
n. That is: there is some N so that |an| < rn for n ≥ N . Since the series

∑
n r

n converges (as
0 < r < 1), it now follows that

∑
n an converges by the comparison theorem.

Now, suppose α > 1. As above, let bn = |an|1/n. Since α = lim supn bn, from Theorem 2.24
there is a subsequence bnk

that converges to α. (This is even true of α = +∞; in this case, it is
quite easy to see that the series diverges.) In particular, this means that bnk

> 1 for all k, and so
|ank
| = bnnk

> 1 as well. It follows that an does not converge to 0, and so by Corollary 4.7,
∑

n an
diverges. �

The Ratio Test, which we state and prove below, is actually weaker than the Root Test. Its proof
is based on comparison with the Root Test, using the following result.

Lemma 4.14. Let cn be a sequence of positive real numbers. Then

lim sup
n→∞

c1/nn ≤ lim sup
n→∞

cn+1

cn
, and

lim inf
n→∞

c1/nn ≥ lim inf
n→∞

cn+1

cn
.

Proof. We prove the lim sup inequality, and leave the similar lim inf case as an exercise. Let
γ = lim supn

cn+1

cn
. If γ = +∞, there is nothing to prove, since every extended real number x

satisfies x ≤ +∞. So, assume γ ∈ R. Then we can choose some β > γ, and as in the proof of
the Root Test above, it follows that cn+1

cn
< β for all sufficiently large n, say n ≥ N . But then, by

induction, we have
cN+k

cN
=

cN+k

cN+k−1

cN+k−1

cN+k−2
· · · cN+1

cN
< βk.

Thus, for n ≥ N , letting k = n−N , we have

cn = cN+k < CNβ
k = cNβ

n−N = (cNβ
−N) · βn
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and so
c1/nn < (cNβ

−N)1/n · β.
From the Squeeze Theorem, it follows that

lim sup
n→∞

c1/nn ≤ lim sup
n→∞

(cNβ
−N)1/n · β = β · lim

n→∞
(cNβ

−N)1/n = β.

(Here we have used the fact that p = cNβ
−N is a positive constant, and limn p

1/n = 1 for any
p > 0; this last well-known limit can be found as Theorem 3.20(b) in Rudin.) Thus, for any β > γ,
we have lim supn c

1/n
n ≤ β. It follows that lim supn c

1/n
n ≤ γ, as claimed. �

Theorem 4.15 (Ratio Test). Let (an) be a sequence in C.

(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑

n an converges.

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then
∑

n an diverges.

Proof. For (1): from Lemma 4.14, lim supn |an|1/n ≤ lim supn
|an+1|
|an| < 1, and so by the Root Test,∑

n an converges. For (2): from Lemma 4.14, lim supn |an|1/n ≥ lim infn |an|1/n ≥ lim infn
|an+1|
|an| >

1, and so by the Root Test,
∑

n an diverges. �

Remark 4.16. Once again, if the lim sup or lim inf of the ratio of successive terms = 1, the test
cannot give any information: letting an = 1

n
and bn = 1

n2 , in both cases we have limn |an+1

an
| =

limn | bn+1

bn
| = 1, and yet

∑
n an diverges while

∑
n bn converges.

Example 4.17. Consider the sequence (an) = (1
2
, 1
3
, 1
22
, 1
32
, . . .). That is: a2n−1 = 1

2n
and a2n = 1

3n

for n ≥ 1. Thus |a2n−1|1/(2n−1) =
(
1
2

)n/(2n−1) → 1√
2

while |a2n|1/2n =
(
1
3

)n/2n
= 1√

3
. Thus

lim supn |an|1/n = 1√
2
, and so by the Root Test, the series

∑
n an converges. But the Ratio Test is

no use here. Note that
a(2n−1)+1

a2n−1
=

1/3n

1/2n
=

(
2

3

)n
→ 0,

a2n+1

a2n
=

1/2n+1

1/3n
=

1

2

(
3

2

)n
→ +∞.

Thus lim supn
an+1

an
= +∞ > 1 while lim infn

an+1

an
= 0 < 1; so the Ratio Test gives no informa-

tion.

Remark 4.18. You may remember the Ratio and Root Tests as being described as equivalent in
your calculus class. This is only true if you restrict to the case when limn |an+1

an
| exists. In this case,

the limit is equal to both the lim inf and the lim sup, and then Lemma 4.14 shows that limn |an|1/n
also exists. But this rules out series like the one above, that somehow “alternate” between different
kinds of terms, all of which are shrinking fast enough for the series to converge.

Example 4.19 (The number e). Consider the series
∞∑
n=0

1

n!
.

Note that the sequence of terms an satisfies an+1

an
= 1/(n+1)!

1/n!
= 1

n+1
→ 0 as n → ∞, and so

by the ratio test the series converges. Its exact value is called e. It is sometimes called Napier’s
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constant, since it was first alluded to in a table of logarithms in an appendix of a book written
by the Scottish mathematician / natural philosopher John Napier, circa 1618. It was first directly
studied by Jacob Bernoulli, who used the letter b to denote it. But, like everything else from that
era, it was eventually Euler who proved much of what we know about it, and Euler called it e.

The approximate value is

e ≈ 2.71828182845904523536028747135266249775724709369995.

Fun fact: when Google went public in 2004, their IPO (initial public offering) was $2,718,281,828.
Nerrrrrrds.

Lemma 4.20. The number e is given by e = lim
n→∞

(
1 +

1

n

)n
.

Proof. Let sn =
∑n

k=0
1
k!

be the nth partial sum of the series defining e. Let tn = (1 + 1
n
)n. Now,

for fixed m, we can use the binomial theorem to expand(
1 +

1

n

)m
=

m∑
k=0

(
m

k

)
1

nk
=

m∑
k=0

m(m− 1) · · · (m− k + 1)

k!
· 1
nk
.

Write the kth term as
1

k!
· m
n
· m− 1

n
· · · m− k + 1

n
.

Thus, specializing to the case m = n, we have

tn =

(
1 +

1

n

)n
=

n∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
<

n∑
k=0

1

k!
= sn.

We have yet to prove that limn→∞ tn exists, but since sn converges to the finite number e, it follows
from tn < sn that tn is bounded above, and so lim supn tn exists, and (by HW5)

lim sup
n→∞

tn ≤ lim sup
n→∞

sn = e.

Now, on the other hand, let m be fixed. Then for n ≥ m,

tn =
n∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
≥

m∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
≡ tmn .

So, for fixed m, the two sequences (tn) and (tmn ) are comparable: tn ≥ tmn . Again by HW5, and
using the limit theorems (for the finite sum with m terms), we have

lim inf
n→∞

tn ≥ lim inf
n→∞

tmn =
m∑
k=0

1

k!
lim
n→∞

n− 1

n
· · · n− k + 1

n
=

m∑
k=0

1

m!
= sm.

As this holds true for every m, it follows from the squeeze theorem that

lim inf
n→∞

tn ≥ lim
m→∞

sm = e.

Thus
e ≤ lim inf

n→∞
tn ≤ lim sup

n→∞
tn ≤ e

which implies that the lim sup and lim inf are both equal to e, as claimed. �
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The second form of e, as a limit, is (one of the) reason(s) it is so important: this shows that
e shows up in many problems related to compound interest or exponential decay. However, as a
means of approximating e, this limit is very slow: for example

t10 ≈ 2.5937 (4.6% error), t100 ≈ 2.7048 (0.50% error).

That is: you need 100 terms in order to get 2 digits of accuracy. On the other hand, s10 is within
10−8 of e, and s100 is so close to e my computer cannot compute the difference. But we can give a
bound on this tiny error as follows. First note that sn is increasing, so |e− sn| = e− sn. Now

e− sn =
∞∑
k=0

1

k!
−

n∑
k=0

1

k!
=

∞∑
k=n+1

1

k!
.

Now, we factor the terms (all of which have k ≥ n+ 1) as
1

k!
=

1

(n+ 1)!(n+ 2)(n+ 3) · · · k
=

1

(n+ 1)!
· 1

(n+ 2)(n+ 3) · · · k
<

1

(n+ 1)!
· 1

(n+ 1)k−n−1
.

Thus

e− sn <
1

(n+ 1)!

∞∑
k=n+1

1

(n+ 1)k−n−1
=

1

(n+ 1)!

∞∑
j=0

1

(n+ 1)j
.

This is a geometric series, and 0 < 1
n+1

< 1, so we know the sum is
∞∑
j=0

1

(n+ 1)j
=

1

1− 1
n+1

=
n+ 1

n
.

Thus, we have our estimate:

e− sn <
1

(n+ 1)!

n+ 1

n
=

1

n! · n
.

This is a tiny number. Since 10! = 3, 628, 800, this shows that e − s10 < 1
3×107 (and in fact it’s 3

times smaller than this). For n = 100, we have 100! · 100 ≈ 10160, so s100 differs from e only after
the 160th decimal digit!

This is one of the rare occasions where a perfectly practical question of error approximation
actually allows us to prove something entirely theoretical.

Proposition 4.21. The number e is irrational.

Proof. For a contradiction, let us suppose e ∈ Q. Since e > 0, this means there are positive
integers m,n so that e = m

n
. Now, from the above estimate, we have

0 < e− sn <
1

n! · n
, ∴ 0 < n!e− n!sn <

1

n
.

