Today § 7.1: The Spectral Theorem

Next: Review

<u>Reminders</u>: Please fill out your CAPEs

My MathLab Homework #8: Due TOMORROW by 11:59pm

FINAL EXAM: This Saturday, 11:30am-2:30pm GH 242, PETER 108, YORK 2722 Seating / Room Assignment on Triton Ed

Note: QTQ=I does not mean Q'=QT ! (Only If Q is square; in general QQT = orthogonal projection onto Gl(Q).)

Why should you care about QR - factorization?

Take the square matrix case.

 $A = QR \rightarrow A_1 = RQ$

7.1/ Recall that A & Mnxn is diagonalizable if there is a basis of IRⁿ consisting of eigenvectors of A. (=) A=PDP⁻¹) What kinds of matrices have an orthonormal basis of eigenvectors?

<u>Conclusion</u>: if A is orthogonally diagonalizable, then what about the converse?

- Suppose A is symmetric, and happens to be diagonalizable. ... The eigenspaces of A span all of IR".
 - Is we just saw that eigenvectors for distinct eigenvalues are I.
 - So eigenspales for distinct eigenvalues are orthogonal.
 - Ly if an eigenvalue has geometric multiplicity >1 can take
 - any basis of this ergonspace and produce an o.n.b. (
- Conclusion: There is an o.n.b. of eigenvectors of A.
 - I.e. A is orthogonally diagonalizable.

The Spectral Theorem

Every symmetric matrix is orthogonally diagonalizable.

This gives the spectral decomposition of a symmetric matrix:

The vector space that describes the state of the Hydrogen atom is like P: a space of functions.

They are "wave - functions" that represent probability distributions of how likely it is to find the particle near each point in spale.

The eigenvectors are an orthonormal basis for these wave functions; they are the states with a well-defined (quantized) energy (the eigenvalues). You've seen pictures of them before...

p_z

v

f_{yz}2

х

