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For the next ten weeks, we will be studying the eigenvalues of random matrices. A random
matrix is simply a matrix (for now square) all of whose entries are random variables. That is:
X is an n × n matrix with {Xij}1≤i,j≤n random variables on some probability space (Ω,F ,P).
Alternatively, one can think of X as a random vector in Rn2 (or Cn2), although it is better to think
of it as taking values in Mn(R) or Mn(C) (to keep the matrix structure in mind). For any fixed
instance ω ∈ Ω, then, X(ω) is an n× n matrix and (maybe) has eigenvalues λ1(ω), . . . , λn(ω). So
the eigenvalues are also random variables. We seek to understand aspects of the distributions of
the λi from knowledge of the distribution of theXij . To begin, in order to guarantee that the matrix
actually has eigenvalues (and they accurately capture the behavior of the linear transformation X),
we will make the assumption that X is a symmetric / Hermitian matrix.

1. WIGNER MATRICES

We begin by fixing an infinite family of real-valued random variables {Yij}j≥i≥1. Then we can
define a sequence of symmetric random matrices Yn by

[Yn]ij =

{
Yij, i ≤ j

Yji, i > j
.

The matrix Yn is symmetric and so has n real eigenvalues, which we write in increasing order
λ1(Yn) ≤ · · · ≤ λn(Yn). In this very general setup, little can be said about these eigenvalues.
The class of matrices we are going to begin studying, Wigner matrices, are given by the following
conditions.

• We assume that the {Yij}1≤i≤j are independent.
• We assume that the diagonal entries {Yii}i≥1 are identically-distributed, and the off-diagonal

entries {Yij}1≤i<j are identically-distributed.
• We assume that E(Y 2

ij) <∞ for all i, j. (I.e. r2 = max{E(Y 2
11),E(Y 2

12)} <∞.)

It is not just for convenience that we separate out the diagonal terms; as we will see, they really do
not contribute to the eigenvalues in the limit as n → ∞. It will also be convenient, at least at the
start, to strengthen the final assumption to moments of all orders: for k ≥ 1, set

rk = max{E(Y k
11),E(Y k

12)}.
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To begin, we will assume that rk < ∞ for each k; we will weaken this assumption later. Note:
in the presence of higher moments, much of the following will not actually require identically-
distributed entries. Rather, uniform bounds on all moments suffice. Herein, we will satisfy our-
selves with the i.i.d. case.

One variation we will allow from i.i.d. is a uniform scaling of the matrices as n increases. That
is: let αn be a sequence of positive scalars, and set

Xn = αnYn.

In fact, there is a natural choice for the scaling behavior, in order for there to be limiting behavior
of eigenvalues. That is to say: we would like to arrange (if possible) that both λ1(Xn) and λn(Xn)
converge to finite numbers (different from each other). An easy way to test this is suggested by the
following simple calculation:

λ2
1 + · · ·+ λ2

n ≤ n · n
max
j=1
{λ2

j} = n ·max{λ2
1, λ

2
n}.

Hence, in order for λ1 and λn to both converge to distinct constants, it is necessary for the sequence
1
n
(λ2

1 + · · · + λ2
n) to be bounded. Fortunately, this sequence can be calculated without explicit

reference to eigenvalues: it is the (normalized) Hilbert-Schmidt norm (or Fröbenius norm) of a
symmetric matrix X:

‖X‖2
2 =

1

n

n∑
i=1

λi(Xn)2 =
1

n

∑
1≤i,j≤n

X2
ij.

Exercise 1.0.1. Verify the second equality above, by showing (using the spectral theorem) that
both expressions are equal to the quantity 1

n
Tr (X2).

For our random matrix Xn above, then, we can calculate the expected value of this norm:

E‖Xn‖2
2 =

1

n
α2
n

∑
1≤i,j≤n

E(Y 2
ij) =

α2
n

n

n∑
i=1

E(Yii)
2 +

2α2
n

n

∑
1≤i<j≤n

E(Y 2
ij)

= α2
n · E(Y 2

11) + (n− 1)α2
n · E(Y 2

12).

