Today $\delta 6.2$: Orthogonality
Next: $\{6.3$: Orthogonal Projections
Reminders:
My MathLab Homework \#7: Due THursday by 11:59pm MATLAB Homework \#5: Due FRIDAY by II:59pm MATLAB QUIZ: Tuesday, March 13 @ your usual $\uparrow_{\text {Conflict quiz times section time }}^{\text {on Monday. }}$ times
on Monday.

The inner product on \mathbb{R}^{n} encodes beth lengths and angles:

$$
\|\underline{v}\|=\sqrt{\underline{v} \cdot \underline{v}}, \quad \underline{v} \cdot \underline{w}=\|\underline{v}\|\|\underline{w}\| \cos \theta \text { angle between }
$$

In particular, with $\theta=0$, we see \underline{v} and \underline{w}.
twe vecters $\underline{v} \underline{w}$ are orthogonal iff $\underline{v} \cdot \underline{w}=0$
Pythagorean Theorem: $\underline{u} \underline{\underline{v}}$ iff $\|\underline{u}-\underline{v}\|^{2}=\|\underline{\|}\|^{2}+\|\underline{v}\|^{2}$

Definition: If $V \subseteq \mathbb{R}^{n}$, the orthogonal complement of V, denoted V^{\perp}, is defined to be

Theorem: For any $m \times n$ matrix A,

$$
\begin{aligned}
& (\operatorname{Row} A)^{\perp}=\operatorname{Nu} \mid A \\
& \left(C_{0} \mid A\right)^{\perp}=\operatorname{Nu} \mid A^{\top}
\end{aligned}
$$

Orthogonal Sets of Vectors.
Eg. The standard basis vectors are all orthogonal.

Eg. $\underline{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \quad \underline{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \quad \underline{u}_{3}=\left[\begin{array}{c}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right]$ are all orthogonal

Theorem: If $\left\{\begin{array}{l}\{\underline{u}, \ldots, u p\} \\ (a l l \neq \underline{0})\end{array}\right.$ are orthegonal, they are linearly independent.

Definitions: Let $V \subseteq \mathbb{R}^{n}$ be a subspace. A basis for V is called an orthogonal basis if all the basis vectors are orthogonal. It is called an orthonormal basis if, in addition, each basis vector has length 1.
Eg. The standard basis
Eg. $\left\{u_{1}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right], \underline{u}_{2}=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right], \underline{u}_{3}=\left[\begin{array}{l}2 \\ 5 \\ 4\end{array}\right]\right\}$ is an orthogonal basis $\begin{array}{r}\text { for } \mathbb{R}^{3} .\end{array}$

Theorem: If $B=\left\{u_{1}, \ldots, u_{p}\right\}$ is an orthogonal basis for a subspace V, then the coefficients of any vector $v \in V$ in the basis B are

$$
[\underline{\underline{1}}]_{B}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right], \quad c_{j}=\frac{v \cdot u_{j}}{\left\|u_{j}\right\|^{2}}
$$

Orthogonality \& Matrices
Given an $m \times n$ matrix A, the matrix $A^{\top} A$ encodes the dot products of the columns of A

If the columns are orthonormal, then

Definition: If the columns of an $n \times n$ matrix U form an orthonormal basis for \mathbb{R}^{n}, we call U an orthogonal matrix. This is equivalent to

Better yet: thinking of such a U as a linear transformation,

Orthogonal Projections

$$
\text { Eg. } \underline{u}=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right], \underline{v}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \underline{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

What's really going on:
If $V \subseteq \mathbb{R}^{n}$ is a subspace, it has an orthogonal complement $V^{\perp} \subseteq \mathbb{R}^{n}$. The two are complementary: $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
They are also linearly independent.
Thus, any vector $y \in \mathbb{R}^{n}$ has a unique decomposition:

