Today: $\{4.6$ Rank \& $\{4.4$ Coordinates
Next: $\{3.1-3.2:$ Determinants
Homework:
My MathLab Homework \#5: Due Tuesday MATLAB Assignment \#4: Due February 23 Midterm \#2: 2 weeks from tonight.

The dimension of a vector space V is the number of vectors in any basis. (Makes sense, since all bases have the same number of vectors.)

$$
\text { Egg. } V=\left\{\left|\begin{array}{c}
a+b \\
a-b \\
2 a
\end{array}\right|: a, b \in \mathbb{R}\right\}
$$

Definition: Given a matrix A,

$$
\begin{array}{r}
\operatorname{rank}(A):=\operatorname{dim}(G \mid(A)) \\
\operatorname{nullity}(A):=\operatorname{dimo}(\operatorname{Nul}(A)) . \\
A=\left[\begin{array}{ccccc}
1 & -3 & 6 & 0 \\
5 & 0 & 0 & 4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 5
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{rref}(A)
\end{array}
$$

Theorem: The pivotal columns of A form a basis for $G \mid(A)$ The noh-pivotal columns of A correspond to a basis for $\operatorname{Nul}(A)$.

$$
\begin{aligned}
& \therefore \operatorname{rank}(A)= \\
& \& \operatorname{nullity}(A)= \\
& \therefore \operatorname{rank}(A)+\operatorname{nullity}(A)=
\end{aligned}
$$

One more important subspace:
Definition: The row space of $A, \operatorname{Row}(A)$, is the span of the rows of A.
E.g. $A=\left[\begin{array}{ccccc}1 & 1 & 0 & -1 & 2 \\ 3 & 3 & 0 & -3 & 6 \\ 1 & 2 & 3 & 0 & 6\end{array}\right]$

$$
\operatorname{Row}(A)=\operatorname{span}\left\{\left[\begin{array}{lllll}
1 & 0 & -1 & 2
\end{array}\right],\left[\begin{array}{llll}
3 & 3 & 0 & -3
\end{array}\right],\left[\begin{array}{llll}
1 & 2 & 3 & 0
\end{array}\right]\right\}
$$

Theorem: $\operatorname{Raw}(A) \operatorname{Row}(\operatorname{rref}(A))$

$$
\operatorname{dim}(\operatorname{Row}(A))
$$

§4.4 What's so great about a basis, any way?

Theorem: If $B=\left\{\underline{b}, \ldots, b_{0}\right\}$ is a basis for V, then each vector $\underline{v} \in V$ has a unique expansion

$$
\underline{v}=x_{1} \underline{b}_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n}
$$

for some unique scalars $x_{1}, \ldots, x_{n} \in \mathbb{R}$.

This means, of V has a basis $B=\left\{\underline{b}_{1}, \ldots, b_{n}\right\}$ (se $\operatorname{dim}(V)=w$) then we can identify V with \mathbb{R}^{n} by identifying each vector \underline{v} with its B-coordinate vector

$$
v=x_{1} b_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} \leadsto[\underline{v}]_{B}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

Eg. If $\underline{v}=\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2}$, then its coordinate vector with respect to the standard basis $\mathcal{E}=\left\{\begin{array}{l}\underline{e}, e_{2} \\ e_{2}\end{array}\right\}$ is just $[v]_{E}=\left[\begin{array}{l}a \\ b\end{array}\right]$. But what if we use the basis $B=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array},\binom{1}{-1}\right\}\right.$?

Eg. $P_{2}=\{$ polynomials of degree $\leqslant 2\}$
"Standard" basis $B=\left\{1, x, x^{2}\right\}$
Then the polynomial $p=(x-1)^{2}=$

Theorem: If $B=\left\{b_{1}, b_{2}, \ldots, \underline{b}_{n}\right\}$ is a basis for V, then the function $T: V \rightarrow \mathbb{R}^{n}: T(\underline{v})=[\underline{v}]_{M}$ is a one-te-one linear transformation from V onto \mathbb{R}^{n}.

Such a linear transformation is called an

Egg. $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right] \longrightarrow\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\left\{\left\{\begin{array}{l}\text { basis } \\ \text { for } \\ \operatorname{Col}(A) .\end{array}\right.\right.$

The point of isomorphisms is: they preserve all linear properties.
Theorem: Let $\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}=B$ be a basis for V.
Then $*\left\{\underline{v}_{1}, \ldots, v_{n}\right\} \in V$ are linearly independent in V iff $\left[\underline{v}_{1}\right]_{B_{B}}, \ldots,\left[\underline{v}_{k}\right]_{B}$ are linearly independent in \mathbb{R}^{n}.

Eg. Show that $\left\{1, x-1,(x-1)^{2}\right\}$ is a basis for \mathbb{P}^{2}.