We now have two cases. If E(Y 2
12) = 0 (meaning the off-diagonal terms are all 0 a.s.) then we see

the “correct” scaling for αn is αn ∼ 1. This is a boring case: the matrices Xn are diagonal, with
all diagonal entries identically distributed. Thus, these entries are also the eigenvalues, and so the
distribution of eigenvalues is given by the common distribution of the diagonal entries. We ignore
this case, and therefore assume that E(Y 2

12) > 0. Hence, in order for E‖Xn‖2
2 to be a bounded

sequence (that does not converge to 0), we must have αn ∼ n−1/2.

Definition 1.1. Let {Yij}1≤i≤j and Yn be as above, with r2 < ∞ and E(Y 2
12) > 0. Then the

matrices Xn = n−1/2Yn are Wigner matrices.

It is standard to abuse notation and refer to the sequence Xn as a a Wigner matrix. The preceding
calculation shows that, if Xn is a Wigner matrix, then the expected Hilbert-Schmidt norm E‖Xn‖2

2

converges (as n → ∞) to the second moment of the (off-diagonal) entries. As explained above,
this is prerequisite to the bulk convergence of the eigenvalues. As we will shortly see, it is also
sufficient.

Consider the following example. Take the entires Yij to be N(0, 1) normal random variables.
These are easy to simulate with MATLAB. Figure 1 shows the histogram of all n = 4000 eigen-
values of one instance of the corresponding Gaussian Wigner matrix X4000. The plot suggests that
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λ1(Xn)→ −2 while λn(Xn)→ 2 in this case. Moreover, although random fluctuations remain, it
appears that the histogram of eigenvalues (sometimes called the density of eigenvalues) converges
to a deterministic shape. In fact, this is universally true. There is a universal probability distribution
σt such that the density of eigenvalues of any Wigner matrix (with second moment t) converges to
σt. The limiting distribution is known as Wigner’s semicircle law:

σt(dx) =
1

2πt

√
(4t− x2)+ dx.
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FIGURE 1. The density of eigenvalues of an instance of X4000, a Gaussian Wigner matrix.
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2. WIGNER’S SEMICIRCLE LAW

Theorem 2.1 (Wigner’s Semicircle Law). Let Xn = n−1/2Yn be a sequence of Wigner matrices,
with entries satisfying E(Yij) = 0 for all i, j and E(Y 2

12) = t. Let I ⊂ R be an interval. Define the
random variables

En(I) =
# ({λ1(Xn), . . . , λn(Xn)} ∩ I)

n
Then En(I)→ σt(I) in probability as n→∞.

The first part of this course is devoted to proving Wigner’s Semicircle Law. The key observation
(that Wigner made) is that one can study the behavior of the random variables En(I) without
computing the eigenvalues directly. This is accomplished by reinterpreting the theorem in terms of
a random measure, the empirical law of eigenvalues.

Definition 2.2. Let Xn be a Wigner matrix. Its empirical law of eigenvalues µXn is the random
discrete probability measure

µXn =
1

n

n∑
j=1

δλj(Xn).

That is: µXn is defined as the (random) probability measure such that, for any continuous function
f ∈ C(R), the integral

∫
f dµXn is the random variable∫

f dµXn =
1

n

n∑
j=1

f(λj(Xn)).

Note that the random variables En(I) in Theorem 2.1 are given by En(I) =
∫
1I dµXn . Although

1I is not a continuous function, a simple approximation argument shows that the following theorem
(which we also call Wigner’s semicircle law) is a stronger version of Theorem 2.1.

Theorem 2.3 (Wigner’s Semicircle Law). Let Xn = n−1/2Yn be a sequence of Wigner matrices,
with entries satisfying E(Yij) = 0 for all i, j and E(Y 2

12) = t. Then the empirical law of eigenvalues
µXn converges in probability to σt as n→∞. Precisely: for any f ∈ Cb(R) (continuous bounded
functions) and each ε > 0,

lim
n→∞

P
(∣∣∣∣∫ f dµXn −

∫
f dσt

∣∣∣∣ > ε

)
= 0.

