Today: $\oint 1.7$: Linear Independence
Next: $\{1.8:$ Linear Transformations Reminders:
MyMathLab Homework \# \& \& 2: Due TONIGHT !
MATLAB Homework \#1: Due TONIGHT!
MATLAB Homework \#2: Due this Friday.
Midterm 1: Next Wed, Jan 31, 8-1 0pm.
Office hour: tomorrow (Tue) 9:30-11:00 am.

Consider the following three vectors

How about these three vectors:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]}
\end{aligned}\left[\begin{array}{cc}
3 \\
-1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{c}
7 \\
-7 \\
3 \\
4
\end{array}\right]
$$

Definition. A collection of vectors $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is called linearly dependent if at least one of them is in the span of the others.
If a set of vectors B not linearly dependent, we call the vectors linearly independent.

Theorem. Vectors $u_{1}, u_{2}, \ldots, u_{n}$ are linearly independent if and only if the vector equation

$$
x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{n} u_{n}=0
$$

has only the trivial solution $x_{1}=x_{2}=\ldots=x_{n}=0$.
Corollary. The columns of a matrix A are linearly independent iff $A \underline{x}=\underline{0}$ has only the trivial solution $\underset{\sim}{x}=\underline{0}$.

Eg. $\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$
E.g. $\left[\begin{array}{ccc}1 & 3 & 7 \\ 2 & -1 & -7 \\ 0 & 1 & 3 \\ 1 & 2 & 4\end{array}\right]$

What if one of the vectors is 0 ?

What if there is only one vector?

What if there are only two vectors?

Eg. $\left(\begin{array}{c}3 \\ -3\end{array}\right],\left[\begin{array}{c}5 \\ -2\end{array}\right],\left[\begin{array}{c}-4 \\ 4\end{array}\right]$

$$
\text { E.g. }\left(\begin{array}{c}
1 \\
-2 \\
-4
\end{array}\right] \cdot\left(\begin{array}{c}
4 \\
-7 \\
-5
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
5 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 4 & -3 & 0 \\
-2 & -7 & 5 & 1 \\
-4 & -5 & 7 & 5
\end{array}\right) \xrightarrow{\text { rref }}\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Theorem: The columns of a matrix A are linearly independent rf A has a pivot position in every column.
(Otherwise, the first non-pivotal column is a linear combination of the preceding ones, with coefficients read off of the ref.)
Corollary: If A has more columns than rows, its columns are linearly dependent.

