Today: $\oint 4.2-4.3:$ Bases of $\operatorname{Cl}(A), \operatorname{Nul}(A)$ \& \{ 4.5-4.6: Dimension \& Rank
Next: $\{4.484 .7:$ Change of Basis

Homework:
My MathLab Homework \# 4: Due Tuesday by 11:59 pm My MathLab Homework \#5: Due Feb 20 by 11.59 pm

A basis of a subspace H is a collection of vectors

$$
\left\{\underline{v}_{1}, v_{2}, \ldots, \underline{v}_{d}\right\} \subset H
$$

that (1) spans H, and
(2) is linearly independent.

Subspaces are frequently presented as the span of some collection of vectors; but those vectors may not be independent. How do we find a basis?

$$
H=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

Corollary: If $H=\operatorname{span}\left\{v_{1}, \ldots, \underline{v}_{n}\right\}$, then some collection of these vectors is a basis for H.

$$
\begin{aligned}
& \text { Eg. } H=\operatorname{span}\left\{\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
-2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
8
\end{array}\right],\left[\begin{array}{c}
-7 \\
-1 \\
-4
\end{array}\right]\right\} \\
& A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \xrightarrow{\text { ruff }}\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Theorem: The pivotal columns of A form a basis for $\operatorname{Col}(A)$. (The coefficients expressing the non-pivotal columns in terms of this basis can be read off of $\operatorname{rref}(A)$.)
Eg. $\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -1 & -1 \\ 2 & 1 & -1\end{array}\right]$
Caution: The pivotal columns of A, not $\operatorname{rref}(A)$, form a basis for $C \mid(A)$. Typically

$$
G l(A) \neq \operatorname{Cl}(\operatorname{rref}(A))
$$

How about $\operatorname{Nul}(A)$? How do I find a basis?

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \xrightarrow{\operatorname{rrsf}}\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem: This \uparrow procedure for identifying $\operatorname{Nul}(A)$ always produces a basis for it.

A given subspace always has zillions of bases. But there is one thing in common among all bases.
Theorem: Any two bases of a vector space have the same number of vectors.

Pf.

Definitions: If V is a vector space, its dimension is the number of vectors in any basis.

$$
E g . V=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right]\right\}
$$

We saw that the matrix $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 0 & -1 & -1 \\ 2 & 1 & -1\end{array}\right]$ has 2 pivotal columns. $V=G l(A)$, so

$$
\begin{aligned}
& \qquad \operatorname{dim}(V)= \\
& \text { Egg. } \mathbb{P}_{3}=\{\text { polynomials of degree } \leqslant 3\} \\
& \text { Egg. } \mathbb{P}=\{\text { polynomials }\}
\end{aligned}
$$

Theorem: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent, it can be extended to form a basis:

$$
\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}, \underline{u}_{1}, \ldots, \underline{u}_{p}\right\}
$$

If $\left\{w_{1}, \ldots, w_{h}\right\}$ is a spanning set, it can be reduced to form a bask.

Corollary: If H is a subspace of V, then

$$
\operatorname{dim}(H) \leqslant \operatorname{dim}(V)
$$

Definition: Given a matrix A,

$$
\begin{aligned}
& \operatorname{rank}(A)=\operatorname{dim}(G \mid(A)) \\
& \operatorname{nullity}(A)=\operatorname{dims}(\operatorname{Nul}(A)) \\
& A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \xrightarrow{\operatorname{rrrff}}\left[\begin{array}{ccccc}
1 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Rank Theorem: If A is an $m \times n$ matrix,

$$
\begin{aligned}
\operatorname{rank}(A)+\text { nullity }(A) & =n \\
& =\# \text { clumns of } A)
\end{aligned}
$$

