Today §6.1/6.7: Inner Products
Next: $\delta 6.2$: Orthogonality
Reminders:
My MathLab Homework \#7: Due THursDAY by Il:5ypm MATLAB Homework \#5: Due FRIDAY by 11:59pm Final Exam is on Saturday, March $17 \underset{\substack{11: 3 \text { Pam } \\-2: 30 \mathrm{opm}}}{\substack{ \\\hline}}$ $-2: 30 \mathrm{pm}$ (@ the BEGINNING of Exam week.

An $n \times n$ matrix A is diagonalizable if $A=P D P^{-1}$-invertible diagonal This is equivalent to \mathbb{R}^{n} having a basis of eigenvectors for A.
This happens, egg, whew A has n distinct real eigenvalues. But it can fail.
\rightarrow Eigenvalues: roots of $P_{A}(\lambda)=\operatorname{det}(A-\lambda I) \leftarrow$ degree n polynomial must have all real roots for A to be diagenalizable.
\rightarrow The algebraic multiplicity of λ is the degree of this root in P_{A}
The geometric multiplicity of λ is $\operatorname{dim} \operatorname{Nul}(A-\lambda I)$.
Always have geom.mult $(\lambda) \leqslant$ alg.mult. (λ) can be \lesseqgtr

$$
A=\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 5 \\
0 & 0 & 5
\end{array}\right] \quad P_{A}(\lambda)=P_{B}(\lambda)=(5-\lambda)^{2}(4-\lambda) \text {. }
$$

$\operatorname{dim} \operatorname{Nul}(A-5 I)=2, \quad \operatorname{dim} \operatorname{Nul}(B-S I)=1$.

Theorem: If A has a repeated eigenvalue λ, then $\operatorname{dim} \operatorname{Nul}(A-\lambda I) \leqslant$ multiplicity of λ.
The matrix is diagonalizable if and only if P_{A} has only real roots, and $\operatorname{dim} \operatorname{Nul}(A-\lambda I)$ $=$ multiplicity of λ for each λ.
In this case, any bases for the eigenspaces together form a basis for \mathbb{R}^{n}.
So, just which matrices are diagonalizable?
That's a really tough question to answer. A partial answer will be given at the end of the cause. To get there...
§6.1 Definition: The dot product or inner product on \mathbb{R}^{n} is defined by

$$
\underline{u} \cdot \underline{v}=\langle\underline{u}, \underline{v}\rangle=\underline{u}^{\top} \underline{v}
$$

Properties:

The length of a vector is defined to be

$$
\|\underline{v}\|=\sqrt{\underline{v} \cdot \underline{v}}
$$

More generally, the distance between two vectors $\underset{\sim}{u}, \underline{v}$ $13 \quad \operatorname{dist}(\underline{u}, \underline{v})=\|\underline{u}-\underline{v}\|$

$$
\begin{aligned}
& \text { is } \quad \operatorname{dist}(\underline{u},-)= \\
& \text { Eg. } \quad \underline{u}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \underline{v}=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right)
\end{aligned}
$$

How does $\|\underline{u}-\underline{v}\|$ relate $\frac{b}{b}\|\underline{u}\|,\|\underline{v}\|$?

Law of cosines (in 2 dimensions):

$$
a^{2}+b^{2}=c^{2}+2 a b \cos \theta
$$

Cauchy-Schwarz Inequality

$$
|\underline{u} \cdot \underline{v}| \leqslant\|\underline{u}\|\|\underline{v}\|
$$