In this formulation, we can use the spectral theorem to eliminate the explicit appearance of
eigenvalues in the law µXn . Diagonalize Xn = U>n ΛnUn. Then (by definition)∫

f dµXn =
1

n

n∑
j=1

f(λj(Xn)) =
1

n

n∑
j=1

f([Λn]jj)

=
1

n
Tr f(Λn) =

1

n
Tr
(
U>n f(Λn)Un

)
=

1

n
Tr f(Xn).

The last equality is the statement of the spectral theorem. Usually we would use it in reverse to
define f(Xn) for measurable f . However, in this case, we will take f to be a polynomial. (Since
both µXn and σt are compactly-supported, any polynomial is equal to a Cb(R) function on their
supports, so this is consistent with Theorem 2.3.) This leads us to the third, a priori weaker form
of Wigner’s law.
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Theorem 2.4 (Wigner’s law for matrix moments). Let Xn = n−1/2Yn be a sequence of Wigner
matrices, with entries satisfying E(Yij) = 0 for all i, j and E(Y 2

12) = t. Let f be a polynomial.
Then the random variables

∫
f dµXn converge to

∫
f dσt in probability as n→∞. Equivalently:

for fixed k ∈ N and ε > 0,

lim
n→∞

P
(∣∣∣∣ 1n Tr (Xk

n)−
∫
xk σt(dx)

∣∣∣∣ > ε

)
= 0.

Going back from Theorem 2.4 to Theorem 2.3 is, in principal, just a matter of approximating
any Cb function by polynomials on the supports of µXn and σt. However, even though µXn has
finite support, there is no obvious bound on

⋃
n suppµXn , and this makes such an approximation

scheme tricky. In fact, when we eventually fully prove Theorem 2.3 (and hence Theorem 2.1
– approximating 1I by Cb functions is routine in this case), we will take a different approach
entirely. For now, however, it will be useful to have some intuition for the theorem, so we begin
by presenting a scheme for proving Theorem 2.4. The place to begin is calculating the moments∫
xk σt(dx).

Exercise 2.4.1. Let σt be the semicircle law of variance t defined above.
(a) With a suitable change of variables, show that

∫
xkσt(dx) = tk/2

∫
xkσ1(dx).

(b) Letmk =
∫
xk σ1(dx). By symmetry,m2k+1 = 0 for all k. Use a trigonometric substitution

to show that

m0 = 1, m2k =
2(2k − 1)

k + 1
m2(k−1).

This recursion completely determines the even moments; show that, in fact,

m2k = Ck ≡
1

k + 1

(
2k

k

)
.

The numbers Ck in Exercise 2.4.1 are the Catalan numbers. No one would disagree that they
form the most important integer sequence in combinatorics. In fact, we will use some of their
combinatorial interpretations to begin our study of Theorem 2.4.
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3. MARKOV’S INEQUALITY AND CONVERGENCE OF EXPECTATION

To prove Theorem 2.4, we will begin by showing convergence of expectations. Once this is
done, the result can be proved by showing the variance tends to 0, because of:

Lemma 3.1 (Markov’s Inequality). Let Y ≥ 0 be a random variable with E(Y ) < ∞. Then for
any ε > 0,

P(Y > ε) ≤ E(Y )

ε
.

Proof. We simply note that P(Y > ε) = E(1{Y >ε}). Now, on the event {Y > ε}, 1
ε
Y > 1; on

the complement of this event, 1{Y >ε} = 0 while 1
ε
Y ≥ 0. Altogether, this means that we have the

pointwise bound
1

ε
Y ≥ 1{Y >ε}.

Taking expectations of both sides yields the result. �

Corollary 3.2. Suppose Xn is a sequence of random variables with E(X2
n) < ∞ for each n.