Now,

n!sn = n!
n∑
k=0

1

k!
=

n∑
k=0

n!

k!
=

n∑
k=0

n(n− 1) · · · (n− k + 1) ∈ N.

Also, by assumption e = m
n

, and so n!e = m · (n − 1)! ∈ N. Thus ` = n!e − n!sn ∈ N. But this
means 0 < ` < 1

n
for some n ∈ N, and that is a contradiction (there are no integers between 0 and

1
n

). �

Moving to our final topic on the subject of series, let us consider absolute convergence.
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Definition 4.22. Let (an) be a sequence in C. We say that the series
∑∞

n=1 an converges absolutely
if, in fact,

∑∞
n=1 |an| converges.

Lemma 4.23. If
∑∞

n=1 an converges absolutely, then it converges.

Proof. This follows immediately from the Cauchy criterion. Fix ε > 0 and choose N ∈ N large
enough that, for m > n ≥ N ,

∑m
k=n+1 |ak| < ε. Then by the triangle inequality∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| < ε

and so
∑∞

n=1 an converges. �
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4.3. Lecture 13: February 16, 2016. The converse of Lemma 4.23 is quite false. To see why, let
us study one particular class of real series known as alternating series.

Proposition 4.24 (Alternating Series). Let an ≥ 0 be a monotone decreasing sequence with limit
an → 0. Then

∑∞
n=1(−1)n−1an = a1 − a2 + a3 − a4 + · · · converges.

Proof. Fix m > n ∈ N and consider the tail sum

|(−1)nan+1 + (−1)n+1an+2 + (−1)m−1am| = |an+1 − an+2 + · · · ± am|.
We consider two cases: either m− n is even or odd. If it is even, then we can group the terms as

|(an+1 − an+2) + · · ·+ (am−1 − am)| = (an+1 − an+2) + · · ·+ (am−1 − am),
where we have used the fact that an ↓. On the other hand, we may group terms as

= an+1 − (an+2 − an+3)− (an+4 − an+5)− · · · − am ≤ an+1.

On the other hand, if n−m is odd, then by similar reasoning∣∣∣∣∣
m∑

k=n+1

(−1)k−1ak

∣∣∣∣∣ = (an+1 − an+2) + · · ·+ (am−2 − am−1) + am

and we may group this as

= an+1 − (an+2 − an+3)− · · · − (am−1 − am) ≤ an+1.

Hence, in all cases, we have ∣∣∣∣∣
m∑

k=n+1

(−1)k−1ak

∣∣∣∣∣ ≤ an+1.

Thus, fix ε > 0. Since an → 0, we may choose N ∈ N so that, for n ≥ N , an = |an| < ε. Since
an+1 ≤ an, we therefore have |

∑m
k=n+1(−1)k−1ak| ≤ an+1 < ε whenever m > n ≥ N , which

verifies the Cauchy criterion showing that
∑∞

n=1(−1)n−1an converges. �

Example 4.25. The sequence an = 1
n

is positive, decreasing, and satisfies an → 0. Therefore, by
Proposition 4.24,

∞∑
n=1

an = 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. (Remembering your calculus, it in fact converges to ln 2.) This is known as the alter-
nating harmonic series. Note that the absolute series

∑∞
n=1

1
n

diverges. So this is an example of a
series that is convergent but not absolutely convergent. These are sometimes called conditionally
convergent series.

Conditionally convergent series have strange properties, particularly with regard to rearrange-
ments. That is: suppose we reorder the terms. Continuing Example 4.25, rearrange the terms as
follows.

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n
+ · · ·

Each of the terms in the alternating harmonic series appears exactly once in this sum. It is no
longer alternating, so we cannot apply a theorem to tell whether it converges; but we can in fact
sum it as follows: in each three-term group, simplify

1

2n− 1
− 1

4n− 2
− 1

4n
=

(
1

2n− 1
− 1

4n− 2

)
− 1

4n
=

1

4n− 2
− 1

4n
=

1

2

(
1

2n− 1
− 1

2n

)
.
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So, the sum of the whole rearranged series is

1

2

(
1− 1

2

)
+

1

2

(
1

3
− 1

4

)
+ · · ·+ 1

2

(
1

2n− 1
− 1

2n

)
+ · · · = 1

2

∞∑
n=1

(−1)n−1

n
=

1

2
ln 2.

That is: this rearrangement produces half the value of the original series!
This is always possible for a conditionally convergent series of real numbers. Riemann proved

this: if
∑∞

n=1 an is conditionally convergent and an ∈ R, then there is a rearrangement a′n of the
terms so that the sequence s′n =

∑n
k=1 a

′
n has any tail behavior possible: given any α, β with

−∞ ≤ α ≤ β ≤ +∞, one can find a rearrangement so that lim supn s
′
n = β and lim infn s

′
n = α.

(This is proved as Theorem 3.54 in Rudin.) Fortunately, this kind of craziness is not possible for
absolutely convergent series, as our final theorem in this section attests to.

Theorem 4.26. Let (an) be a complex sequence such that
∑∞

n=1 |an| converges. Then for any
rearrangement a′n of an,

∑∞
n=1 a

′
n =

∑∞
n=1 an.

Proof. Fix ε, and choose N ∈ N so that
∑m

k=n=1 |ak| < ε for m > n ≥ N . Let sn =
∑n

k=1 ak and
s′n =

∑n
k=1 a

′
k. The numbers 1, 2, . . . , N appear as indices in the rearranged sequence (a′n) each

exactly once, so there must be some finite p so that they all appear by time p in (a′n). Thus, for
m > n ≥ p, in the difference sm − s′m the N terms a1, . . . , aN cancel leaving only with (original)
indices > N . Thus, by the choice of N , this difference is ≤ |

∑m
k=N+1 ak| ≤

∑m
k=N+1 |ak| < ε.

This shows that the sequence sn − s′n converges to 0, and it follows, since we know sn converges
to
∑∞

n=1 an, that s′n also converges to the sum. �
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5. METRIC SPACES

For the remainder of this course, we are going to generalize the concepts we’ve worked with
(notably convergence) beyond the case of R or C. The key to this generalization was already
discussed in the generalization from R to C: we replace the absolute value in R (defined in terms
of the order relation) with the complex modulus in C. For all of the same technology to work, only
a few basic properties of the absolute value / modulus were needed: that |x| ≥ 0, that |x| = 0 only
when x = 0, and finally the triangle inequality |x+ y| ≤ |x|+ |y|.

This last property requires a notion of addition, and we’d like to move beyond vector spaces.
The trick is that, in the notion of convergence, the absolute value / modulus only ever comes up as
a means of measuring distance between two elements: |x − y|. Thinking of it this way, what do
the three key properties say?

• For any two elements x, y, the distance |x− y| is ≥ 0.
• If the distance |x− y| is 0, then actually x = y.
• The triangle inequality: for any three elements x, y, z, the distance |x − z| is bounded

above by |x− y|+ |y − z|. (This is really why it’s called the triangle inequality: draw the
associated picture.) Indeed, we have

|x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z|.

Interpreted in this light, we don’t need a notion of addition: everything can be stated purely in
terms of the notion of distance (in this case given by (x, y) 7→ |x− y|). We generalize thus.

Definition 5.1. LetX be a nonempty set. A function d : X×X → R is called a metric if it satisfies
the following three properties.

(1) For any x, y ∈ X , d(x, y) = d(y, x) ≥ 0.
(2) For any x, y ∈ X , if d(x, y) = 0, then x = y.
(3) For any x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space.

Example 5.2. (1) As above, if we let dC(x, y) = |x− y|, then (C, dC) is a metric space. Same
goes for R equipped with the restriction of dC to R.

(2) More generally, fix n, and consider the set Cn of n-tuples of real numbers. Define the
Euclidean norm on Cn as follows:

‖(x1, . . . , xn)‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
.

It is a simple but laborious exercise to verify that the Euclidean metric d2(x,y) = ‖x−y‖2
is a metric on Cn. As above, the restriction to Rn is also a metric.

(3) There are many other, different metrics on Rn. The best known are the p-metrics: for
1 ≤ p <∞,

‖(x1, . . . , xn)‖p = (|x1|p + · · ·+ |xn|p)1/p .

There is also the∞-norm, aka the sup norm

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}.

As above, all of these norms yield metrics in the usual way, dp(x,y) = ‖x − y‖p. Note:
the definition still makes sense when p < 1, but it no longer gives a metric: the triangle
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inequality is violated. For example, taking p = 1
2
, we have

‖(9, 1) + (16, 0)‖1/2 = ‖(25, 1)‖1/2 = (251/2 + 11/2)2 = 36

‖(9, 1)‖1/2 + ‖(16, 0)‖1/2 = (91/2 + 11/2)2 + (161/2 + 01/2)2 = 32 < 36.

