Today § 7.1: The Spectral Theorem Next: Review

Reminders: Please fill out your CAPEs. My MathLab Homework \#8: Due TOMORROW by 11:59pm FINAL EXAM: This Saturday, 11:30am-2:30pm GH 242, PETER 108, YORK 2722 Seating / Room Assignment on Triton Ed

Given a collection $\left\{\underline{v}_{-}, v_{2}, \ldots, \underline{v} p\right\}$ of linearly independent vectors in \mathbb{R}^{n}, the Gram-Schmidt arthogonalization process produces a new collection $\left\{\hat{u}_{1}, \hat{u}_{3}, \ldots, \hat{u}_{p}\right\}$ of orthonormal vector, with the same span as the \underline{v}_{j} 's.

$$
\begin{array}{ll}
\underline{u_{1}}=\underline{v}_{1} & \hat{u}_{1}=\underline{u}_{1} /\left\|\underline{u}_{1}\right\| \\
\underline{u}_{2}=\underline{v}_{2}-\frac{v_{2} \cdot \underline{u}_{1}}{\left\|\underline{u}_{1}\right\|^{2}} \underline{u}_{1} & \underline{u}_{2}=\underline{u}_{2} /\left\|\underline{u}_{2}\right\| \\
\underline{u}_{3}=\underline{v}_{3}-\frac{v_{3} \cdot u_{1}}{\left\|u_{1}\right\|_{1}}-\frac{v_{3} \cdot u_{2}}{\left\|u_{2}\right\| \|^{2}} \underline{u}_{2} & \underline{u}_{3}=\underline{u}_{3} /\left\|\underline{u}_{3}\right\|
\end{array}
$$

The triangular patten here can be summarized by noting this means

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{p}
\end{array}\right]=\left[\begin{array}{llll}
\hat{u}_{1} & \hat{u}_{2} & \cdots & \hat{u}_{p} \\
\underline{u}_{1} & \underline{-}_{2} & & -1
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 p} \\
0 & r_{22} & \cdots & r_{2 p} \\
\vdots & 0 & i_{p} \\
0 & 0 & \cdots & r_{p p}
\end{array}\right] \quad \begin{aligned}
& \text { these come } \\
& \text { up in the } \\
& G-S \text { process }
\end{aligned}
$$

$$
\text { Eg. } A=\left[\begin{array}{cc}
2 & 0 \\
1 & 1 \\
-2 & -1
\end{array}\right]
$$

Note: $Q^{\top} Q=I$ does not mean $Q^{-1}=Q^{\top}$! (Only if Q is square; in general $Q Q^{\top}=$ orthogonal projection onto $C l(Q)$.)

Why should you care about QR -factorization?
Take the square matrix case.

$$
A=Q R . \rightarrow A_{1}=R Q
$$

7.1/ Recall that $A \in M_{n \times w}$ is diagonalizable if there is a basis of \mathbb{R}^{n} consisting of eigenvectors of $A .\left(\Leftrightarrow A=P D P^{-1}\right)$ What kinds of matrices have an orthonormal basis of eigenvectors?

Conclusion: if A is orthogonally diagonalizable, then what about the converse?

Suppose A is symmetric, and happens to be diagenalizable.
\therefore The eigenspaces of A span all of \mathbb{R}^{n}.
\rightarrow we just saw that eigenvectors for distinct eigenvalues are \perp. So eigenspaes for distinct eigenvalues are orthogonal.
\rightarrow if an eigenvalue has geometric multiplicity >1, can take any basis of this ergenspace and produce an on.b. ()

Conclusion: There is an o.n.b. of eigenvectors of A.
Ie. A is orthogon ally diagonalizable.

The Spectral Theorem
Every symmetric matrix is orthogonally diagonalizable.
This gives the spectral decomposition of a symmetric matrix:

$$
\begin{aligned}
& \text { Why "spectral"? What has any of this g } \\
& \text { spectrum? }
\end{aligned}
$$

Hydrogen Emission Spectrum

The vector space that describes the state of the Hydrogen atom is like \mathbb{P} : a space of functions.

They are "wav e-functions" that represent probability distributions of how likely it is to find the particle near each point in spall.

The eigenvectors are an orthonormal basis for these wave functions; they are the states with a well-defined (quantized) energy (the eigenvalues).
You've seen pictures of them before...

