Today: $\{2.2-2.3$: Matrix Inverse
Next: $\quad \$ 4.1$:Vector Spaces \& Subspaces
Today is the last day to drop a curse without a ' w '
Homework:
MATLAB Assignment \#3: Due Feb 9 (next Friday) My MathLab Homework \#4: Due Feb

Back to gradeschool algebra:
Solve $a x=b$ for x.

Can we solve $A \underline{x}=\underline{b}$ the same way?

$$
\text { Eg. }\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{b} \quad N_{0}+e:\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 2
\end{array}\right]
$$

What went wrong?
System $\underset{\substack{\uparrow \\ m \times n}}{A} \underline{x}=\underline{b} \quad \underset{\substack{\uparrow \\ n \times m}}{C}$ sit. $C A=I_{n}$
So $\begin{aligned} & A \underline{x}=\underline{b} \Rightarrow c \mid c \\ & \nVdash \\ & \underline{x}\end{aligned}$
New, Suppose $A C=I_{m}$.

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2} ;\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]=
$$

Definition: Let A be an $n \times n$ matrix. It is called invertible if there is a matrix C satisfying

Then we denote
Solving Systems: $\quad A \underline{x}=\underline{b}$

* Existence:
* Uniqueness:

Invertible matrices must be square. $A A^{-1}=I$: . If $A \underline{x}=\underline{b}$ is solvable for any \underline{b}
$A^{-1} A=I:$ * If $A \underline{x}=\underline{b}$ has a unique solution whenever it is consistent,

$$
\text { Eg. }\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & -1 / 2 \\
-1 & 1 / 2
\end{array}\right]=\quad\left[\begin{array}{cc}
2 & -1 / 2 \\
-1 & 1 / 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right]=
$$

Eg. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Relation to Linear Transformations
Matrix $A \leadsto$ Linear transformation $T(\underline{x})=A \underline{x}$

* $A \underline{x}=\underline{b}$ solvable for all $\underline{b} \Leftrightarrow T$ is onto
* $A \underline{x}=\underline{b}$ has at most one solution for each $\underline{b} \Leftrightarrow T$ is one-to-one
$A^{4} A=I \leadsto T$ ante \leadsto every now is pivotal
$A A^{-1}=I \leadsto T$ is onsto-ane \leadsto every column is pivotal.
for a square matrix, every now is protal of wry column is proetal!

Theorem A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one if and only if it is onto.
$\left.\begin{array}{l}\text { For the } \\ \text { same } \\ \text { reason }\end{array}\right\} \begin{gathered}\text { An } n \times n \text { matrix } A \text { is invertible } \\ \text { iff } A \text { has } n \text { pivot positions }\end{gathered}$
(iff there exists $n \times n C$ with $C A=I$
inf there exists $n \times n \quad D$ with $A D=I$
in both of these cases, $C=D=A^{-1}$:

$$
C=C I=C(A D)=(C A) D=I D=D .
$$

Moral: we only need to find a "one-sided" inverse.

Not all square matrices are invertible! (Must have maximal pivots.)
Q: How de we find the inverse, if it exists?

To find the inverse: Take the (multi-) augmented matrix [A:I] and perform row operations until $A \rightarrow \operatorname{rref}(A)$. If $\operatorname{rref}(A)=I$, then the right-hand-side $B I \leadsto A^{-1}$.

$$
\text { Eg. }\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}
$$

Eg. General 2×2 matrix

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & a & 1
\end{array}\right]
$$

A

Theorem: A is invertible iff and in this case

Eg. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}$
Eg. $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$

Recap: A matrix A is invertible if there is a matrix C with $C A=I=A C$.
We denote $C=A^{-1}$ in this case.

* Only square matrices can be invertible
* A is invertible if and only if $\operatorname{rref}(A)=I$
is. every now of A is pivetal
is. every column of A is pivotal
is. the columns of A are linearly independent and span \mathbb{R}^{n}.
* To find A^{-1}, we use now reduction:

$$
\left[\begin{array}{l:l}
A & I
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{l:l}
I & A^{-1}
\end{array}\right]
$$

