Today: \{ 2.2-2.3: Inverse Matrix
\& $\oint 4.1$: Vector Spaces \& Subspaces
Next: $\{4.2$: Null Spaces \& Column Spaces
Homework:
MATLAB Assignment \#3: Due Feb 9 (Friday) My MathLab Homework \#4: Due Feb 12 (Monday)

Recap: A matrix A is invertible if there is a matrix C with $C A=I=A C$.
We denote $C=A^{-1}$ in this case.

* Only square matrices can be invertible.
* A is invertible if and only if $\operatorname{rref}(A)=I$
is. every now of A is pivetal
is. every column of A is pivotal
is. the columns of A are linearly independent and span \mathbb{R}^{n}.
* To find A^{-1}, we use now reduction:

$$
[A: I] \xrightarrow{\operatorname{rref}}\left[I: A^{-1}\right]
$$

Eg. General 2×2 matrix

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & a & 1
\end{array}\right]
$$

A

Theorem: A is invertible iff and in this case

Eg. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Eg. $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$

Properties of inverses:
$\left(A^{-1}\right)^{-1}$
$(A B)^{-1}$

$$
\left(A^{\top}\right)^{-1}
$$

§4.1: Vector Spaces
A "vector space" is a set of objects (which we call vectors) on which two operations are defined:
addition: $u, v \longmapsto u+v$
scalar multiplication: $\lambda, v \longmapsto \lambda v$ for $\lambda \in \mathbb{R}$

Eg. \mathbb{R}^{n}

More precisely: "V is a vector space" means V is a set, with a distinguished element called $\underline{0}$, and two operations defined on it, $+b$., which together satisfy the zillion properties on P. 192 in the textbook.

Eg. \mathbb{P}
E.9. $\mathbb{P}_{=3}$

Eg. $\mathbb{P}_{3}\left(\right.$ aka $\left.\mathbb{P}_{\leq 3}\right)$

$$
\text { Eg. }\left\{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]: x, y \in \mathbb{R}\right\}
$$

$$
\text { Eg. }\left\{\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]: x, y \in \mathbb{R}\right\}
$$

Definition: If V is a vector space, and $W \subseteq V$ is nonempty, W a subspace of V if W is closed under addition and scalar multiplication (in V).
$E g . W=\left\{\left\{\begin{array}{l}x \\ y \\ 0\end{array}\right): x, y \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.

Egg. $S^{1} \subset \mathbb{R}^{2}$

The example $\left\{\left(\begin{array}{l}x \\ y \\ 0\end{array}\right): x, y \in \mathbb{R}\right\}$ can be re-expressed as

$$
\left\{x\left[\begin{array}{l}
11 \\
0 \\
0
\end{array}\right)^{11}+y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]: x, y \in-\mathbb{R}\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

More general example: Let V be a vector space, and consider tho vectors u and v in V. Then is a subspace of V.

