Today: $\$ 4.1$: Vector Spaces \& Subspaces \& $\{4.2$: Null Spaces \& Column Spaces
Next: \oint 4.3: Linear Independent Sets; Bases
Homework:
MATLAB Assignment \#3: Due Feb 9 (Friday) My MathLab Homework \#4: Due Feb 12 (Monday)

A vector space is a set V
together with a special element 0 and equipped with two operations

+ \& scalar mut.
satisfying all the usual rules.
Eg. $M_{2 \times 3}=\{2 \times 3$ matrices $\}$ is a vector space.

Eg. The line $L=\left\{t\left[\begin{array}{l}1 \\ 2\end{array}\right]: t \in \mathbb{R}\right\}$
is a vector space

Definition: If V is a vector space, and $W \subseteq V$ is nonempty, W a subspace of V if W is closed under addition and scalar multiplication (in V).
That is to say: W is closed under addition (in V)
\& W is closed under scalar multiplication (in V)
\& $\underline{O}($ the Zero vector in $V)$ is in W
Eg. $\{\underline{O}\} \leftarrow$ the trivial subspace.

Eg. $W=\left\{\left\{\left.\begin{array}{l}x \\ y \\ 0\end{array} \right\rvert\,: x, y \in \mathbb{R}\right\}\right.$ is a subspace of \mathbb{R}^{3}.
Eg. $A=\left\{\left\{\left.\begin{array}{l}x \\ y \\ 1\end{array} \right\rvert\,: x, y \in \mathbb{R}\right\}\right.$
Eg. The set $\left\{\left[\begin{array}{lll}a & b & 0 \\ c & 0 & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \subseteq M_{2 \times 3}$

Egg. $S^{1} \subset \mathbb{R}^{2}$

Eg. Let V be any vector space, and let $\underline{v}_{1}, \ldots, \underline{v}_{\infty}$ be vectors in V. Then $\operatorname{span}\left\{\underline{v}, \ldots, \underline{v}_{n}\right\}$ is a subspace of V.

$$
E_{g .}\left\{\left[\begin{array}{c}
a-2 b \\
2 a+b \\
b
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

§4.2: Null Space \& Column Space Given any matrix $A \in M_{m \times n}$ there are two important Subspaces:

The null space of $A, \operatorname{Nul}(A)$
The column space of $A, \operatorname{Col}(A)$

We will see shortly that they are subspaces - but of what?

Theorem: For $A \in M_{m \times n}, N u l(A)$ is a subspace of \mathbb{R}^{n} $\& C l(A)$ is a subspace of \mathbb{R}^{m}

$$
\begin{aligned}
& \text { Eg. } \quad A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \\
& \operatorname{aref}(A)=\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

E.g. $A=\left[\begin{array}{cccc}2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6\end{array}\right] \quad \underline{u}=\left[\begin{array}{c}3 \\ -2 \\ -1 \\ 0\end{array}\right] \quad \underline{v}=\left[\begin{array}{c}3 \\ -1 \\ 3\end{array}\right]$

Q1: is $\underline{u} \in \operatorname{Nul}(A)$?

Q2: is $v \in G \mid(A)$?