Suppose that limn→∞ E(Xn) = m, and that limn→∞Var(Xn) = 0. Then Xn → m in probability:
for each ε > 0, limn→∞ P(|Xn −m| > ε) = 0.

Proof. Applying Markov’s inequality to Y = |Xn −m| (with ε2 in place of ε),

P(|Xn −m| > ε) = P((Xn −m)2 > ε2) ≤ E((Xn −m)2)

ε2
.

Now, using the triangle inequality for the L2(P)-norm, we have

E((Xn −m))2 = ‖Xn −m‖2
L2(P) = ‖Xn − E(Xn) + E(Xn)−m‖2

L2(P)

≤
(
‖Xn − E(Xn))‖L2(P) + ‖E(Xn)−m‖L2(P)

)2
.

Both E(Xn) and m are constants, so the second L2(P) norm is simply |E(Xn)−m|; the first term,
on the other hand, is

‖Xn − E(Xn)‖L2(P) =
√

E[(Xn − E(Xn))2] =
√

Var(Xn).

Hence, by Markov’s inequality, we have

P(|Xn −m| > ε) ≤
(
√

Var(Xn) + |E(Xn)−m|)2

ε2
.

The right-hand-side tends to 0 by assumption; this proves the result. �

Remark 3.3. Using the Borel-Cantelli lemma, one can strengthen the result of Corollary 3.2: in-
deed, Xn → m almost surely, and so almost sure convergence also applies to Wigner’s theorem.
(This requires some additional estimates showing that the rate of convergence in probability is
summably fast.) It is customary to state Wigner’s theorem in terms of convergence in probability,
though, because our setup (choosing all entries of all the matrices from one common probability
space) is a little artificial. If the entries of Yn and Yn+1 need not come from the same probability
space, then almost sure convergence has no meaning; but convergence in probability still makes
perfect sense.
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Applying Corollary 3.2 to the terms in Theorem 2.4, this gives a two-step outline for a method
of proof.

Step 1. For each odd k, show that 1
n
ETr (Xk

n) → 0 as n → ∞; for each even k, show that
1
n
ETr (Xk

n)→ Ck/2 as n→∞.

Step 2. For each k, show that Var
(

1
n

Tr (Xk
n)
)
→ 0 as n→∞.

We will presently follow through with those two steps in the next section. The proof is quite
combinatorial. We will also present a completely different, more analytical, proof of Theorem 2.3
in later lectures.

Remark 3.4. Note that the statement of Theorem 2.4 does not require higher moments of Tr (Xk
n)

to exist – the result is convergence in probability (and this is one benefit of stating the convergence
this way). However: Step 1 above involves expectations, and so we will be taking expectations
of terms that involve kth powers of the variables Yij . Thus, in order to follow through with this
program, we will need to make the additional assumption that rk <∞ for all k; the entries of Xn

possess moments of all orders. This is a technical assumption that can be removed after the fact
with appropriate cut-offs; when we delve into the analytical proof later, we will explain this.



MATH 247A: INTRODUCTION TO RANDOM MATRIX THEORY 9

4. FIRST PROOF OF WIGNER’S SEMICIRCLE LAW

In this section, we give a complete proof of Theorem 2.4, under the assumption that all moments
are finite.

4.1. Convergence of matrix moments in Expectation. We begin with Step 1: convergence in
expectation.

Proposition 4.1. Let {Yij}1≤i≤j be independent random variables, with {Yii}i≥1 identically dis-
tributed and {Yij}1≤i<j identically distributed. Suppose that rk = max{E(|Y11|k),E(|Y12|k)} <
∞ for each k ∈ N. Suppose further than E(Yij) = 0 for all i, j and set t = E(Y 2

12). If i > j, define
Yij ≡ Yji, and let Yn be the n× n matrix with [Yn]ij = Yij for 1 ≤ i, j ≤ n. Let Xn = n−1/2Yn

be the corresponding Wigner matrix. Then

lim
n→∞

1

n
ETr (Xk

n) =

{
tk/2Ck/2, k even
0, k odd

.

