SOLUTIONS

1. (10 points) Consider the parametrization

$$
\Phi(u, v)=\left(\begin{array}{c}
u^{2}+v^{2} \\
u+v \\
u-v
\end{array}\right) .
$$

(a) Show that Φ parametrizes the surface $2 x=y^{2}+z^{2}$.

At any point (x, y, z) in the image of Φ, we have $2 x=2\left(u^{2}+v^{2}\right)$, and we also have $y^{2}+z^{2}=(u+v)^{2}+(u-v)^{2}=u^{2}+2 u v+v^{2}+u^{2}-2 u v+v^{2}=2 u^{2}+2 v^{2}=2\left(u^{2}+v^{2}\right)=2 x$. So Φ parametrizes (a part of) the surface $2 x=y^{2}+z^{2}$.
(b) Find an equation for the tangent plane at the point $(2,2,0)$.

The tangent plane to the surface at the point $\Phi(u, v)$ has normal vector $\mathbf{T}_{u} \times \mathbf{T}_{v}$. So we need to find which parameters (u, v) give us the point $(2,2,0)$. This means we need to solve the equations

$$
\begin{aligned}
u^{2}+v^{2} & =2 \\
u+v & =2 \\
u-v & =0
\end{aligned}
$$

The last two equations give us a unique solution for (u, v) : the last equation says $v=u$, and subbing this into the second equation gives us $u+u=2$, so $u=1$, and therefore $v=1$. We must double check that this gives us a point on the surface, meaning the first equation is satisfied: indeed $1^{2}+1^{2}=2$.
Now, we calculate the derivative $D \Phi(u, v)$ to ge the tangent vectors \mathbf{T}_{u} and \mathbf{T}_{v} :

$$
D \Phi(u, v)=\left[\begin{array}{cc}
2 u & 2 v \\
1 & 1 \\
1 & -1
\end{array}\right]=\left[\mathbf{T}_{u} \mathbf{T}_{v}\right]
$$

Substituting in the point in question $(u, v)=(1,1)$, we have

$$
\mathbf{T}_{u}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{T}_{v}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], \quad \text { and therefore } \quad \mathbf{T}_{u} \times \mathbf{T}_{v}=\left[\begin{array}{c}
-2 \\
4 \\
0
\end{array}\right] .
$$

Hence, the tangent plane at the point $(2,2,0)$ is

$$
-2(x-2)+4(y-2)+0(z-0)=0, \quad \text { or, simplified } \quad-x+2 y-2=0
$$

2. (15 points) The plane $x+2 y-z=0$ intersects the cylinder $x^{2}+y^{2}=4$ in a curve \mathbf{c}.
(a) Parametrize \mathbf{c} so that its projection into the (x, y)-plane is traversed counterclockwise.

The projection of the cylinder into the (x, y)-plane is a circle, which we can parametrize counterclockwise in the usual way $(x, y)=(2 \cos t, 2 \sin t)$ for $0 \leq t \leq 2 \pi$. Now the actual intersection is also in the surface $x+2 y-z=0$, which means that the z coordinate satisfies $z=x+2 y=2 \cos t+4 \sin t$. Thus, the a parametrization that is counterclockwise relative to the (x, y)-plane is

$$
\mathbf{c}(t)=(2 \cos t, 2 \sin t, 2 \cos t+4 \sin t)
$$

(b) Compute the line integral $\oint_{\mathbf{c}} \mathbf{F} \cdot \mathbf{d s}$, where $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}+\mathbf{k}$.

Using the parametrization from part (a), we have

$$
\dot{\mathbf{c}}(t)=(-2 \sin t, 2 \cos t,-2 \sin t+4 \cos t) .
$$

Hence, appealing to the definition of line integrals, we have

$$
\begin{aligned}
\oint_{\mathbf{c}} \mathbf{F} \cdot \mathbf{d} \mathbf{s} & =\int_{0}^{2 \pi} \mathbf{F}(2 \cos t, 2 \sin t, 2 \cos t+4 \sin t) \cdot(-2 \sin t, 2 \cos t,-2 \sin t+4 \cos t) d t \\
& =\int_{0}^{2 \pi}(-2 \sin t, 2 \cos t, 1) \cdot(-2 \sin t, 2 \cos t,-2 \sin t+4 \cos t) d t \\
& =\int_{0}^{2 \pi} 4 \sin ^{2} t+4 \cos ^{2} t-2 \sin t+4 \cos t d t .
\end{aligned}
$$

The integrant simplifies to $4-2 \sin t+4 \cos t$. Since we are integrating over a full period, the sin and cos terms integrate to 0 , and we are simply left with

$$
\int_{0}^{2 \pi} 4 d t=8 \pi
$$

(c) Is the vector field \mathbf{F} from part (b) the gradient of a function? Explain why or why not.

