Today: $\{3.3$ Determinants \& $\rho 5.1$: Eigenvalues
Next: $\{5.2$ Characteristic Polynomial
Reminders:
MATLAB Assignment \#4: Due TONIGHT by Il: $59 p m$ My MathLab Homework \#6: Due Tuesday by 11:59pm Midterm \#2: Next Wednesday, $8-10 \mathrm{pm}$ Room/seat assign. \& practice midterms posted on curse webpage.

Properties of Determinants

* Defined by cofactor expansion (recursive expression, expand along any row or column)
* Behaves nicely under row ops: $\operatorname{det} A= \pm$ (product of pivots in row reduction to $\operatorname{rref}(A)$).
* $\operatorname{det} A=0$ iff A is not invertible
* Let: $M_{n} \rightarrow \mathbb{R}$ is multilinear in each row and column of the matrix, with the others held fixed.

$$
* \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) . \quad \therefore \operatorname{det}\left(A^{n}\right)=(\operatorname{det}(A))^{n} \text {. }
$$

Two More Properties:
$\operatorname{det}\left(A^{-1}\right)=$
$\operatorname{det}\left(A^{\top}\right)=$

What is the determinant? What does it mean? Parallelograms:

Theorem: Given two vectors $\underline{a}, \underline{b} \in \mathbb{R}^{2}$, the area of the parallelogram they determine is

$$
\begin{aligned}
A(\underline{a}, \underline{b}) & =|\operatorname{det}[\underline{a}, \underline{b}]| \\
& \left.=|\operatorname{det}| \begin{array}{c}
a^{\top} \\
\underline{b}^{r}
\end{array}\right] \mid
\end{aligned}
$$

What does the sign of $\operatorname{det}[a, \underline{b}]$ mean?

What about $n \times n$ determinants with $n>2$?

Parall elepipeds

S5.1/A linear transformation $T: V \rightarrow V$ tends to more. vectors around.
Egg. $T\left(\left[\begin{array}{l}x \\ y\end{array}\right)\right)=\left[\begin{array}{c}3 x-2 y \\ x\end{array}\right]$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)= \\
& T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=
\end{aligned}
$$

Eg. If A is a stochastic matrix (no wsums $=1$) then

Definition: Let $T: V \rightarrow V$ be a linear transformation. If there B a non-zore $\underline{v} \in V$ such that

$$
T(\underline{v})=\lambda \underline{v}
$$

for some scalar $\lambda \in \mathbb{R}$, we call \underline{v} an eigenvector of T. The scalar λ is the corresponding eigenvalue. (We similarly talk about eigenvector (eigenvalues of square matrices.)
Eg. Shew that 7 is an eigenvalue of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

Theorem: For any $\lambda \in \mathbb{R}$, the set of vectors v for which

$$
T(\underline{v})=\lambda \underline{v}
$$

Ba subspals of V, called the eigenspale of λ. (We only call λ an eigenvalue of its eigenspace $13 \neq\{0\}$.)

Eg. The rotation matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left(\operatorname{ccw} 90^{\circ}\right)$ has ne eigenvalues.

Eg. Let $A=\left[\begin{array}{rrr}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. 2 is an eigen value for A; find a basis for the eigenspas.

* Given a (petential) eigenvalue, finding the corresponding eigenspare is routine.
* Finding the eigenvalues is typically hard. (Row reduction changes the eigenvalues.)
one case where eigenvalues can be read of:
Theorem: If A is triangular, its eigenvalues are its diagonal entries.
E.g. $\quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

$$
\text { E.g. } \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

