Today $\delta 6.3$: Orthegenal Projections
Next: $\{6.4$: Orthogenalization
Reminders: Please fill out your CAPEs. My MathLab Homework \#8: Due March is by 11:59pm MATLAB Homework \#5: Due TONIGHT by II:59pm MATLAB QULZ: Tuesday, March 13 @ your usual $\uparrow_{\text {Conflict quiz times section time }}$ on Monday.

A collection $\underline{u}_{1}, \underline{u}_{2}, \ldots, \underline{u}_{p}$ of vectors in \mathbb{R}^{n} is arthegonal if $\underline{u}_{i} \cdot \underline{u}_{j}=0$ They are orthonormal if, in addition, $\left\|u_{i}\right\|=1$ for all i, j.
Set $U=\left[\begin{array}{llll}\underline{u}_{1} & \underline{u}_{2} & \cdots & u_{p}\end{array}\right] \quad$ ($n \times p$ matrix)
Then the (i, j)-entry of $U^{\top} U$ is $\left\langle\underline{u}_{i}, \underline{y}_{j}\right\rangle$. Therefore $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ are orthonormall if and only if

$$
u^{\top} u=
$$

Note: if $n \neq p$, this does not mean that $U U^{\top}=$

Definition: If the columns of an $n \times n$ matrix U form an orthonormal basis for \mathbb{R}^{n}, we call U an orthogonal matrix. This is equivalent to

Better yet: thinking of such a U as a linear transformation,

Orthogonal Projections

$$
\text { Eg. } \underline{u}=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right], \underline{v}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \underline{w}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

What's really going on:
If $V \subseteq \mathbb{R}^{n}$ is a subspace, it has an orthogonal complement $V^{\perp} \subseteq \mathbb{R}^{n}$. The two are complementary: $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$. Vectors in V are linearly independent fran vectors in V^{\perp}. Thus, any vector $y \in \mathbb{R}^{n}$ has a unique decomposition:

How do we find Prejv for a given subspace V? We already saw that if $V=\operatorname{span}\{\underline{u}\} \quad$ (1-dimensional)

$$
\operatorname{Proj}_{V}(y)=\frac{\underline{y} \cdot \underline{u}}{\underline{u} \cdot \underline{u}} \underline{u}
$$

Theorem: Let $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be an orthogonal basis for V. Then

$$
\operatorname{Proj}_{V}(y)=\frac{y \cdot \underline{u}_{1}}{\left\|\underline{u}_{1}\right\|^{2}} \underline{u}_{1}+\frac{y \cdot \underline{u}_{2}}{\left\|\underline{u}_{2}\right\|^{-}} \underline{u}_{2}+\cdots+\frac{\underline{y} \cdot \underline{u}_{p}}{\left\|u_{p}\right\|^{2}} u_{p}
$$

This allows us te compute the matrix of Prejv. Start with an orthonormal basis for V; then

$$
\operatorname{Proj} v(y)=\left(y \cdot \underline{u}_{1}\right) \underline{u}_{1}+\left(\underline{y} \cdot \underline{u}_{2}\right) \underline{u}_{2}+\cdots+\left(\underline{y} \cdot \underline{u}_{p}\right) \underline{u}_{p}
$$

Theorem: Let $V \subseteq \mathbb{R}^{n}$ be a subspace, and f ix an orthonormal basis $\left\{\underline{u}_{1}, \cdots, \underline{u}_{p}\right\}$ for V. Let $U=\left[\underline{u}_{1} \underline{u}_{2} \cdots \underline{u}_{p}\right]$.

$$
\therefore \operatorname{Proj}_{V}(y)=
$$

Eg Compute the matrix of the orthogonal projection in \mathbb{R}^{3} onto the subspace $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]\right\}$

What is an orthegenal projection, really?

Theorem: Projv(y) is the point in V that is closest to y Ie it is the best approximation of y in V.

$$
\text { Eg. }\left\{u_{1}=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right], u_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}
$$ is an orthogonal bes is for V. is an orthogonal bes is for V.

Find the closest point in V to $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