Proof. To begin the proof, we expand the expected trace terms in terms of the entries. First, we
have

1

n
ETr (Xk

n) =
1

n
ETr [(n−1/2Yn)k] = n−k/2−1ETr (Yk

n). (4.1)

Now, from the (repeated) definition of matrix multiplication, we have for any 1 ≤ i, j ≤ n

[Yk
n]ij =

∑
1≤i2,...,ik≤n

Yii2Yi2i3 · · ·Yik−1ikYikj.

Summing over the diagonal entries and taking the expectation, we get the expected trace:

ETr (Yk
n) =

n∑
i1=1

E([Yk
n]i1i1) =

∑
1≤i1,i2,...,ik≤n

E(Yi1i2Yi2i3 · · ·Yiki1) ≡
∑

i∈[n]k

E(Yi), (4.2)

where [n] = {1, . . . , n}, and for i = (i1, . . . , ik) we define Yi = Yi1i2 · · ·Yiki1 . The term E(Yi) is
determined by the k-index i, but only very weakly. The sum is better indexed by a collection of
walks on graphs arising from the indices.

Definition 4.2. Let i ∈ [n]k be a k-index, i = (i1, i2, . . . , ik). Define a graph Gi as follows:
the vertices Vi are the distinct elements of {i1, i2, . . . , ik}, and the edges Ei are the distinct pairs
among {i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1}. The path wi is the sequence

wi = ({i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1})
of edges.

For example, take i = (1, 2, 2, 3, 5, 2, 4, 1, 4, 2); then

Vi = {1, 2, 3, 4, 5}, Ei = {{1, 2}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 5}} .
The index i which defines the graph now also defines a closed walk wi on this graph. For this
example, we have Yi = Y12Y22Y23Y35Y52Y24Y41Y14Y42Y21, which we can interpret as the walk wi

pictured below, in Figure 2. By definition, the walk wi visits edge of Gi (including any self-edges
present), beginning and ending at the beginning vertex. In particular, this means that the graph
Gi is connected. The walk wi encodes a labeling of the edges: the number of times each edge is
traversed. We will denote this statistic also as wi(e) for each edge e. In the above example, wi(e)
is equal to 2 on the edges e ∈ {{1, 2}, {1, 4}, {2, 4}}, and is equal to 1 for all the other edges
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FIGURE 2. The graph and walk corresponding to the index i = (1, 2, 2, 3, 5, 2, 4, 1, 4, 2).

(including the self-edge {2, 2}). These numbers are actually evident in the expansion Yi: using the
fact that Yij = Yji, we have

Yi = Y 2
12Y

2
14Y

2
24Y22Y23Y25Y35,

and in each case the exponent of Yij is equal to wi({i, j}). This is true in general (essentially by
definition): if we define wi({i, j}) = 0 if the pair {i, j} /∈ Ei, then

Yi =
∏

1≤i≤j≤n

Y
wi({i,j})
ij . (4.3)

Now, all the variables Yij are independent. Since we allow the diagonal vs. off-diagonal terms to
have different distributions, we should make a distinction between the self-edges Es

i = {{i, i} ∈
Ei} and connecting-edges Ec

i = {{i, j} ∈ Ei : i 6= j}. Then we have

E(Yi) =
∏

1≤i≤j≤n

E(Y
wi({i,j})
ij ) =

∏
es∈Esi

E(Y
wi(es)

11 ) ·
∏
ec∈Eci

E(Y
wi(ec)

12 ). (4.4)

That is: the value of E(Yi) is determined by the pair (Gi, wi) (or better yet (Ei, wi)). Let us denote
the common value in Equation 4.4 as Π(Gi, wi).

