Today § 6.4: Orthogonalization Next: § 7.1: The Spectral Theorem

<u>Reminders</u>: Please fill out your CAPEs

My MathLab Homework #8: Due THURSDAY by 11:59pm

MATLAB QUIZ: TOMORROW OR TODAY!

FINAL EXAM: This Saturday, 11:30am-2:30pm Seating / Room Assignment on Triton Ed

E9. $V = Nul \left(\begin{array}{c} | | 2 | \\ | - | 0 3 \end{array} \right)$

The Gram-Schmidt Orthogonalization Process Given a basis $\mathcal{B} = \{\underline{v}_1, \underline{v}_2, ..., \underline{v}_p\}$ of a subspace V, we can find a new basis $\mathcal{O} = \{\underline{u}_1, \underline{u}_2, ..., \underline{u}_p\}$ with the properties: $\mathcal{D} \mathcal{O}$ is orthogonal

(2) span{V1, 12, -, Vk} = span{u1, 12, -, 4k} for Isksp.

You can then produce an orthonormal basis $\hat{\Theta} = \{\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_n\}$

by normalizing.

Question: How can you recover the original vectors { y, yz, yz, ... }

from the new o.n. basis $\{\hat{u}_1, \hat{u}_2, \hat{u}_3, \dots\}$?

Theorem: If A is an man matrix with linearly independent columns, then A has a factorization A = QR $Q^{T}Q = I \rightarrow Q$ Eg. $\begin{bmatrix} 1 & 1 & 0 \\ -2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 & -4/3 \\ -2/3 & 1/5 & -2/3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ What is this good for ?