(4) LetB[0, 1] consist of all bounded functions [0, 1]→ R. Then define a function du : B[0, 1]×
B[0, 1]→ R by

du(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

This is well-defined: since f and g are bounded, the set {f(x) − g(x) : x ∈ [0, 1]} is a
bounded, nonempty set, so it has a sup. It is ≥ 0, and moreover if du(f, g) = 0, then
for every x0 ∈ [0, 1], |f(x0) − g(x0)| ≤ supx∈[0,1] |f(x) − g(x)| = 0, which implies that
f(x0)− g(x0) = 0 – i.e. f = g. This verifies the first two properties of Definition 5.1. For
the triangle inequality, we have

du(f, h) = sup
x∈[0,1]

|f(x)− h(x)| = sup
x∈[0,1]

|f(x)− g(x) + g(x)− h(x)|

≤ sup
x∈[0,1]

(|f(x)− g(x)|+ |g(x)− h(x)|)

≤ sup
x∈[0,1]

|f(x)− g(x)|+ sup
x∈[0,1]

|g(x)− h(x)|

= du(f, g) + du(g, h)

using the properties of sup we now know well. Thus the triangle inequality holds for du
as well, and so it is a metric. Note, like the above examples, it has the form du(f, g) =
‖f−g‖u for a norm ‖·‖u: a function onB[0, 1] which has the properties ‖f‖u ≥ 0 and = 0
only if f = 0, and satisfies the triangle inequality ‖f + g‖u ≤ ‖f‖u + ‖g‖u. Whenever we
have a function like this defined on a vector space, it gives rise to a metric by subtraction.

(5) Not every metric is given in terms of a norm like this. For example, consider on R the
function

d(x, y) = min{|x− y|, 1}.
It is easy to verify that this satisfies properties (1) and (2) in Definition 5.1. The triangle
inequality is also easy to see, by breaking into eight cases (depending whether |x − y|,
|x− z|, and |y − z| are ≤ 1 or > 1); this boring proof is left to the reader.

(6) Given any nonempty set X , one can define a metric on X by the silly rule

d(x, y) =

{
0, x = y

1, x 6= y
.

This is known as the discrete metric. It says two points are close only if they are equal;
otherwise they are far apart. It is again simple to verify this is a metric.

One important observation was made at several points in the examples: if (X, d) is a metric
space, and Y ⊆ X , then (Y, d|Y ) is a metric space – that is, the metric Y defined on all pairs
(x, y) ∈ X×X , also defines a metric when restricted only to pairs in Y ×Y , as is straightforward to
verify. Thus, the Euclidean metric on Cn automatically gives us a metric (also called the Euclidean
metric) on Rn. Similarly, the usual metric on R restricts to a metric on [0, 1].

Usually thinking of metric spaces using our intuition from R2 and R3, we introduce the following
notation.
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Definition 5.3. Let (X, d) be a metric space, and let x0 ∈ X . For a fixed r > 0, the ball of radius
r centered at x0, denoted Br(x0), is the set

Br(x0) = {x ∈ X : d(x0, x) < r}.
(Rudin calls this a neighborhood Nr(x0).) With r = 1, we refer to this as the unit ball centered
at x0.

Example 5.4. (1) In Rn, using the definition of the Euclidean metric (and choosing the base
point 0 to simplify things), we have

Br(0) = {(x1, . . . , xn) : x21 + · · ·+ x2n < r2}
which is what we usually know as a ball (in n-dimensions).

(2) Consider (R2, dp), with the p-metric of Example 5.2(3). Here are some pictures of the unit
ball:

(3) In a discrete metric space (X, d) as in Example 5.2(6),Br(x0) = X if r > 1, andBr(x0) =
{x0} if r ≤ 1.
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5.1. Lecture 14: February 18, 2016. Now, once more, we define convergence and Cauchy in
the wider world of metric spaces.

Definition 5.5. Let (X, d) be a metric space, and let (xn) be a sequence in X , and let x ∈ X . Say
that (xn) converges to x, or xn → x, or limn→∞ xn = x, if

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N d(xn, x) < ε.

In other words, xn → x means that the real sequence d(xn, x) → 0. Alternatively, we could state
this as: for all sufficiently large n, xn ∈ Bε(x).

Similarly, say that (xn) is a Cauchy sequence in X if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N d(xn, xm) < ε.

As discussed in the generalization from R to C, limits are unique: if xn → x and xn → y, then
x = y (this follows from the fact that d(x, y) = 0 implies that x = y; it is primarily for this reason
that this non-degeneracy property is required in the definition of a metric).

Example 5.6. Consider a discrete metric space: (X, d) where d is given as in Example 5.2(6). Let
xn → x. In particular, this means that there is some time N such that, for n ≥ N , d(xn, x) < 1

2
.

But by the definition of d, either d(xn, x) = 0 or d(xn, x) = 1; so if d(xn, x) < 1
2

then d(xn, x) = 0,
and so xn = x. Thus, if xn → x, then xn = x for all large n. In a discrete metric space,
convergence is the same thing as eventually constant. The same holds true for Cauchy.

In general, there is a fundamental difference between convergent sequences that are eventually
constant and convergent sequences that are not eventually constant. We use this difference to define
one of the most important topological concepts.

Definition 5.7. Let (X, d) be a metric space, and let E ⊆ X be a subset. A point x ∈ X (not
necessarily in E) is called a limit point of E if there is a sequence xn ∈ E \ {x} that converges
to x, xn → x. That is: a limit point of E is a limit of some not eventually constant sequence in E.
A point e ∈ E that is not a limit point of E is called an isolated point of E.

Example 5.8. In R with the usual metric, take E = (−1, 0]∪N. Then −1 is a limit point of E: for
example, −1 = lim(−1 + 1

n
) and −1 + 1

n
∈ E for each n. Also, any point x ∈ E is a limit point

of E: take xn = x− 1+x
n

as the sequence. This is in E since 1 + x > 0 and so x− 1+x
n
< x ≤ 0,

but also x− 1+x
n
> x− (1 + x) = −1.

On the other hand, the positive integers N are isolated points of E. For example, consider 1. If
yn is any sequence in R that converges to 1, then we must have yn ∈ (0.9, 1.1) for all large n; but
then if yn ∈ E it follows that yn = 1 for all large n, which isn’t allowed. Thus, no sequence in
E \ {1} converges to 1, showing that the point 1 ∈ E is not a limit point of E – it is an isolated
point.

The set of all limit points of a set E is denoted E ′. So E is closed iff E ′ ⊆ E.

Definition 5.9. A subset E of a metric space is called closed if it contains all of its limit points.

Example 5.10. (1) The set E = (−1, 0] ∪ N from Example 5.8 is not closed: −1 is a limit
point of E, but −1 6∈ E.

(2) The set F = [−1, 0] ∪ N is closed. The argument in Example 5.8 shows that each of the
points in [−1, 0] is a limit point of F , while each of the points n ∈ N is an isolated point
of F . On the other hand, if x is a real number not in F , then either x < −1 or x > 0 and
x /∈ N. In the former case, this means that no sequence in F can come within distance
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1+x > 0 of x, and so cannot converge to x; a similar argument with x > 0 shows that x is
not a limit point of F . Thus, the set of limit points of F consists exactly of the set [−1, 0],
and this set is contained in F . So F is closed.

Definition 5.9 is stated in terms of limit points to make it clear that there are two kinds of
points to consider in deciding whether a set is closed: isolated points and non-isolated points. For
example, if one has a closed set, then adding to it a finite collection of isolated points will preserve
closedness. But for the purposes of a concise definition, one need not be concerned about the
distinction.

Proposition 5.11. A subset E of a metric space (X, d) is closed if and only if, for any sequence
(xn) in E that converges in X , the limit limn→∞ xn is actually in E.

That is: closed means closed under limits of sequences.

Proof. Suppose E is closed, so E ′ ⊆ E. Now, let (xn) be any sequence in E that converges to
some point x. If xn 6= x for any n, then by definition x ∈ E ′, and therefore by assumption x ∈ E.
If, on the other hand, there exists n with xn = x, then since xn ∈ E for each n, we have x ∈ E.
Thus, the E is closed under limits of sequences.

Conversely, suppose E is closed under limits of sequences. Let x ∈ E ′; so by definition there
is a sequence xn ∈ E \ {x} such that xn → x. Well, since xn → x and xn ∈ E, by assumption
x ∈ E. Thus E ′ ⊆ E, and E is closed. �

There is a complementary notion to closed, called open.

Definition 5.12. A subset E of a metric space is called open if, for any point x ∈ E, there is a ball
Br(x) (for some r > 0) with Br(x) ⊆ E.

Example 5.13. (1) The set E = (−1, 0]∪N from Example 5.8 is not open. Consider the point
0 ∈ E. For any 0 < r < 1, the ball Br(0) = (−r, r) contains some points (for example r

2
)

that are in (0, 1), and hence not in E. Similarly, any of the points in N are in E but none is
contained in a ball contained in E. So E is not open.

(2) On the other hand, the set U = (0, 1) is open. Indeed, let x ∈ U . Let’s consider two cases:
either 0 < x < 1

2
or 1

2
≤ x < 1. In the former case, the ball Bx(x) = (0, 2x) is contained

in U = (0, 1); in the latter case, the ball B1−x(x) = (2x− 1, 1) is contained in U . So every
point of x is contained in a ball inside U , showing that U is open.

(3) Let (X, d) be a discrete metric space. If x ∈ X , then by Example 5.4(3), B1(x) = {x}.
Thus, every singleton point in a discrete metric space is an open set. On the other hand,
by Example 5.6, there are no non-eventually-constant sequences converging to any point
x, which means every point is isolated. That is: X has no limit points, which means that
(vacuously) X contains all its limit points. So X is also closed.