No, it is not the gradient of any function. Indeed, since \mathbf{c} is a closed curve, the Fundamental Theorem of Calculus tells us that, for any smooth function f,

$$
\int_{\mathbf{c}} \nabla f \cdot \mathrm{ds}=0 .
$$

But, as calculated in (b), in this case the line integral is not 0 . So there cannot be any function f with $\mathbf{F}=\nabla f$.
3. (10 points) The glass dome of a futuristic greenhouse is the surface $z=8-2 x^{2}-2 y^{2}$; the greenhouse has a flat floor at height $z=0$. The temperature T throughout the greenhouse is given by the function

$$
T(x, y, z)=x^{2}+y^{2}+2(z-2)^{2} .
$$

This gives rise to a temperature gradient $\mathbf{F}=-\nabla T$.
(a) Parametrize the glass surface (not including the glass floor). Make sure the normal vector is outward pointing.
Since the greenhouse surface is the graph of a function, we will use x and y as parameters. That is, the parametrization will be

$$
\Phi(x, y)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
8-2 x^{2}-2 y^{2}
\end{array}\right] .
$$

We must determine the parameter range: this is given by the fact that the surface ends at the floor $z=0$. This means the only points in the surface are where $z \geq 0$, which means that $8-2 x^{2}-2 y^{2} \geq 0$, which simplifies to $x^{2}+y^{2} \leq 4$, the disk of radius 2 . Thatis our parameter range.
Finally, we need to check if we indeed chose a parametrization with outward pointing normal vector. We compute the normal vector by calculating the derivative $D \Phi(x, y)$ of the paramtrization to get the tangent vectors:

$$
D \Phi(x, y)=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-4 x & -4 y
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{T}_{x} & \mathbf{T}_{y}
\end{array}\right]
$$

Now we take the cross product to find the normal vector:

$$
\mathbf{T}_{x} \times \mathbf{T}_{y}=\left[\begin{array}{c}
4 x \\
4 y \\
1
\end{array}\right]
$$

Notice that the z-component of this normal vector is positive, which means it points $u p$. That is indeed the outward pointing direction from the concave surface, so we chose the right orientation for the parametrization.
(b) Calculate the total heat flux out of the greenhouse.

The temperature gradient is $\mathbf{F}=-\nabla T=-[2 x, 2 y, 4(z-2)]$, and so the heat flux is

$$
\begin{aligned}
\iint \mathbf{F} \cdot \mathbf{d S} & =\iint_{x^{2}+y^{2} \leq 4} \mathbf{F}(\Phi(x, y)) \cdot \mathbf{T}_{x} \times \mathbf{T}_{y} d x d y \\
& =\iint_{x^{2}+y^{2} \leq 4}\left[\begin{array}{c}
-2 x \\
-2 y \\
-4\left(6-2 x^{2}-2 y^{2}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
4 x \\
4 y \\
1
\end{array}\right] d x d y \\
& =\iint_{x^{2}+y^{2} \leq 4}\left(-8 x^{2}-8 y^{2}-24+8 x^{2}+8 y^{2}\right) d x d y=\iint_{x^{2}+y^{2} \leq 4}-24 d x d y .
\end{aligned}
$$

This just gives -24 times the area of the disk of radius 2, so the answer is $-24 \cdot \pi(2)^{2}=$ -96π.
4. (10 points) Let S be the piece of the sphere of radius 1 , centered at $\mathbf{0}$, for which $x \geq 0, z \geq 0$, and $y \geq x$. Compute the scalar surface integral $\iint_{S} \frac{1}{1+z} d S$.
We use the spherical coordinate parametrization of the sphere

$$
\Phi(\phi, \theta)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) .
$$

The conditions $y \geq x \geq 0$ mean that $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$. The condition $z \geq 0$ means that $0 \leq \phi \leq \frac{\pi}{2}$. Finally, in spherical coordinates on the unit sphere, we have $d S=\sin \phi d \phi d \theta$. So the surface integral in question is

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos \phi} \sin \phi d \phi d \theta
$$

The integrand does not vary with θ, so we integrate this out right away to get

$$
\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos \phi} \sin \phi d \phi
$$

Now we make the change of variables $u=\cos \phi$, so $d u=-\sin \phi d \phi$. Changing the limits of integration accordingly, we get

$$
\frac{\pi}{4} \int_{1}^{0} \frac{1}{1+u}(-d u)=\frac{\pi}{4} \ln |1+u|_{0}^{1}=\frac{\pi}{4} \ln 2 .
$$

