Today: $\{4.2$ : Null Space \& Glumn Space \& $\oint 4.3$ : Linearly Independence \& Bases
Next: $\{4.5-4.6$ : Dimension \& Rank

Homework:
MATLAB Assignment \#3: Due TONIGHT. My MathLab Homework \#4: Due Monday (Feb 12)

$$
\begin{array}{ll}
\text { E.g. } A & =\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \\
\operatorname{wef}(A) & =\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

Is $\underline{u} \in \operatorname{Nul}(A) ?$

Is $v \in G I(A)$ ?

Question: Is the solution set $\left\{\underline{x} \in \mathbb{R}^{n}: A \underline{x}=\underline{b}\right\}=W$ a subspace, if $\underline{b} \neq \underline{Q}$ ?
Answer:
Is $e \in W$ ?
Is w closed under scalar multiplication?

Is $W$ closed under addition?

S4.3 Remember linear dependence:
Vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{n}$ in some vector space $V$ are linearly dependent if

$$
\Leftrightarrow
$$

The vectors are linearly independent if they are not linearly dependent.

$$
\Leftrightarrow
$$

Eg. Polynomials $(x+1)^{2}, x^{2}, x+\frac{1}{2}$ :

Definition: Let $V$ be a vector space, and let $H \subseteq V$ be a subspace.
A collection $\left\{\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{\alpha}\right\}$ of vectors in $H$ is called a basis for $H$ if:

Eg. The "standard basis vectors" $\underline{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ \vdots\end{array}\right), e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \ldots, e_{n}=\left[\begin{array}{l}0 \\ \vdots \\ 1 \\ 1\end{array}\right]$ are a basis for $\mathbb{R}^{n}$.

Eg. Is $\left\{\left(\begin{array}{c}3 \\ 0 \\ -6\end{array}\right),\left(\begin{array}{c}-4 \\ 1 \\ 7\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 5\end{array}\right]\right\}$ a basis for $\mathbb{R}^{3}$ ?

Theorem: Any basis of $\mathbb{R}^{n}$ consists of exactly $n$ column vectors. The set $\left\{\underline{v}_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis ff the matrix $\left[\begin{array}{llll}\underline{v}_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ is invertible.

Eg. Let $W \subseteq \mathbb{R}^{3}$ be the set of all vectors of the form $\left[\begin{array}{c}a+b \\ a-b \\ 2 a\end{array}\right]$ Then $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\right\}$ is a basis for W.

$$
\begin{aligned}
\text { What about } & \left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)\right\} \text { ? } \\
& \left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} ?
\end{aligned}
$$

Theorem: Let $\left\{\underline{v_{1}}, \ldots, \underline{v}_{n}\right\}$ be vectors, and let $H=\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$.
If the vectors are linearly dependent, then there is at least one vector $v_{k}$ such that

$$
H=\operatorname{span}\left\{\underline{V}_{1}, \ldots, \underline{V}_{k-1}, v_{k+1}, \ldots, \underline{V}_{n}\right\}
$$

Ie. $H$ is spanned by the vectors without $V_{k}$.

Corollary: If $H=\operatorname{span}\left\{v_{1}, \ldots, \underline{v}_{n}\right\}$, then some collection of these vectors is a basis for $H$.

$$
\begin{aligned}
& E_{\text {g. }} . H=\text { span }\left\{\left[\begin{array}{l}
-3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
-2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right],\left[\begin{array}{c}
-7 \\
-1 \\
-4
\end{array}\right]\right\} \\
& {\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \xrightarrow{\text { ruff }}\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

The column space Coll $(A)$ of a matrix $A$ is by definition) spanned by the columns of $A$.
But these may in general bo linearly dependent: The non-pivotal columns are linear Combinations of the pivotal columns; but the pivotal columns are linearly independent.
$\Rightarrow$ Theorem: The pivotal columns of A form a basis for $\operatorname{Col}(A)$.