(4) Consider the empty set ∅ in any metric space. It is both open and closed. Indeed, the
definitions of “open” and “closed” each start with “for every point in the set. . . ” and since
there are no points in ∅ to check the condition, it follows that the condition holds vacuously.

Example 5.13(2) has a nice, important generalization to any metric space. Not that (0, 1) is itself
a ball in R: it is the ball B1/2(1/2). The fact is, any ball is open.

Proposition 5.14. Let (X, d) be a metric space, let x ∈ X , and let r > 0. Then the ball Br(x) is
open in X .
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Proof. Let y ∈ Br(x). This means d(x, y) < r. Hence, there is some ε > 0 so that d(x, y) = r− ε.
I claim that Bε(y) ⊂ Br(x). Indeed, suppose that z ∈ Bε(y), meaning that d(z, y) < ε. Then

d(x, z) ≤ d(x, y) + d(y, z) = r − ε+ d(y, z) < r − ε+ ε = r.

so z ∈ Br(x). We have thus shown that, for any y ∈ Br(x), there is a ball Bε(y) ⊂ Br(x). That
is: Br(x) is open. �
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5.2. Lecture 15: February 23, 2016. We referred to open and closed as complementary proper-
ties. That doesn’t mean that any set is either open or closed: for example, the set (−1, 0] considered
above is neither open nor closed. But they concepts are complementary, in the following precise
sense.

Proposition 5.15. Let (X, d) be a metric space. A subset E ⊆ X is open if and only if Ec = X \E
is closed.

Since (Ec)c = E, it follows similarly that E is closed iff Ec is open. In the proof we will use the
characterization of closed given in Proposition 5.11.

Proof. Suppose E is open. Let (xn) be a sequence in Ec that converges to some point x ∈ X . We
want to show that x ∈ Ec; to produce a contradition, we therefore assume that x 6∈ Ec, meaning
x ∈ E. Since E is open, by definition there is some r > 0 so that Br(x) ⊆ E. On the other hand,
since xn → x, there is certainly some N so that d(xN , x) < r. Thus xN ∈ Br(x) ⊆ E, which
means that xN ∈ E. But we assumed that xN ∈ Ec, so this is a contradition. Therefore x ∈ Ec.
This shows that any convergent sequence in Ec has limit in Ec, which shows that Ec is closed.

Conversely, suppose Ec is closed. Let x ∈ E. We want to show that there is some r > 0 so that
Br(x) ⊆ E; to produce a contradiction, we therefore assume that there is no such r. That means
that, for say r = 1

n
, B1/n(x) 6⊆ E, which means precisely that there is som point xn 6∈ E such that

xn ∈ B1/n(x). So, we have produced a sequence xn ∈ Ec such that d(xn, x) < 1
n

, meaning that
xn → x. Thus x is the limit of a sequence in Ec, and so by assumption x ∈ Ec. This contradicts
the assumption that x ∈ E. Therefore there must be some r > 0 so that Br(x) ⊆ E, and so Ec is
closed. �

Let us make a few more definitions that pertain the local properties of open and closed sets.

Definition 5.16. Let (X, d) be a metric space, and let E ⊆ X .
(1) The closure of E is the set E = E ∪ E ′.
(2) A point x ∈ E is called an interior point if there is some r > 0 with Br(x) ⊆ E. The set

of all interior points of E is called the interior of E, and is denoted
◦
E.

(3) The boundary of E is the set ∂E = E \
◦
E.

Remark 5.17. Following the proof of Proposition 5.11, E can alternatively be described as the set
of all limits of convergent sequences in E.

Example 5.18. Consider again the set E = (−1, 0]∪N in R, considered in Examples 5.8 and 5.10.
We’ve shown that the points in (−∞,−1) and (0,∞) are not limit points (the points 1, 2, 3, . . . are
in E but are isolated); on the other hand, we’ve shown that the points [−1, 0] are all limit points.
Thus E ′ = [−1, 0], and so E = E ∪ E ′ = [−1, 0] ∪ N. We’ve also shown in Example 5.13(1)
that there is no ball centered at 0 contained in E; similarly, there are no balls centered at the points
1, 2, 3, . . . contained in E, so these are not interior points. On the other hand, an argument very

similar to Example 5.13(2) shows that the points in (−1, 0) are interior points. So
◦
E = (−1, 0).

Finally, this shows that ∂E = E \
◦
E = {−1, 0, 1, 2, . . .}.

Example 5.19. Let Q denote the rational numbers as a subset of the metric space R. By Theorem
1.17(2) (the density of Q in R), given any real numbers a < b there is a rational number q ∈ Q
with a < q < b. In particular, fix x ∈ R; then for n ∈ N there is a rational number qn with
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x+ 1
2n
< qn < x+ 1

n
. In particular, we have 1

2n
< |qn−x| < 1

n
. This shows that qn → x but qn 6= x

for any n; thus x ∈ Q′. So every real number is a limit point of Q, and so Q = Q∪Q′ = Q∪R = R.
(This is another way of saying Q is dense in R; in general, we say a subset E ⊆ X is dense in a
metric space X if E = X .)

On the other hand, let r > 0, and let q ∈ Q. The number x = q + r√
2

is < x + r, which shows
that x ∈ (q − r, q + r) = Br(q). But x /∈ Q: indeed, we can solve

√
2 = r

x−q , and so if x were
rational

√
2 would also be rational, which we know it is not. Thus Br(q) 6⊆ Q for any r > 0. This

shows q is not interior to Q. This holds for any q ∈ Q, and so, in fact,
◦
Q = ∅.

Theorem 5.20. Let (X, d) be a metric space, and let E ⊆ X .
(1) E is closed; E is closed iff E = E.

(2)
◦
E is open; E is open iff E =

◦
E.

Proof. We begin with item 1. Let (xn) be a sequence in E with limit x. We wish to show x ∈ E.
If x ∈ E ⊆ E we are done, so assume x /∈ E. For each xn, either xn ∈ E or xn ∈ E ′. In the latter
case, by definition of E ′ there is some other sequence yk ∈ E such that yk → xn; in particular, we
can choose some k large enough that d(yk, xn) < 1

n
. So, we can define a new sequence (x′n) as

follows: if xn ∈ E then x′n = xn; if xn 6∈ E ′, then x′n = yk as above, so x′n ∈ E and d(xn, x′n) <
1
n

.
Then we have d(x′n, x) ≤ d(x′n, xn) + d(xn, x) <

1
n
+ d(xn, x) → 0, and so x′n → x. As x′n ∈ E

and x /∈ E, it follows that x is a limit point of E, and so x ∈ E ′ ⊆ E ∪ E ′ = E. Thus E is closed
under limits; by Proposition 5.11, it follows that E is closed, as claimed. Now, by definition E is
closed iff E ′ ⊆ E, and this happens iff E = E ∪ E ′ = E, proving the second point.

For item 2, let x ∈
◦
E; thus, there is some ball Br(x) contained in E. But by Proposition 5.14,

the ball Br(x) is open, which means all its points are interior points; thus Br(x) ⊆
◦
E. So, any

point in
◦
E is interior to

◦
E, which shows that

◦
E is open. By definition

◦
E ⊆ E for any set E; thus

◦
E = E iff E ⊆

◦
E, which is the statement that every point of E is an interior point, which is

precisely the definition of E being open. �

Example 5.21. LetE ⊂ R be nonempty and bounded above. Then α = supE exists. By definition,
α − 1

n
is not an upper bound for E for any n ∈ N, which shows that there is an element xn ∈ E

with α − 1
n
< xn ≤ α. This shows that xn → α. By Remark 5.17, it follows that α ∈ E: the

supremum is always in the closure. On the other hand, if there were some r > 0 with Br(α) ⊆ E,
then, for example, α + r

2
∈ E. Since α + r

2
> α, this contradicts α being an upper bound for E.

Thus, α is not in
◦
E. That is: supE ∈ E \

◦
E = ∂E.
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5.3. Lecture 16: February 25, 2016. Now we come to an important concept you may not have
encountered before: compactness.

Definition 5.22. Let (X, d) be a metric space. A subset K ⊆ X is called compact if every
sequence (xn) in K has a convergent subsequence whose limit is in K.

Example 5.23. (1) Let a < b be real numbers, and consider the set K = [a, b]. The Bolzano-
Weierstrass Theorem for R (Theorem 2.25) is precisely the statement that [a, b] is compact.

(2) On the other hand, E = [a, b) is not compact: the sequence xn = b − b−a
n

is in E, but
converges to b /∈ E, therefore all of its subsequences converge to b, and hence none of
them converge in E. Similarly, an unbounded interval like [0,∞) is not compact: for
example the sequence xn = n has no convergent subsequences at all.

(3) Let (X, d) be a discrete metric space. IfK is a finite subset ofX , sayK = {y1, y2, . . . , ym},
then K is compact. Indeed, if (xn) is any sequence in K, then there must be some (perhaps
many) yj so that xn = yj for infinitely many n (by the pigeonhole principle). That means
exactly that there is an increasing sequence nk with xnk

= yj for all k, which means
xnk
→ yj ∈ K. Thus K is compact. On the other hand if E ⊆ X is infinite, it is not

compact: for then we can find an infinite sequence x1, x2, x3, . . . ∈ E all distinct. Thus,
any subsequence also has all distinct terms, which means it is not eventually constant. By
Example 5.6, this means no subsequence converges.

