Today: $₹ 4.4:$ Coordinates
s \$3.1-3.2: Determinants
Next: $\{3.2-3.3:$ Determinants \& Volume Reminders:
My MathLab Homework \#5: Due Tuesday by 11:59pm MATLAB Assignment \#4: Due February 23 by 11:59pm Midterm \#2: Feb 28, 8-10 pm

Reminder: If V is a vector space and $B=\left\{\underline{b}_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis far V, the coordinate vector $[v]_{B}$ of any vector $v \in V$ is the column of coefficients in the unique expansion of v in the basis M_{3} :

$$
\underline{v}=x_{1} b_{1}+x_{2} \underline{b}_{2}+\cdots+x_{n} \underline{b}_{n} \leadsto[\underline{v}]_{B_{B}}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Theorem: If $B=\left\{\underline{b}_{1}, b_{2}, \ldots, \underline{b}_{n}\right\}$ is a basis for V, then the function $T: V \rightarrow \mathbb{R}^{n}: T(\underline{v})=[\underline{v}]_{M}$ is a one-te-one linear transformation from V onto \mathbb{R}^{n}. Such a linear transformation is called an

Egg. $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right] \longrightarrow\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\left\{\left\{\begin{array}{l}\text { basis } \\ \text { for } \\ \operatorname{Col}(A) .\end{array}\right.\right.$

The point of isomorphisms is: they preserve all linear properties.
Theorem: Let $\left\{\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{n}\right\}=B$ be a basis for V.
Then $*\left\{\underline{v}_{1}, \ldots, v_{n}\right\} \in V$ are linearly independent in V iff $\left[\underline{v}_{1}\right]_{Q_{B}}, \ldots,\left[\underline{v}_{k}\right]_{B}$ are linearly independent in \mathbb{R}^{n}.

Eg. Show that $\left\{1, x-1,(x-1)^{2}\right\}$ is a basis for \mathbb{P}_{2}.
§3.1 Determinants
If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, when doing now reduction, we find that the columns are beth pivotal unless $\quad \underbrace{a d-b c}=0$.

This is the $\operatorname{determinant}$ of A, $\operatorname{deneted} \operatorname{det} A=|A|$

Theorem: A is invertible inf
in which case $\quad A^{-1}=$

For any $n \times n$ matrix A, there is a quantity $\operatorname{det} A$ which

* is a polynomial function of the entries of A
* determines whether A is invertible. The 2×2 case has a simple formula; for larger matrices, it is more complicated.
The generalization of the 2×2 case is the cofactor expansion.

$$
\text { Eg. } \cdot\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{ll}
+- & + \\
-+ & - \\
+- & +
\end{array}\right]
$$

Cofacter Expansion

$$
\begin{aligned}
A= & {\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \quad \operatorname{det} A=a_{j 1} C_{j 1}+a_{j 2} C_{j 2}+\cdots+a_{j n} C_{j n} \quad \text { for any row } } \\
& =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { or column } . \\
& \text { Eg. }\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { E... } A=\left[\begin{array}{ccccc}
3 & -7 & 8 & 9 & -6 \\
0 & 2 & - & 7 & 7 \\
0 & 0 & 1 & 5 & 0 \\
0 & 0 & 2 & 4 & -1 \\
0 & 0 & 0 & -2 & 0
\end{array}\right]
$$

Theorem: If A is triangular $\operatorname{det} A$ is the product of the diagonal entries.
§ 3.2: Determinants \& Row Operations

* $A \underset{R_{i} \rightarrow R_{p}}{ } \tilde{A}$

$$
\text { * } A \overrightarrow{R_{\bullet} \rightarrow R_{j}} \tilde{A}
$$

$$
* A \overrightarrow{R_{i} \rightarrow a R_{i}+R_{i}} \tilde{A}_{i}
$$

Theorem: If A is $n \times n$ and has full rank (ie. $\operatorname{rank} A=n$ ie. A is invertible) then $\operatorname{det} A= \pm$ product of the pivots in now reduction.
If $\operatorname{rank} A<n, \operatorname{det} A=0 \ldots$

$$
\text { Fg. }\left[\begin{array}{ccc}
0 & 1 & 4 \\
1 & 2 & -1 \\
5 & 8 & 0
\end{array}\right]
$$

