Today: §3.3 Determinants & § 5.1 : Eigenvalues

Next: §5.2: Characteristic Polynomial

Reminders: MATLAB Assignment #4: Due TONIGHT by 11:59pm My MathLab Homework #6: Due Tuesday by 11:59pm Midtern #2: Next Wednesday, 8-10 pm Room/seat assgn. & practice midterns posted on Gurse webpage.

Properties of Determinants

- * Defined by cofactor expansion (recursive expression, expand along any row or clumn)
- * Behaves nicely under now ops: det A = ± (product of pivots in now reduction to rref(A)).
- * detA = 0 iff A is not invertible
- * det: Mn -> R is <u>multilinear</u> in each row and column of the matrix, with the others held fixed.
- * det(AB) = det(A)det(B). $\therefore det(A^n) = (det(A))^n$.
- TWO MORE PROPERTIES:
 - $det(A^{-1}) =$
 - $det(A^T) =$

What is the determinant? What does it mean?

what dees the sign of det [a, b] mean?

What about n×n determinants with n>2?

Parallelepipeds

§ 5.1 / A linear transformation T: V->V tends to moi.R. vectors around.

Eg. If A is a stochastic matrix (now sums = 1) then

Theorem: For any $\lambda \in \mathbb{R}$, the set of vectors \underline{v} for which $T(\underline{v}) = \lambda \underline{v}$ B g subspace of V, called the <u>Bigenspace</u> of λ

B a subspace of V, called the <u>eigenspace</u> of λ . (We only Call λ an eigenvalue of its eigenspace is $\neq \{0\}$.)

Eg. The rotation matrix [0-1] (ccw 90°) has no eigenvalues.

- * Griven a (potential) eigenvalue, finding the corresponding eigenspace is volutione.
- * Finding the eigenvalues is typically hard. (Row reduction
 - changes the eigenvalues.)
- One case where eigenvalues can be read off:
- Theorem: If A is triangular, its eigenvalues are its diagonal entries.