Now, there is an alternate definition of compactness which is the only one used in Rudin; we
refer to it as topological compactness, given in Definition 5.24 below. First, let us highlight
the fact that Definition 5.22 was the original definition of compact, and predated the so-called
“modern” definition by almost a century. Bolzano was already using our definition of compactness
in 1817, although it would not be until 1906 that Definition 5.22 was written down formally (by
Fréchet). It was around this time that Lebesgue proved (as a useful lemma) that Definition 5.24 also
characterizes compactness; indeed, as we will see, it is a very useful tool. Much later, in 1929, the
Russian school (led by Alexandrov and Urysohn) redefined compactness as what we are calling
topological compactness. Our definition of the word compact is now often called sequentially
compact.

Definition 5.24. Let (X, d) be a metric space. Let K ⊆ X be a subset. An open cover of K is a
collection (finite or infinite) of open set C in X such that every point in K is in at least on U ∈ C :
that is X ⊆

⋃
U . We call K topologically compact if, given any open cover C of K, there is a

finite sub cover: that is, there are finitely many U1, . . . , Um ∈ C such that K ⊆ U1 ∪ · · · ∪ Um.

Example 5.25. Consider the interval (0, 1]. We have already seen this is not compact. It is also not
topologically compact. Indeed, consider the sets Un = ( 1

n
, 2) for n ∈ N. If x ∈ (0, 1) then x > 0

and so there is some n ∈ N with 1
n
< x. Therefore x ∈ ( 1

n
, 1) ⊂ ( 1

n
, 2) = Un. This shows that the

collection C = {Un : n ∈ N} is an open cover of (0, 1]. Now, consider any finite collection of sets
from C : Un1 , Un2 , . . . , Unk

for some k ∈ N. Note that 1
m
< 1

`
when m > `, and so U` ⊂ Um in this

case. What that means is that, if we letm = max{n1, . . . , nk} then Un1∪· · ·∪Unk
= Um = ( 1

m
, 2).

But then this does not cover (0, 1]: there are points x ∈ (0, 1] with x < 1
m

. Thus, no finite subcover
of C will cover all of (0, 1]. The existence of such an open cover without any finite subcover shows
that (0, 1] is not topologically compact.

Theorem 5.26. Let K be a set in a subset of a metric space. Then K is sequentially compact iff K
is topologically compact.
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We will not prove Theorem 5.26 here; this is the sort of thing that will be covered in an under-
graduate topology course (such as Math 190). Rudin chooses to use the more abstract topological
definition of compactness (for historical reasons that I find unsatisfactory), and this has the effect
of both making everything more abstract, and also making all the proofs harder than necessary.
We will stick exclusively with sequential compactness. This means all our proofs will be different
from Rudin’s – and generally shorter and easier to understand!

In Example 5.23(2), the absence of the point b from [a, b) makes the set non-compact. Note that
b is in the closure of [a, b). This highlights the following proposition.

Proposition 5.27. Compact sets are closed. Also, if K is compact and F ⊆ K is closed, then F is
compact.

Proof. Suppose K is compact. Let (xn) be a sequence in K which converges. By compactness,
there is some subsequence (xnk

) that converges to a point in K. But we know that every subse-
quence of (xn) converges to limxn, and hence limxn ∈ K. Thus, K is closed under limits, and so
K is closed.

Now, let F be a closed subset of a compact set K. Let (yn) be any sequence in F . Then (yn)
is a sequence in K, and hence by compactness there is a subsequence (ynk

) that converges in K.
Note that ynk

∈ F for each k, and hence since F is closed it follows that lim ynk
∈ F . Thus, any

sequence in F has a convergent subsequence with limit in F ; i.e. F is compact. �

Definition 5.28. Let E be a subset of a metric space. The diameter of E, denoted diam(E) is
defined to be

diam(E) = sup{d(x, y) : x, y ∈ E}.
Note: this might well be +∞. If diam(E) < +∞, we callE bounded; otherwiseE is unbounded.

Example 5.29. (1) diam(Br(x)) ≤ 2r for any ball in a metric space. But it could be less: for
example in a discrete metric space with at least two elements, diam(Br(x)) = 0 if r ≤ 1
and = 1 if r > 1.

(2) In R, diam(0, 1) = diam(0, 1] = diam[0, 1) = diam[0, 1] = 1.
(3) In R, diam(N) =∞. Indeed, d(0, n) = n so sup{d(x, y) : x, y ∈ N} ≥ n for every n.

Note: if E is a bounded set, with diameter δ > 0, then for any point x ∈ E, E ⊆ B2δ(x) (or
B1.0001δ(x), or Bδ+0.0001(x), etc.) Conversely, suppose there is some x in the metric space and
some r > 0 with E ⊆ Br(x). Since diam(Br(x)) ≤ 2r, it follows that diam(E) ≤ 2r. So, to say
E is bounded is the same as saying it is contained in some ball.

Proposition 5.30. Compact sets are bounded.

Proof. We prove the contrapositive: unbounded sets are not compact. Let E be unbounded, and
fix a point x0 ∈ E. Consider the set of balls Bn(x0) for n ∈ N. By assumption, E 6⊆ Bn(x0) for
any n, so we can choose a point xn ∈ E with d(x0, xn) ≥ n.

In fact, the sequence (xn) has no convergent subsequences. For let x be any point in the metric
space. Let n ∈ N be large enough that N > d(x0, x). Then for n ≥ N +1, we have by the triangle
inequality

d(xn, x) ≥ d(xn, x0)− d(x0, x) ≥ n− d(x0, x) ≥ 1 +N − d(x0, x) > 1.

That is: for any point x in the metric space, eventually xn never comes within distance 1 of x.
It follows that no subsequence of (xn) can converge to x. Since this holds for any x, it follows
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that (xn) has no convergent subsequences. Since (xn) is a sequence in E, this means E is not
compact. �

Thus, we have seen that compact sets are closed and bounded. One of the biggest theorems of
this course, the Heine–Borel Theorem, states that the converse is true in Euclidean space.

Theorem 5.31 (Heine–Borel). Let m ∈ N. A subset of Rm is compact iff it is closed and bounded.

Proof. Let K ⊂ Rm. If K is compact, then by Propositions 5.27 and 5.30 K is closed and
bounded. We must prove the converse. Suppose K is a closed and bounded subset of Rm. Let (xn)
be a sequence in K. We may write it in terms of its components

xn = (x1n, x
2
n, . . . , x

m
n ).

Consider first the sequence (x1n)
∞
n=1 in R. Note that

|x1n| ≤ |xn| = d(xn, x1) ≤ diam(K).

So the sequence (x1n) is a bounded sequence in R. By Theorem 2.25 (the Bolzano-Weierstrass
Theorem for R), there is a subsequence x1nk

that converges. Now we proceed as in the proof of
Theorem 3.15 (the Bolzano-Weierstrass Theorem for C). Consider the subsequence x2nk

. Again
we have |x2nk

| ≤ diam(K) is bounded, so by the Bolzano-Weierstrass Theorem for R, it possesses
a further subsequence x2nk`

that is convergent. Note that x1nk`
is a subsequence of the convergent

subsequence x1nk
, so it is also convergent. Now we proceed to select a further convergent subsub-

subsequence that makes x3nk`s
converge, and so forth. The notation becomes ridiculous, but in the

end (after m steps) we produce a single set of indices 1 ≤ `1 < `2 < · · · such that all of the
components (x1`n , x

2
`n
, . . . , xm`n) converge as n→∞. We now follow the proof of Proposition 3.13

exactly to see that convergence in Rm is equivalent to convergence of each component separately,
and so we conclude that the subsequence (x`n) converges to some element x ∈ Rm. Finally, note
that x`n ∈ K by assumption, and K is closed; thus the point x is also in K. This shows that
every sequence in K has a convergent subsequence with limit in K, concluding the proof that K
is compact. �
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5.4. Lecture 17: February 29, 2016. So, closed intervals [a, b] are compact (as we already knew),
as are sets like [0, 1] ∪ [2, 3] ∪ {4, 5, 6, 7, 8}. In fact, there are much more complicated closed and
bounded sets in R (e.g. the Cantor set of Example 5.34 below). Let’s emphasize that the Heine–
Borel Theorem is exclusively about the metric spaces Rd; it does not apply in general.

Example 5.32. (1) Let (X, d) be a discrete metric space. Then for any two points x, y ∈ X ,
either d(x, y) = 0 or d(x, y) = 1. Thus, for any subset E ⊆ X , diam(E) ≤ 1, so E is
bounded. We have also shown that any subset E is closed. However, if E is an infinite
set, it is not compact, cf. Example 5.23(3). So any infinite discrete metric spaces contains
closed and bounded sets that are not compact.

(2) For a less contrived example, consider again B[0, 1], the set of all bounded, real-valued
functions on [0, 1], which is a metric space with respect to the metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Consider the functions

fn(x) =

{
1, x ≥ 1

n

0, x < 1
n

.

All of these functions are in B[0, 1]. We can also compute the function fn − fm; assuming
m > n we have

fm(x)− fn(x) =


0, x ≥ 1

n

1, 1
m
≤ x < 1

n
,

0, x < 1
m

.

