Today: $\mathcal{1} 1.2$: Row Reduction \& Echelon Forms
Next: $\oint 1.3$: Vector Equations
Reminders:
My MathLab Homework \# 1 \& \#2: Due Men, Jan 22 MATLAB Homework \#1: Due Fri Jan 19

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
5 x_{1}-5 x_{3} & =10
\end{aligned}
$$

$$
\left[\begin{array}{ccc:c}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
5 & 0 & -5 & 10
\end{array}\right]
$$

"Augmented matrix"

$$
\text { Eg. } \begin{aligned}
x_{2}-4 x_{3} & =8 \\
2 x_{1}-3 x_{2}+2 x_{3} & =1 \\
4 x_{1}-8 x_{2}+12 x_{3} & =1
\end{aligned}
$$

Egg. $\left[\begin{array}{ccc:c}1 & 5 & 2 & -6 \\ 0 & 4 & -7 & 2 \\ 0 & 0 & 5 & 0\end{array}\right]$ consistent?
Egg. $2 x_{1}-x_{2}=h \quad$ For which h, k is the system consistent? $-6 x_{1}+3 x_{2}=k \quad$ For which h, k is there a unique solution?

Echelon Forms

$$
\left[\begin{array}{ccc:c}
2 & -3 & 2 & 1 \\
0 & 1 & -4 & 8 \\
0 & 0 & 0 & 5 / 2
\end{array}\right] \quad\left[\begin{array}{lll:l}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 1 \\
3
\end{array}\right]
$$

"leading entry"
Row Echelon Form:

$$
\left[\begin{array}{llllllll:l}
0 & \square & * & * & * & * & * & * & * \\
0 & 0 & 0 & \square & * & * & * & * & * \\
0 & 0 & 0 & 0 & \square & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & \square & * & * \\
& * & *
\end{array}\right]
$$

Reduced Row Echelon Form:

Theorem: By performing row operations, every matrix can be transformed to reduced row echelon form. And that form is unique!
Egg. $\left[\begin{array}{cccccc}3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right]$

In reduced now echelon form, the matrix is

$$
\left[\begin{array}{ccccc:c}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \quad \begin{aligned}
& \text { il the original } \quad x_{1} \quad-2 x_{3}+3 x_{4} \\
& \text { system is is } \\
& \text { equivalent to }
\end{aligned} \quad \begin{aligned}
& x_{2}-2 x_{3}+2 x_{4} \\
&
\end{aligned}
$$

pivotal columns
pivotal variables
free variables

