Today: \oint 1.4: The Matrix Equation $A \underline{x}=\underline{b}$
\& § 1.5: Solution Sets
Next: $\{1.7$: Linear Independence
Reminders:
My MathLab Homework \# \& \& 2: Due Man, Jan 22 MATLAB Homework wi: Due TONIGHT!

Theorem: Let A be an $m \times n$ matrix.
The following four statements are equivalent.
(a) $A \underline{x}=\underline{b}$ can be solved for \underline{x}, for any $\underline{b} \in \mathbb{R}^{m}$.
(b) Every vector $\underline{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot in each row.

Eg. Let $A=\left[\begin{array}{cccc}3 & 5 & -4 & 1 \\ -3 & -2 & 4 & 2 \\ 6 & 1 & -8 & -7\end{array}\right]$. Do the columns of A span \mathbb{R}^{3} ? $\downarrow \operatorname{rref}$ (MATLAB)

$$
\left[\begin{array}{cccc}
1 & 0 & -4 / 3 & -4 / 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Question: Is $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in the span of the columns of A ?

$$
\left[\begin{array}{cccc:c}
3 & 5 & -4 & 1 & 0 \\
-3 & -2 & 4 & 2 & 0 \\
6 & 1 & -8 & -7 & 1
\end{array}\right]
$$

1.5 Solution Sets of Linear Systems

Def: A system of equations is homogeneous if it has the form $A \underline{x}=\underline{0} \longleftarrow$ zero vector $\left[\begin{array}{l}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$

Key observation: there is always at least one solution: $\underline{x}=\underline{0}$. But there may be more.

$$
\left[\begin{array}{ccc:c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc:c}
1 & 1 & 2 & -1
\end{array} 0\right.
$$

parametric solution

Inhomogeneous systems are linear systems that are not homogeneous. ie. $A \underline{x}=\underline{b}$ where $\underline{b} \neq 0$.

$$
\operatorname{Eg}\left[\begin{array}{cccc:c}
1 & 1 & 2 & -1 & 4 \\
1 & 0 & 1 & 2 & 3
\end{array}\right]
$$

- compare to

$$
\left[\begin{array}{llll:l}
1 & 1 & 2 & -1 & 4 \\
1 & 0 & 1 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
3 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Eg. }\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] ; \\
& \text { we saw } \left.\left[\begin{array}{ccc:c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \xrightarrow{x_{1}} \begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

we arse saw

$$
\left[\begin{array}{ccc:c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 1
\end{array}\right] \xrightarrow{\operatorname{rrbf}}\left[\begin{array}{ccc:c}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Theorem. Let A be a matrix. Denote the (parametric) solution set of the homogeneous equation

$$
A \underline{x}=\underline{0}
$$

as V_{h}
(a) Even though $A \underline{X}=\underline{0}$ is always consistent ($\underline{x}=\underline{0}$ is always in V_{h}), for given $b \neq 0$, the equation $A \underline{X}=\underline{b}$ may be inconsistent.
(b) If $A \underline{x}=\underline{b}$ is consistent lie \underline{b} is in the span of the columns of A) and if $x=R$ is any particular Solution, then the general solution is $\underline{x}=f+v_{h}$