This shows that d(fn, fm) = supx |fn(x)−fm(x)| = 1 for any m 6= n! Thus, the sequence
(fn) cannot have a convergent subsequence: no two terms in the sequence are ever closer
to (or farther from) each other than 1.

Here is an important property of compact sets. This is the generalization of the nested intervals
property that we used in the construction of R.

Proposition 5.33. Let K1, K2, K3, . . . be nonempty compact sets in a metric space, and suppose
they are nested: Kn+1 ⊆ Kn for all n. Then

⋂
nKn is a nonempty compact set. If, in addition,

diam(Kn)→ 0 as n→∞, then
⋂
nKn consists of exactly one point.

Proof. Since Kn 6= ∅ for any n, we can choose a point xn ∈ Kn for each n. By the nested
property, xn ∈ K1 for each n. Thus, (xn) is a sequence in the compact set K1, and therefore it
has a convergent subsequence xnk

with a limit x ∈ K1. Now, for any m ∈ N, the tail subsequence
(xnk

)∞k=m also converges to x; but this is a sequence of terms in Knm , which is closed, and so
x ∈ Knm . This holds for every m. Finally, for any n, there is nm > n, and therefore Knm ⊆ Kn;
thus, x ∈ Kn for every n, which shows that x ∈

⋂
nKn. This intersection is therefore nonempty.

It is an intersection of compact sets, therefore it is compact (Exercise 1 on HW9).
For the second claim, let x, y ∈

⋂
nKn. Fix ε > 0; since diam(Kn) → 0, there is some n with

diam(Kn) < ε. Thus, since x, y ∈ Kn, d(x, y) ≤ diam(Kn) < ε. So 0 ≤ d(x, y) < ε for all ε > 0;
it follows that d(x, y) = 0 and so x = y. That is: there is at most one point in the intersection.
As we’ve shown the intersection is nonempty, this proves that it consists of exactly one point, as
claimed. �
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Example 5.34 (Cantor set). The unit interval K0 = [0, 1] is compact. Now remove the “middle
third” and let K1 = [0, 1

3
]∪ [2

3
, 1]; this set is also compact, and K1 ⊂ K0. Now repeat this: remove

the middle third from each of the two intervals inK1, producingK2 = [0, 1
9
]∪ [2

9
, 1
3
]∪ [2

3
, 7
9
]∪ [8

9
, 1].

Again, this set is compact, and K2 ⊂ K1. We can repeat this “delete middle thirds” process
indefinitely. Note a certain self-similarity: K2 has two pieces, each of which looks like K1 shrunk
down by a factor of 1

3
. In fact, we can inductively define

Kn =
1

3
Kn−1 ∪

(
2

3
+

1

2
Kn−1

)
.

All of these sets are finite collections of closed, bounded intervals, so they are all compact, and they
are nested Kn+1 ⊂ Kn. Hence, by Proposition 5.33, the set C =

⋂
nKn is a nonempty compact

set. This set is called the Cantor set.
What can we say about this set? Well, what is the length of the longest interval in it? Note that

Kn consists of 2n intervals, each of length 1
3n

. Since the length of the intersection of two intervals
is≤ the length of either interval, and since C ⊂ Kn for every n, this means C contains no intervals
of length > 1

3n
for any n ∈ N; but 1

3n
→ 0 as n → ∞, and therefore C contains no intervals of

length > 0. This proves that
◦
C = ∅. Indeed, if x were an interior point of C, that would mean

Br(x) ⊆ C for some r > 0; but Br(x) = (x− r, x + r) is an interval of length 2r > 0, which we
know is not contained in C. Thus no point is interior to C. At the same time, C is compact, so it

is closed. Thus C = C, and so ∂C = C \
◦
C = C – the Cantor set is its own boundary.

That also happens for discrete sets: if K consists entirely of isolated points, then K is closed

and
◦
K = ∅, so ∂K = K. But the Cantor set is the opposite of a discrete set: it contains no isolated

points, so C consists entirely of limit points, C ′ = C. To see this, fix x ∈ C; so x ∈ Kn for every
n. Now Kn is a collection of disjoint closed intervals, so there is some interval In ⊂ Kn with
x ∈ In. Either x is in the interior of this interval or it is one of the endpoints; either way, there
is one endpoint xn of In with xn 6= x. Now, from the construction of C, the endpoints of all the
intervals are in C, so xn ∈ C. Also, as diam(In) =

1
3n
→ 0 and x, xn ∈ In, we have d(x, xn)→ 0.

This xn → x, but xn 6= x for any n, and xn ∈ C; this proves that x ∈ C ′. Since x was an arbitrary
element of C, this means C ⊆ C ′, and since C is closed, we have C ′ ⊆ C, so C = C ′.
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6. LIMITS AND CONTINUITY

6.1. Lecture 18: March 3, 2016. We now begin to study functions. We have, of course, been
studying functions (for example sequences, which are functions with domain N); now we will
concentrate on metric properties of functions. So we will set things up in terms of functions
between metric spaces.

Definition 6.1. Let X and Y be metric spaces. Let E ⊆ X , and let x0 ∈ E ′ be a limit point of E.
Let L ∈ Y . Now, for any function f : E → Y , we say f(x) tends to L as x→ x0, or the limit as
x→ x0 of f(x) is L, in symbols

lim
x→x0

f(x) = L

if: given any sequence (xn) in E \ {x0} that converges xn → x0, it follows that the sequence
(f(xn)) in Y converges f(xn)→ L.

This is a more general kind of limit than the limit of a sequence: we are letting the argument
“tend to” a limit point through a set that may be quite different from N. Our definition makes use
of our knowledge of limits of sequences. This is useful, for example, in establishing some of the
basic properties of limits. For example:

Lemma 6.2. Limits are unique: if limx→x0 f(x) = L1 and limx→x0 f(x) = L2, then L1 = L2.

Proof. Since x0 is a limit point, there is a sequence (xn) with xn 6= x0 for any n and xn → x0. By
definition of limx→x0 f(x) = L1, this means that the sequence f(xn) converges to L1; by definition
of limx→x0 f(x) = L2, this means that f(xn) converges to L2. Thus, by uniqueness of limits of
sequences, L1 = L2. �

Remark 6.3. (1) If we had not included in the definition the fact that x0 is a limit point, this ar-
gument would fail. Indeed, if x0 is an isolated point, vacuously it holds that limx→x0 f(x) =
L for all L.

(2) On the other hand, we might try to modify the definition of limit so that this wouldn’t
happen: we could, for example, insist that f(xn)→ L for any sequence xn that converges
to x0, even if it does hit x0 at some times. But this would rule out some of our intuition
about limits, as the following example shows.

Example 6.4. Consider the function f : R→ R given by

f(x) =

{
0, x 6= 0

1, x = 0
.

We know from our calculus intuition that limx→0 f(x) = 0. Indeed, we can verify this from
Definition 6.1: if xn is any sequence in R \ {0}, then f(xn) = 0 for all n, and the constant
sequence 0 does indeed converge to 0.

On the other hand, suppose we had left out the xn 6= x0 clause in Definition 6.1, and insisted
that f(xn) → L for every sequence xn → x0. In this scenario, the function above would have no
limit at 0. Indeed, we could take the sequence xn = 1

n
if n is even and xn = 0 if n is odd. Then

the sequence f(xn) = (0, 1, 0, 1, 0, 1, . . .) has no limit.

This illustrates the fundamental idea of limits: a limit is where a function is going as you ap-
proach the limit point; it is unrelated to the actual value of the function at that point (if it is even
defined).
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We can use our theory of limits of sequences to calculate many limits. For example, if the
range space for the function is the familiar C, we have the following echo of the limit theorems for
C-sequences:

Theorem 6.5 (Limit Theorems). Let f, g : X → C, and let x0 be a limit point inX . If limx→x0 f(x) =
L and limx→x0 g(x) =M , then

lim
x→x0

[f(x) + g(x)] = L+M, and lim
x→x0

[f(x) · g(x)] = L ·M.

Proof. Let (xn) be any sequence in X \{x0} that converges to x0. By assumption, f(xn)→ L and
g(xn)→M . Thus, by the limit theorems for sequences in C, cf. Theorem 2.27, f(xn) + g(xn)→
L+M and f(xn)·g(xn)→ L·M . This is precisely what it means to say that limx→x0 [f(x)+g(x)] =
L+M and limx→x0 [f(x) · g(x)] = L ·M . �

There is an equivalent definition of limit which does not explicitly rely on sequences. This
definition is one of the crowning achievements of 19th Century mathematics. The calculus was
built on an intuitive understanding of limits in the minds of Newton and Liebnitz (and others),
but it wasn’t until Weierstrass came up with this modern definition that analysis of functions was
finally put on rigorous footing.

Theorem 6.6. Let (X, dX) and (Y, dY ) be metric spaces, let E ⊆ X , let f : E → Y be a function,
let x0 ∈ E ′, and let L ∈ Y . Then limx→x0 f(x) = L if and only if the following holds true:

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, x ∈ Bδ(x0) \ {x0} =⇒ f(x) ∈ Bε(L).

I.e.
∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, 0 < dX(x, x0) < δ =⇒ dY (f(x), L) < ε. (6.1)

In words: to say f(x) tends to L as x tends to x0 means that, for any tolerance ε > 0, no matter
how small, there is some (potentially even smaller) tolerance δ > 0 so that, if x is δ-close to x0
(but not equal to x0), then f(x) is ε-close to L.

