Today §6.4: Orthogenalization
Next: $\{7.1$: The Spectral Theorem
Reminders: Please fill out your CAPEs. My MathLab Homework \#8: Due THursday by 11:59pm MATLAB QUIZ: TOMORROW OR TODAY!
FINAL EXAM: This Saturday, Il:30am-2:30pm Seating / Room Assignment on Triton Ed

Given an orthonormal basis $\left\{\hat{\underline{u}}_{1}, \hat{u}_{2}, \ldots, \hat{u}_{p}\right\}$ for a subspace $V \leq \mathbb{R}^{n}$, the orthogonal projection of a vector $x \in \mathbb{R}^{n}$ into V is

$$
\begin{aligned}
\operatorname{Proj}(\underline{x}) & =\left(\underline{x} \cdot \hat{u}_{1}\right) \hat{u}_{1}+\left(\underline{x} \cdot \hat{u}_{2}\right) \hat{u}_{2}+\cdots+\left(\underline{x} \cdot \hat{u}_{p}\right) \hat{u}_{p} \\
& =U U^{\top} \underline{x} \text { where } U=\left[\begin{array}{lll}
\hat{u}_{1} & \hat{u}_{3} & \cdots
\end{array}\right]
\end{aligned}
$$

This is the unique vector $y \in V$ such that $y-\underline{x} \in V^{\perp}$.
Geometrically, it is the closest paint in V to x.
Egg. $\left\{\underline{u}_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], \underline{u}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]\right\} \begin{aligned} & \text { is an orthogonal bes is for } V \text {. } \\ & \text { Find the closest point in } V \text { to } y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\end{aligned}$
6.4 / What if you aren't given an orthogonal basis?

Can you even be sure that one exists?
$E g . V=\operatorname{Nul}\left[\begin{array}{cccc}1 & 1 & 2 & 1 \\ 1 & -1 & 0 & 3\end{array}\right]$

The Gram-Schmidt Orthogonalization Process
Given a basis $B=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ of a subspace V, we con find a new basis $\theta=\left\{\underline{u_{1}}, u_{3}, \ldots, u_{p}\right\}$ with the properties:
(1) θ is orthogonal
(2) $\operatorname{span}\left\{\underline{v}_{1}, v_{3}, \ldots, v_{k}\right\}=\operatorname{span}\left\{\underline{u}_{1}, \underline{u}_{2}, \cdots, u_{k}\right\}$ for $1 \leqslant k \leqslant p$.

The Gram-Schmidt Process takes a basis $B_{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for a subspace V and turns it into an orthegenal basis $\theta=\left\{u_{1}, u_{3}, \ldots, u_{n}\right\}$

Yon can then produce an orthonormal basis $\hat{\theta}=\left\{\hat{\underline{u}}_{1}, \hat{\underline{u}}_{2}, \ldots, \hat{u}_{n}\right\}$ by normalizing.

Eg. Find an orthonormal basis for ColA where $A=\left[\begin{array}{cccc}1 & 1 & 2 & 0 \\ -2 & 0 & -2 & 0 \\ 2 & 4 & 6 & 9\end{array}\right]$

Question: How Can you reGver the original vectors $\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$ from the new on. basis $\left\{\hat{\underline{u}}_{1}, \hat{u}_{2}, \hat{u}_{3}, \ldots\right\}$?

Theorem: If A is an $m \times w$ matrix with linearly independent columns, then A has a factorization $A=Q R$

$$
\left.\left.\begin{array}{rl}
Q^{\top} Q & =I \quad \supset Q \\
\text { Eg. } & {\left[\begin{array}{ccc}
1 & 1 & 0 \\
-2 & 0 & 0 \\
2 & 4 & 9
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 0 & -4 / \sqrt{3} \\
-2 / 3 & 1 \sqrt{2} & -1 / \sqrt{3} \\
2 / 3 & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{ll}
0 & \\
0 & 0
\end{array}\right]\right) .
$$

What is this good for?

