Today: Review Next: Groodbye "

Reminders:

Please fill out your CAPEs.

FINAL EXAM: TOMORROW 11:30am-2:30pm GH 242, PETER 108, YORK 2722 Seating / Room Assignment on Triton Ed

v.1 (page 2 of 2)

```
Name: _____
```

- (8 points) 1. In each of the following examples, a vector space *V* is given, along with a subset *S*. Determine whether *S* is a subspace or not. In each case, explain why it is or is not a subspace.
 - (a) $V = M_{2\times 3}$ is the space of 2×3 matrices, A is a fixed 4×3 matrix, and $S \subseteq V$ is the set of 2×3 matrices X satisfying $AX^{\top} = 0$.

(b)
$$V = \mathbb{R}^3$$
, and $S = \left\{ \begin{bmatrix} 2s+3t\\s-2t\\-t \end{bmatrix} : s, t \in \mathbb{R} \right\}.$

(c)
$$V = \mathbb{R}^2$$
, and $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : -1 \le x + y \le 1 \right\}$.

(d) $V = \mathbb{P}_4$ is the space of polynomials of degree ≤ 4 , and *S* is the subset of polynomials *p* in *V* for which p(-1) - 2p(0) + p(1) = 2018.

Math 18: Lecture C	Final Exam v. B	Name:
March 24, 2017	(Total Points: 60)	PID:

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use tqo handwritten, double-sided pages of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- (1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 1. (a) Consider the following vector equation:

	$\lceil 1 \rceil$		$\lceil 2 \rceil$		$\lceil 4 \rceil$		[0]		$\lceil 5 \rceil$	
x_1	1	$+x_{2}$	1	$+x_{3}$	3	$+x_{4}$	1	=	3	
	0		$\lfloor 2 \rfloor$	$+x_{3}$	$\lfloor 2 \rfloor$		-2		4	

Determine if this equation has a solution, and if so, describe it in parametric form.

(b) Let *A* be the matrix

$$A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 1 & 3 & 1 \\ 0 & 2 & 2 & -2 \end{bmatrix}.$$

Describe the solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$ in parametric form.

v. B (page 2 of 8)

Name: _____

(6 points) 2. Let *A* be the invertible matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & 8 \\ 0 & 2 & -3 & -3 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

(a) Determine the third column of the inverse matrix A^{-1} .

(b) Let $B = A^{\top}$, and let $C = B^3$. Calculate det (C^{-1}) .

v. B (page 3 of 8)

```
Name: _____
```

- (6 points) 3. For each of the following statement, circle T if it is *always* True; circle F if it is *ever* False. 2 points will be assigned for each correct response, 1 point for each blank non-response, and 0 points for each incorrect response. No justification is required.
 - (**T F**) If *A* and *B* are row equivalent matrices, then Nul(A) = Nul(B).

(**T F**) The columns of a 4×25 matrix span \mathbb{R}^4 .

(**T F**) The set of vectors $\mathbf{x} \in \mathbb{R}^3$ satisfying $x_1^2 + x_2^2 - x_3^2 = 0$ is a subspace of \mathbb{R}^3 .

v. B (page 4 of 8)

Name: _____

(9 points) 4. The matrix
$$A = \begin{bmatrix} 2 & 3 & 5 & 8 \\ 1 & 2 & 5 & 14 \\ -1 & -1 & 0 & 6 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 8 \end{bmatrix}$$
 has reduced row-echelon form $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -15 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(a) Find a basis for Col(A), the column space of A.

(b) Find a basis for Nul(A), the nullspace of A.

(c) Find a basis for $Nul(A)^{\perp}$, the orthogonal complement of Nul(A).

Name: _____

(9 points) 5. Consider the vectors
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

(a) Show that $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 , and compute $\|\mathbf{u}_1\|$, $\|\mathbf{u}_2\|$, $\|\mathbf{u}_3\|$.

(b) Find the coordinates $[v]_{\mathcal{B}}$ of the vector v in terms of the basis \mathcal{B} .

(c) Compute the orthogonal projection of v into the subspace spanned by the vectors $\{u_2, u_3\}$.

v. B (page 6 of 8)

Name: _____

(8 points) 6. Let $A = \begin{bmatrix} 3 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. A has full rank.

(a) Use the Gram–Schmidt process on the rows of A to find an orthonormal basis for Row(A).