Proof. First, suppose that (6.1) holds. Let xn ∈ E \ {x0} be a sequence converging to x0. Fix
ε > 0, and let δ > 0 be the corresponding δ. Now, as xn → x0, there is some N ∈ N so that, for
n ≥ N , dX(xn, x0) < δ. It follows from (6.1) that dY (f(xn), L) < ε for all n ≥ N . This proves
that f(xn)→ L. Thus, we have shown that limx→x0 f(x) = L by definition.

Conversely, suppose (6.1) fails to hold. This means that there exists some ε > 0 so that, for all
δ > 0, there is some point xδ ∈ Bδ(x0) \ {x0} such that f(xδ) is not in Bε(L). In particular, do
this with δ = 1

n
: for each n ∈ N, choose some xn ∈ B 1

n
(x0) such that dY (f(xn), L) ≥ ε. On the

one hand, since 0 < dX(xn, x0) <
1
n
→ 0, we have xn → x0 but xn 6= x0. On the other hand,

since dY (f(xn), L) ≥ ε for all n, this means that the sequence f(xn) does not converge to L. By
definition, this means that the statement limx→x0 f(x) = L is false. �

Example 6.7. Let us work directly from the ε–δ definition of (6.1) to show that limx→2 x
2 = 4.

Here the domain and range metric spaces are both R. Fix ε > 0. We want to guarantee that
|x2− 4| < ε. Write this as |x− 2||x+2| < ε. We want to choose δ > 0 and force 0 < |x− 2| < δ,
meaning 2 − δ < x < 2 + δ. So, as long as we assure that δ ≤ 2, this means that 0 ≤ x ≤ 4, in
which case |x− 2||x+ 2| ≤ 6|x− 2|. Thus, it suffices to make sure that 6|x− 2| < ε, which is to
say |x− 2| < ε/6. This tells us how to choose δ.
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So, starting fresh: Let ε > 0. Choose δ = ε/6 if this is < 2, or δ = 2 otherwise. Then, so long
as 0 < |x− 2| < δ, we have 0 ≤ 2− δ < x < 2 + δ ≤ 4, and so

|x2 − 4| = |x+ 2||x− 2| ≤ 6|x− 2| < 6 · ε
6
= ε.

Thus, by (6.1), we have proven that limx→2 x
2 = 4.

On the other hand, if we refer to Theorem 6.5, we see that this follows from the fact that
limx→2 x = 2 (which is easy to verify by either definition of limit) and therefore limx→2 x · x =
2 · 2 = 4. Similar considerations show that limx→x0 f(x) = f(x0) holds for any point x0 ∈ R (or
C) if f is a polynomial, for example.
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6.2. Lecture 19: March 8, 2016. In Example 6.7, what we showed is that the function f(x) = x2

satisfies limx→2 f(x) = f(2). We should recognize this as saying that f is continuous at 2.

Definition 6.8. Let X, Y be metric spaces, E ⊆ X , and f : E → Y . Let x0 ∈ E ′ be a limit point.
Say that f is continuous at x0 if

lim
x→x0

f(x) = f(x0).

Note that this only defines continuity at limit points: we have left undefined what it would mean for
f to be continuous at an isolated point of its domain of definition. Indeed, what should we mean
by saying that a function is continuous on the set N? This is, to some degree, up to debate. The
standard answer is to say this is a vacuous condition: every function is continuous on a discrete set.

Now, consider again Example 6.7. To use the definition of limit, we assumed that d(x, x0) =
|x − 2| > 0 (as limits are about where you’re going, not where you get to). However, observe
that this requirement was never used in the proof. That is generically true in limits of continuous
functions, as the next result demonstrates.

Proposition 6.9. Let X, Y be metric spaces and f : X → Y . Let x0 ∈ X ′. Then f is con-
tinuous at x0 if and only if for every sequence (xn) in X with limn→∞ xn = x0, it follows that
limn→∞ f(xn) = f(x0). Similarly, f is continuous at x0 if and only if

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

That is: we need not assume that the sequence (xn) never hits x0; and we need not remove x0 from
the δ-ball in the ε–δ definition of the limit. In fact, with these assumption no longer required, there
is no reason to assume x0 ∈ X ′; this definition makes perfect sense for isolated points as well,
so we take it more generally as the definition of continuity. From this more general definition, it
follows that any function is continuous at an isolated point of its domain (as you should work out).

Proof. Suppose that xn → x0 implies f(xn) → f(x0) in general; then in particular this holds if
we also assume that xn 6= x0 for any n, which means that limx→x0 f(x) = f(x0) by definition.
Thus f is continuous at x0. Conversely (in contrapositive form), suppose there is some sequence
xn → x0 such that f(xn) 6→ f(x0). This means there is some ε > 0 so that d(f(xn), f(x0)) ≥ ε
for infinitely many n. So let n1, n2, n3, . . . be these infinitely many indices where, for each k,
d(f(xnk

), f(x0)) ≥ ε; then (xnk
)∞k=1 is a sequence in X that converges to x0 (as a subsequence of

a sequence xn which converge to x0), but f(xnk
) 6→ f(x0) and, moreover, since f(xnk

) 6= f(x0)
for any k, it follows that xnk

6= x0 for any k. This shows, from the definition, that it is false that
limx→x0 f(x) = f(x0), completing the proof of the first statement.

The proof of the equivalence of the ε–δ statement is similar and left to the reader. �

The point is: when the putative limit is the value of the function at the limit point, there is no
reason to exclude the limit point from consideration: where you are going and where you get to
are the same in this case!

Example 6.10. Let (X, d) be a metric space, and let y ∈ X . Then the function f(x) = d(x, y) is
continuous at every point in X . Indeed, fix x ∈ X , and let (xn) be a sequence in X with xn → x.
Then

d(xn, y) ≤ d(xn, x) + d(x, y)

and so d(xn, y)− d(x, y) ≤ d(xn, x). But also

d(x, y) ≤ d(x, xn) + d(xn, y)
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and so d(x, y)− d(xn, y) ≤ d(x, xn) = d(xn, x). Together, these give

0 ≤ |d(xn, y)− d(x, y)| ≤ d(xn, x).

Since xn → x, d(xn, x)→ 0 by definition, and so by the squeeze theorem |d(xn, y)−d(x, y)| → 0,
meaning that f(xn) = d(xn, y)→ d(x, y) = f(x). This shows that f is continuous at x0.

We would be remiss if we did not include some examples of discontinuous functions.

Example 6.11. Let f : R→ R be the function

f(x) =

{
0, x 6∈ Q
1, x ∈ Q

.

Then f is not continuous at any point. Indeed, fix x ∈ R. For any δ > 0, the ball Bδ(x) =
(x − δ, x + δ) contains both rational and irrational numbers. So, if x ∈ Q, choose some y 6∈ Q
in the ball, and we have |f(x) − f(y)| = |1 − 0| = 1; if x /∈ Q, choose some y ∈ Q in the ball,
and we have |f(x) − f(y)| = |0 − 1| = 1. In any case, we see that for any δ > 0 there are points
y ∈ Bδ(x) so that |f(y)− f(x)| = 1, so we can never force f(y) to be in, for example, B 1

2
(f(x)).

This shows f is discontinuous at x, for any x.

Example 6.12. Consider the following function f : [0, 1] → [0, 1], sometimes called the popcorn
function:

f(x) =

{
0, x /∈ Q
1
q
, x = p

q
in lowest terms

.

The graph of this function looks like this:

In fact, f is discontinuous at all rational points, but it is actually continuous at all irrational
points. Indeed, let x = p

q
be rational, and let xn = x +

√
2
n

for all n large enough that this
is in [0, 1]; then xn → x. Then xn /∈ Q meaning that f(xn) = 0; but f(x) = 1

q
6= 0, so

f(xn) 6→ f(x). On the other hand, let x /∈ Q; we want to show that f is continuous at x, meaning
limy→x f(y) = f(x) = 0. Fix ε > 0, and choose some integer n ∈ N with 1

n
< ε. As f(x) ≥ 0 for

all x, it suffices to show that f(y) < 1
n

for all y sufficiently close to x. Well, if y is a point in [0, 1]
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where f(y) ≥ 1
n

, then y ∈ Q and, when written in lowest terms, y = p
q

with q ≤ n. There are only
finitely many such rational numbers, and x (which is irrational) is not one of them. Thus, we can
define δ = min{|x− y| : y = p

q
in lowest terms, with q ≤ n}; then for |y − x| < δ, it follows that

f(y) < 1
n
< ε, proving that limy→x f(y) = 0, and so f is continuous at x.

In Examples 6.11 and 6.12, we looked at the set of points where a function is continuous. That
is: if f : X → Y is a function and E ⊆ X , say that f is continuous on E if, for each x ∈ E, f is
continuous at x.

Example 6.13. Let X = (0, 1), and let f : (0, 1) → R be the function f(x) = 1
x
. Then f is

continuous on its whole domain: for every x ∈ (0, 1), f is continuous at x. We could see this
by applying the limit theorems; but let’s use this as an opportunity to practice our ε–δ proofs. Fix
ε > 0. We want to guarantee that, when y is close to x, we have | 1

x
− 1

y
| < ε. That is

1

x
− ε < 1

y
<

1

x
+ ε.

