This week:

homework #2 (due Friday Oct, 11 11:59pm)
E.g. (from last lecture)

An urn has 4 red and 7 blue balls. Choose two balls.

\[A = \{ \text{1st ball is red} \} \]
\[B = \{ \text{2nd ball is blue} \} \]

1) choose balls with replacement

\[P(A) = \frac{4}{11} \]
\[P(B) = \frac{7}{11} \]
\[P(A \cap B) = \frac{4 \cdot 7}{11 \cdot 11} = P(A)P(B) \]

A and B independent

2) choose balls without replacement

\[P(A) = \frac{4 \cdot 10}{11 \cdot 10} = \frac{4}{11} \]
\[P(B) = \frac{10 \cdot 7}{11 \cdot 10} = \frac{7}{11} \]
\[P(A \cap B) = \frac{4 \cdot 7}{11 \cdot 10} \neq \frac{4 \cdot 7}{11 \cdot 11} \]

A and B are not independent
A and B independent \iff A and B^c independent

Proof. (\implies) Suppose that A and B are independent.

\[
P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)(1 - P(B))
\]

\[
= P(A)P(B^c)
\]

\[
A = (A \cap B) \cup (A \cap B^c)
\]

\[
\text{\& disjoint}
\]

\[
P(A) = P(A \cap B) + P(A \cap B^c)
\]
More than two events?

Def. A collection A_1,\ldots,A_n of events is mutually independent if

for any subcollection $A_{i_1}, A_{i_2},\ldots, A_{i_k}$

$$(1 \leq i_1 < i_2 < \cdots < i_k \leq n)$$

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) P(A_{i_2}) \cdots P(A_{i_k})$$

E.g. When $n=3$, this means that we must have

$$P(A_1 \cap A_2) = P(A_1) P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1) P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2) P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2) P(A_3)$$
Important example

Toss a coin three times

\[A = \{ \text{there is exactly 1 Tails in the first two} \} \]
\[B = \{ \text{there is exactly 1 Tails in the last two} \} \]
\[C = \{ \text{there is exactly 1 Tails in first and last toss} \} \]

\[A = \{ (H,T,*), (T,H,*), (T,T,H) \} \]
\[B = \{ (*,H,T), (*,T,H) \} \]
\[C = \{ (H,*), (T,*) \} \]

\[P(A) = \frac{4}{8} = \frac{1}{2} = P(B) = P(C) \]
\[P(A \cap B) = \frac{2}{8} = \frac{1}{4} = P(A \cap C) = P(B \cap C) \]

\[A \cap B \cap C = \emptyset \]
\[P(A \cap B \cap C) = 0 \]

\(\Rightarrow \) \(A, B, C \) are pairwise independent.
Random variables

(Ω, \mathcal{F}, P)-probability space

Definition. A (measurable) function $X: \Omega \to \mathbb{R}$ is called a **random variable**.

For any $B \subseteq \mathbb{R}$ we can compute $P(X \in B)$.
Def. Let X be a random variable (rv). The probability distribution of X is the collection of probabilities $P(X \in B)$ for all $B \subset \mathbb{R}$.

Remark. Strictly speaking, $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ Borel sets

Examples
1) Coin toss: $\Omega = \{H, T\}$, $X(H) = 0$, $X(T) = 1$
 \[P(X = 0) = P(\{H\}) = \frac{1}{2} = P(X = 1) \] (fair coin)

2) Roll a die: $\Omega = \{1, 2, \ldots, 6\}$, $X(\omega) = \omega$
 For any $1 \leq i \leq 6$ \[P(X = i) = \frac{1}{6} \]
3) Roll a die twice: \(\Omega = \{(i,j): i,j \in \{1, \ldots, 6\}\} \)

\[X_1((i,j)) = i \) (first number) \(X_2((i,j)) = j \) (second number) \]

for \(1 \leq i \leq 6 \) \(P(X_1 = i) = \frac{1}{6} \) \(P(X_2 = i) = \frac{1}{6} \)

\[S = X_1 + X_2 \]

\[
\begin{align*}
P(S = 2) &= \frac{1}{36} \\
P(S = 3) &= \frac{2}{36} \\
P(S = 4) &= \frac{3}{36} \\
P(S = 5) &= \frac{4}{36} \\
P(S = 6) &= \frac{5}{36} \\
P(S = 7) &= \frac{6}{36} \\
P(S = 8) &= \frac{5}{36} \\
P(S = 9) &= \frac{4}{36} \\
P(S = 10) &= \frac{3}{36} \\
P(S = 11) &= \frac{2}{36} \\
P(S = 12) &= \frac{1}{36}
\end{align*}
\]
4) Choosing a point from unit disk \(\Omega \) at random.

\[
\Omega = \{ \mathbf{w} \in \mathbb{R}^2 : \text{dist}(\mathbf{w}, \mathbf{0}) \leq 1 \}
\]

\(X(\mathbf{w}) = \text{dist}(\mathbf{w}, \mathbf{0}) \)

For any \(r < 0 \), \(P(X \leq r) = 0 \)

For any \(r > 1 \), \(P(X \leq r) = 1 \)

For any \(r \in [0, 1] \), \(P(X \leq r) = \frac{\text{size } D_r}{\text{size } D_1} = \frac{\pi r^2}{\pi} = r^2 \)

\(\{ X \leq r \} = \{ X \in (-\infty, r] \} \)

\text{missing in class}
Def. Random variable \(X \) is a discrete rv is there exists a finite or infinite countable collection of points \(\{a_i : i \in \mathbb{N}\} \subset \mathbb{R} \) such that \(\sum_i P(X = a_i) = 1 \)

Example (lecture 3). Toss a coin until first \(T \).

\(X \) = total number of tosses.

(Already computed before) for any \(i = 1, 2, ... \)

\[P(X = i) = \frac{1}{2^i} \]

\[\sum_i P(X = i) = \sum_i \frac{1}{2^i} = 1 \quad (\text{geometric series}) \]
Discrete rv X is completely described by its probability mass function (pmf) p_X given by

$$p_X(k) = P(X = k)$$

for all possible values of X.

Example. $S =$ sum of two dice

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(k)$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What if for every $x \in \mathbb{R}$ $P(X = x) = 0$?
Probability density function

Def. Let X be a rv. If function $f: \mathbb{R} \to \mathbb{R}$ satisfies

$$P(X \leq b) = \int_{-\infty}^{b} f(x) \, dx$$

then f is a probability density function of X

Remark. Definition implies that for $B \subset \mathbb{R}$

$$P(X \in B) = \int_{B} f_X(x) \, dx$$
E.g. Distance to 0 from a random point in a disk

\[\int_{-\infty}^{\infty} f_X(x) \, dx = P(X \leq r) = \begin{cases} 0, & r > 0 \\ r^2, & 0 \leq r \leq 1 \\ 1, & r > 1 \end{cases} \]
Important example: uniform distribution on \([a, b]\) in \(\mathbb{R}\)

Definition Let \(a, b \in \mathbb{R}\), \(a \leq b\).

\(X\) has uniform distribution on \([a, b]\)
(\text{denoted } X \sim \text{Uniform}([a, b]))

if its pdf is given by
\[
 f_X(x) = \begin{cases}
 0, & x < a \\
 \frac{1}{b-a}, & a \leq x \leq b \\
 0, & x > b
 \end{cases}
\]