Today: $\oint 1.8:$ Linear Transformations
Next: \oint 1.9: The Matrix of a Lin. Transf.
Reminders:
My MathLab Homework \#3: Due Man, Jan 29. MATLAB Homework *2: Due this Friday.
Midterm 1: Next Wed, Jan 31, 8-10pm.
\rightarrow practice midterms posted on webpage.
\rightarrow seat assignment posted en Triton Ed.

In previous math classes, you've studied functions.

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& \text { domain }
\end{aligned}
$$

Eg. $f(x)=3 x$. or $g(x)=x^{2}-2 x$. or $h(x)=\sin (x)$
image: The image of 0 under g is $g(0)=0$.
Is 0 the only thing in the domain whose image is 0 ?
range: The range of f is the set of all images of things in the domain.

An old-fashioned word for function is transformation.
Definition A matrix transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function given by matrix multiplication by some $m \times n$ matrix A.
Eg. $A=\left[\begin{array}{ccc}1 & -5 & -7 \\ -3 & 7 & 5\end{array}\right] \sim T: \mathbb{R} \longrightarrow \mathbb{R} ;$

$$
T()
$$

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & -5 & -7 \\
-3 & 7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

The image of $\left[\begin{array}{c}0 \\ 1 / 2 \\ -1 / 2\end{array}\right]$ under T is:
Does T map any other vector in \mathbb{R}^{3} to this vector in \mathbb{R}^{2} ?

What is the range of T ?

Eg. Lest $A=\left[\left.\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array} \right\rvert\,\right.$. Is $\left.\underline{b}=\left\lvert\, \begin{array}{c}3 \\ 2 \\ -5\end{array}\right.\right]$ in the range of $T(\underline{x})=A \underline{x}$?

$$
\left[\begin{array}{rr:c}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ll:l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is the range of T ?

Some geometric examples.

* $T(\underline{x})=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \underline{x}$
* $T(\underline{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \underline{x}$
* $T(\underline{x})=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \underline{x}$

Linearity Matrix multiplication behaves well under addition: $A(\underline{u}+\underline{v})=$
scalar multiplication: $A(c \underline{v})$
A linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

is a function with the properties

$$
\begin{array}{ll}
T(\underline{u}+\underline{v})= & \text { for all } \underline{u}, \underline{v} \in \mathbb{R}^{n} \\
T(c \underline{v})= & \text { for all } \underline{v} \in \mathbb{R}^{n} .
\end{array}
$$

Matrix transformations are examples of linear transformations

Properties.

$$
\begin{aligned}
& T(\underline{0}) \\
& T\left(c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+\cdots+c_{k} \underline{v}_{k}\right)= \\
& \quad c_{1} T\left(\underline{v}_{1}\right)+c_{2} T\left(\underline{v}_{2}\right)+\cdots+c_{k} T\left(\underline{v}_{k}\right)
\end{aligned}
$$

Eg. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{n}$ linear.

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