We only need this to hold for all sufficiently small ε > 0, so it’s fine to assume ε is small enough
that 1

x
− ε > 0. Thus we can reciprocate to get

1

1/x− ε
> y >

1

1/x+ ε
.

Now, subtract x from both sides and we have
−εx

1/x+ ε
=

1

1/x+ ε
− x < y − x < 1

1/x− ε
− x =

εx

1/x− ε
.

This shows us how to choose δ: we define

δ = min

{
εx

1/x+ ε
,

εx

1/x− ε

}
=

εx

1/x+ ε
. (6.2)

Then, reversing the above steps, we have that for any y ∈ Bδ(x), we have |y−x| < εx
1/x+ε

< εx
1/x−ε ,

and this gives in particular the above two inequalities that can be reversed to say | 1
x
− 1

y
| < ε. So

we have proved that there is a δ > 0 for any given ε > 0 (as long as ε < 1
x
; otherwise, if ε ≥ 1

x
≥ 1,

we could take δ to be something silly and big), proving continuity at x.
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6.3. Lecture 20: March 10, 2016. In Example 6.13, we showed explicitly that the function
f(x) = 1

x
is continuous at every point x ∈ (0, 1). But note: the δ we had to choose for each

ε > 0 in (6.2) depends on x as well as ε. This will generically be true. Look at the ε–δ definition
of continuity: a function f is continuous on a set E if

∀x ∈ E ∀ε > 0 ∃δ > 0 s.t. ∀y ∈ E, dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε. (6.3)

Having chosen a x and ε > 0, we must then find a suitable δ = δ(x, ε). In Example 6.13, not only
does δ depend on x, but it does so in a bad way: as x→ 0, for given ε > 0, the δ → 0 as well (quite
fast, in fact: the numerator is shrinking and the denominator is growing). The closer x is to 0, the
smaller δ must be to get the same control over the function. So, while the function is continuous,
there is a lack of uniformity in how continuous it is. (Note: we have shown this δ works; one might
ask whether a larger, possibly more uniform δ could work just as well. The answer is no: it is not
hard to show in this example that the δ in (6.2) is the largest possible δ for the given x and ε; it is
called the modulus of continuity of the function.)

Definition 6.14. Let X, Y be metric spaces, E ⊆ X , and f : E → Y . Call f uniformly continu-
ous on E if

∀ε > 0 ∃δ > 0 s.t. ∀x, y ∈ E, dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε. (6.4)

Compare (6.4) with (6.3). The difference appears subtle: just the placement of the quantifier ∀x.
This makes a world of difference: (6.4) says that, not only is f continuous at each point x, but one
can choose a δ = δ(ε) that is uniform: it need not depend on x. This outlaws behavior like the
function f(x) = 1

x
near 0.

Example 6.15. Let f(x) = 2x on R. Then |f(x) − f(y)| = 2|x − y|, so for any ε > 0, we may
let δ = ε/2; then if |x − y| < δ = ε/2, it follows that |f(x) − f(y)| = 2|x − y| < 2δ = ε. This
shows that f is continuous at all points; moreover, we may choose δ = δ(ε) = ε/2 uniformly over
all x, y ∈ R. Thus, f is uniformly continuous on R.

Example 6.16. Let f(x) = x2 on [0,∞). We want to make |x2 − y2| small. We have |x2 − y2| =
(x+y)|x−y|. Thus, in order for |x2−y2| < ε, we must have |x−y| < ε

x+y
(these are equivalent).

But this shows that f is not uniformly continuous. Indeed, in order for |x − y| < δ to imply that
|x− y| < ε

x+y
, we must have δ ≤ ε

x+y
; and there is no positive number δ = δ(ε) that is ≤ ε

x+y
for

all x, y > 0.

In Examples 6.13 and 6.16, we saw continuous functions on the intervals (0, 1) and [0,∞) that
are not uniformly continuous. In both cases, the non-uniformity was manifest by uncontrolled
growth near the “edge”. As it turns out, if the domain of the continuous function is compact, this
cannot happen. That will be our final big theorem of this class.

Theorem 6.17. Let X, Y be metric spaces, K ⊆ X compact, and f : K → Y a continuous
function. Then f is uniformly continuous.

Proof. Suppose, for a contradiction, that f is not uniformly continuous on K. Negating Definition
6.14, this means

∃ε > 0 ∀δ > 0 ∃x, y ∈ K s.t. dX(x, y) < δ, but dY (f(x), f(y)) ≥ ε.

That is: there is a positive number ε > 0 so that, for every positive number δ > 0, we can find
two points x and y that are within distance δ of each other, but such that f(x) and f(y) are at
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least ε apart. So, let’s do this with δ = 1
n

for any given positive integer: we can find xn, yn with
dX(xn, yn) <

1
n

, and yet dY (f(xn), f(yn)) ≥ ε.
Now, we use the compactness of the domainK: the sequence (xn) has a convergent subsequence

(xnk
) with a limit x ∈ K. Consider, now, the corresponding subsequence ynk

; this has a convergent
subsequence ynk`

with a limit y ∈ K. Now, xnk`
is a subsequence of xnk

which converges to x,
hence xnk`

→ x as well. But we also have

dX(xnk`
, ynk`

) <
1

nk`
<

1

`
→ 0.

Hence, it follows from the triangle inequality that x = y. On the other hand, by their very con-
struction, the points xnk`

and ynk`
all satisfy

dY (f(xnk`
), f(ynk`

)) ≥ ε. (6.5)

But xnk`
→ x and so, since f is continuous, f(xnk`

) → f(x); similarly, ynk`
→ y = x, and so by

continuity f(ynk`
)→ f(y) = f(x). Thus, by Problem 4 on Exam 2,

dY (f(xnk`
), f(ynk`

))→ dY (f(x), f(x)) = 0.

This contradicts (6.5). Thus, we have proven that f is, in fact, uniformly continuous. �

Theorem 6.17 is typically the best way to prove uniform continuity of a function. For example:
any polynomial is continuous on R, but, as we saw in Example 6.16, they need not be uniformly
continuous. By Theorem 6.17, polynomial functions on compact intervals [a, b] are automatically
uniformly continuous. What’s more: once you know a function is uniformly continuous on a set
K, it is then automatically uniformly continuous on any subset E ⊆ K (the same δ = δ(ε) that
works on all of K also works on all of E ⊆ K). So, for example, polynomials are uniformly
continuous on all bounded intervals (a, b), (a, b], etc. Similarly, the function f(x) = 1

x
of Example

6.13 is uniformly continuous on [α, 1] for any α > 0. We could see this directly from (6.2), since
the modulus of continuity

δ = δ(x, ε) =
εx

1/x+ ε

decreases as x decreases; it follows that the uniform δ = δ(α, ε) will work for all x ≥ α. However,
this gets smaller as α shrinks, and if we include all of (0, 1] in the domain, there is no uniform δ.
For an alternate proof of the non-uniformity in this example, see HW10.4.

Here is another very useful property of continuous functions on compact sets.

Proposition 6.18. LetX, Y be metric spaces,K ⊆ X compact, and f : K → Y continuous (hence
uniformly continuous). Then the image f(K) ⊆ Y is compact.

To be clear: f(K) denotes the image of f on K:

f(K) = {f(x) ∈ Y : x ∈ K} = {y ∈ Y : ∃x ∈ K s.t. y = f(x)}.

Proof. Let (yn) be any sequence in f(K). By definition of f(K), for each yn, there exists some
(or potentially many) xn ∈ K such that yn = f(xn). Since K is compact, it then follows that the
sequence (xn) has a convergent subsequence (xnk

) with limit x ∈ K. Since f is continuous, it
then follows that f(xnk

)→ f(x) as k →∞. Since x ∈ K, f(x) ∈ f(K). Thus, the subsequence
ynk

= f(xnk
) of yn = f(xn) converges in K. We have thus shown that every sequence in f(K)

has a convergent subsequence with limit in f(K); that is, f(K) is compact. �
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Corollary 6.19 (Minimax Theorem). LetK be a nonempty compact metric space, and f : K → R.
Then f attains its maximum and minimum values on K.

Corollary 6.19 is a standard result stated in calculus classes, usually in the special case that
K = [a, b] is a compact interval in R.

Proof. By Proposition 6.18, f(K) is compact. In particular, it is closed and bounded. It is also
nonempty since K is nonempty (so f(K) contains f(x) for any x ∈ K). Thus, by the least upper
bound property of R, the set f(K) ⊂ R has a supremum M and and infimum m. Now, for any
n ∈ N, M − 1

n
< M , which means that M − 1

n
is not an upper bound for f(K); thus, there is some

yn ∈ f(K) with M − 1
n
< yn ≤ M Hence, by the Squeeze Theorem, yn → M . By definition

of f(K), there exists some xn ∈ K with yn = f(xn). Since K is compact, there is a convergent
subsequence (xnk

) of (xn), with limit x ∈ K. Since f is continuous, ynk
= f(xnk

) → f(x).
But ynk

is a subsequence of yn which converges to M ; thus f(x) = M . We have therefore
found a x ∈ K for which f(x) = M = sup f(K). That is: sup f(K) = max f(K), and the
maximum is achieved at the point x. A very similar argument shows there is a point x′ with
f(x′) = m = inf f(K), completing the proof. �
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