Today: $1.3:$ Vector Equations
\& \oint 1.4: The Matrix Equation $A \underline{x}=\underline{b}$
Next: $\{1.5$: Solution Sets
Reminders:
My Math Lab Homework \# \& \#2: Due Men, Jan 22 MATLAB Homework \#1: Due THIS Fri Jan 19

Linear Combinations
Given vectors $u_{1}, u_{2}, \ldots, u_{n}$ a linear combination is a vector of the form

$$
x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{n} u_{n}
$$

for same scalars $x_{1}, x_{2}, \ldots, x_{n}$.
Eg.
$\left[\begin{array}{c}-1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Span
The span of a collection of vectors is the set of all linear combinations of those vectors.

Egg. Is $\left[\begin{array}{c}7 \\ 4 \\ -3\end{array}\right]$ in the span generated by $\left\{\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right),\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]\right\}$?

The question "Is \underline{w} in the span of $\underline{v}_{1}, v_{2}, \ldots, \underline{v}_{n}$?" is the same as the question
"Is the system whose augmented matrix is $\left[\begin{array}{llll:l}\underline{v}_{1} & \underline{v}_{2} & \cdots & \underline{v}_{n} & \underline{w}\end{array}\right]$
To answer this question, we use to carry this augmented matrix to and check to see if
§1.4 The matrix equation $A \underline{x}=\underline{b}$
Matrix multiplication
Let $A=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & \underline{a}_{n}\end{array}\right]$ be an $m \times n$ matrix.
Let $\underline{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{n}\end{array}\right] \in \mathbb{R}^{n}$ be a column vector, whose number n in A.

$$
\begin{aligned}
& A \underline{x}=\left[\begin{array}{llll}
a_{1} & \underline{a}_{2} & \cdots & \underline{a}_{-}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{n}
\end{array}\right]:= \\
& \text { Egg. }\left[\begin{array}{cc}
2 & -3 \\
8 & 0 \\
-5 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
7
\end{array}\right]
\end{aligned}
$$

Eg. Compute

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right]=4\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-5 \\
0
\end{array}\right]+7\left[\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right]+\left[\begin{array}{c}
6 \\
15 \\
0
\end{array}\right]+\left[\begin{array}{c}
-7 \\
21 \\
28
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
32
\end{array}\right]
$$

Eg. If $\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}$ are three column vectors, write the linear combination $2 \underline{u}_{1}-3 \underline{u}_{2}+8 \underline{u}_{3}$ as a matrix product.

Matrix multiplication is a concise way of representing

The most basic algebra equation is $a x=b$.
If A is an $m \times n$ matrix, and $\underline{b} \in \mathbb{R}^{m}$ is a column vector, Can we solve the matrix equation $A \underline{x}=\underline{b}$ for $\underline{x} \in \mathbb{R}^{n}$?
Egg. $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ -4 & 2 & 6 \\ -3 & 2 & 7\end{array}\right], \quad \underline{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Theorem: $A \underline{x}=\underline{b}$ can be solved if and only if
iff $\underline{b} \in$ of the columns of A.

Egg. $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ -4 & 2 & 6 \\ -3 & 2 & 7\end{array}\right]$
Question: can I solve $A \underline{x}=\underline{b}$ for any choice of \underline{b} ?
Ie. Is every vector $\underline{b} \in \mathbb{R}^{3}$ in

Theorem: Let A be an $m \times n$ matrix.
The following four statements are equivalent.
(a) $A \underline{x}=\underline{b}$ can be solved for \underline{x}, for any $\underline{b} \in \mathbb{R}^{m}$.
(b) Every vector $\underline{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot in each row.

Eg. Let $A=\left(\begin{array}{cccc}3 & 5 & -4 & 1 \\ -3 & -2 & 4 & 2 \\ 6 & 1 & -8 & -7\end{array}\right)$. Do the columns of A span \mathbb{R}^{3} ? $\downarrow \operatorname{rref}$ (MATLAB)

$$
\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -4 / 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Question: Is $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in the span of the columns of A ?

$$
\left[\begin{array}{cccc:c}
1 & 3 & 4 & 0 & 0 \\
-4 & 2 & -6 & 4 & 0 \\
3 & -2 & -7 & 2 & 1
\end{array}\right] \xrightarrow[\operatorname{rref}]{ }\left[\begin{array}{cccc:c}
1 & 0 & -4 / 3 & -4 / 3 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