(b) Find an upper triangular matrix R and an orthogonal matrix Q such that $A^{\top} = QR$.

v. B (page 7 of 8)

Name: _____

(8 points) 7. Consider the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

(a) Find all the eigenvalues of *A*, together with their algebraic multiplicities.

(b) Give a basis for the eigenspace corresponding to each eigenvalue of *A*.

(c) Is *A* diagonalizable? Explain why or why not.

v. B (page 8 of 8)

Name: _____

(7 points) 8. Consider the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$.

(a) Explain how you can tell that *A* is diagonalizable without calculating any eigenvectors or eigenvalues.

(b)
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ are eigenvectors of *A*, with eigenvalues -1 and 2. Compute the inner product

$$\langle A^{2017}\mathbf{u},\mathbf{v}\rangle$$
.

(c) Compute the vector $\mathbf{v} + A^{2017}\mathbf{u}$.

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- 0. Carefully read and complete the instructions at the top of this exam sheet and any additional (2 points) instructions written on the chalkboard during the exam.
- (6 points) 1. Consider the following matrix equation $A\mathbf{x} = \mathbf{b}$:

[1	2	-1	$\begin{bmatrix} x_1 \end{bmatrix}$		[1]	
1	3	-3	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	=	1	
0	1	-2	$\begin{bmatrix} x_3 \end{bmatrix}$		1	

(a) Determine the solution set of the matrix equation $A\mathbf{x} = \mathbf{b}$ and, if appropriate, write it in parametric form.

(b) Determine the solution set of the corresponding homogeneous matrix equation $A\mathbf{x} = \mathbf{0}$ and, if appropriate, write it in parametric form.

v.A (page 2 of 8)

Name: _____

(6 points) 2. Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. (a) Find A^{-1} , the inverse of A.

(b) Find the matrix X such that $AX = A^T$, the transpose of A.

v.A (page 3 of 8)

Name: _____

(6 points) 3. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}$.

(a) Compute AB. Is AB an invertible matrix? Justify your answer.

(b) Compute BA. Is BA an invertible matrix? Justify your answer.

v.A (page 4 of 8)

Name: _____

(6 points) 4. The matrices $A = \begin{bmatrix} 3 & -1 & 1 & -6 \\ 2 & 1 & 9 & 1 \\ -3 & 2 & 4 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ are row equivalent.

(a) Find a basis for $\operatorname{Col}(A)$, the column space of A.

(b) Find a basis for Nul(A), the null space of A.

(c) Find a basis for $\operatorname{Col}(A^T)^{\perp}$, the orthogonal complement of the column space of A^T . Be sure to explain how you know that it is a basis for $\operatorname{Col}(A^T)^{\perp}$.

```
Name: _____
```

(6 points) 5. Let W be a subspace of ℝⁿ with an orthogonal basis B_W = {w₁, w₂,..., w_p}, and let B_{W[⊥]} = {v₁, v₂,..., v_q} be an orthogonal basis for W[⊥], the orthogonal complement of W.
(a) Explain why S = {w₁, w₂,..., w_p, v₁, v₂,..., v_q} is an orthogonal set.

(b) Explain why the set \mathcal{S} spans \mathbb{R}^n .

(c) Explain why \mathcal{S} is linearly independent.

(d) Explain why $\dim(W) + \dim(W^{\perp}) = n$.

v.A (page 6 of 8)

```
Name: _
```

(6 points) 6. The set $\mathcal{B} = \{1, 1+2t, 1+2t+4t^2\}$ is a basis for \mathbb{P}_2 , the vector space of polynomials of degree at most two. The polynomial $\mathbf{p} = 1 + 4t^2$. Find $[\mathbf{p}]_{\mathcal{B}}$, the coordinate vector for \mathbf{p} with respect to the basis \mathcal{B} .

v.A (page 7 of 8)

Name: _____

(6 points) 7. Consider the matrix $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{bmatrix}$.

(a) Determine the eigenvalues of A. (Note: One of the eigenvalues of A is 0.)

(b) Find a matrix P that diagonalizes A. That is, find P so that $P^{-1}AP = D$, where D is a diagonal matrix.

v.A (page 8 of 8)

Name: _____

(6 points) 8. Let $A = \begin{bmatrix} -1 & 2 & 10 \\ 2 & 1 & 10 \\ 1 & 2 & 0 \\ 2 & -1 & 0 \end{bmatrix}$.

(a) Find an orthonormal basis for $\operatorname{Col}(A)$, the column space of A.

(b) Find an orthogonal matrix Q and an upper triangular matrix R such that QR = A.