For any k-index i, the connected oriented graphGi has at most k vertices. Sincewi records all the
non-zero exponents in Yi (that sum to the number of terms k), we have |wi| ≡

∑
e∈Ei

wi(e) = k.
Motivated by these conditions, let Gk denote the set of all pairs (G,w) where G = (V,E) is a
connected graph with at most k vertices, and w is a closed walk covering G satisfying |w| = k.
Using Equation 4.4, we can reindex the sum of Equation 4.2 as

ETr (Yk
n) =

∑
(G,w)∈Gk

∑
i∈[n]k

(Gi,wi)=(G,w)

E(Yi) =
∑

(G,w)∈Gk

Π(G,w) ·#{i ∈ [n]k : (Gi, wi) = (G,w)}.

(4.5)
Combining with the renormalization of Equation 4.1, we have

1

n
ETr (Xk

n) =
∑

(G,w)∈Gk

Π(G,w) · #{i ∈ [n]k : (Gi, wi) = (G,w)}
nk/2+1

. (4.6)
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It is, in fact, quite easy to count the sets of k-indices in Equation 4.6. For any (G,w) ∈ Gk, an
index with that corresponding graph G and walk w is completely determined by assigning which
distinct values from [n] appear at the vertices ofG. For example, consider the pair (G,w) in Figure
2. If i = (i1, i2, . . . , ik) is a k-index with this graph and walk, then reading along the walk we must
have

i = (i1, i2, i2, i3, i5, i2, i4, i1, i4, i2, i1)

and so the set of all such i is determined by assigning 5 distinct values from [n] to the indices
i1, i2, i3, i4, i5. There are n(n − 1)(n − 2)(n − 3)(n − 4) ways of doing this. Following this
example, in general we have:

Lemma 4.3. Given (G,w) ∈ Gk, denote by |G| the number of vertices in G. Then

#{i ∈ [n]k : (Gi, wi) = (G,w)} = n(n− 1) · · · (n− |G|+ 1).

Hence, Equation 4.6 can be written simply as

1

n
ETr (Xk

n) =
∑

(G,w)∈Gk

Π(G,w) · n(n− 1) · · · (n− |G|+ 1)

nk/2 + 1
. (4.7)

The summation is finite (since k is fixed as n → ∞), and so we are left to determined the values
Π(G,w). We begin with a simple observation: let (G,w) ∈ Gk and suppose there exists and edge
e = {i, j} with w(e) = 1. This means that, in the expression 4.4 for Π(G,w), a singleton term
E(Y

w(e)
ij ) = E(Yij) appears. By assumption, the variables Yij are all centered, and so this term is

0; hence, the product Π(G,w) = 0 for any such pair (G,w). This reduces the sum in Equation 4.6
considerably, since we need only consider those w that cross each edge at least twice. We record
this condition as w ≥ 2, so

1

n
ETr (Xk

n) =
∑

(G,w)∈Gk
w≥2

Π(G,w) · n(n− 1) · · · (n− |G|+ 1)

nk/2+1
. (4.8)

The condition w ≥ 2 restricts those graphs that can appear. Since |wi| = k, if each edge in Gi is
traversed at least twice, this means that the number of edges is ≤ k/2.

Exercise 4.3.1. Let G = (V,E) be a connected finite graph. Show that |G| = #V ≤ #E+ 1, and
that |G| = #V = #E + 1 if and only if G is a plane tree.

Hint: the claim is obvious for #V = 1. The inequality can be proved fairly easily by induc-
tion. The equality case also follows by studying this induction (if G has a loop, removing the
neighboring edges of a single vertex reduces the total number of edges by at least three).

Using Exercise 4.3.1, we see that for any graph G = (V,E) appearing in the sum in Equation
4.8, |G| ≤ k/2 + 1. The product n(n− 1) · · · (n− |G|+ 1) is asymptotically equal to n|G|, and so
we see that the sequence n 7→ 1

n
ETr (Xk

n) is bounded. What’s more, suppose that k is odd. Since
|G| ≤ #E + 1 ≤ k/2 + 1 and |G| is an integer, it follows that |G| ≤ (k − 1)/2 + 1 = k/2 + 1/2.
Hence, in this case, all the terms in the (finite n-independent) sum in Equation 4.8 are O(n−1/2).
Thus, we have already proved that

lim
n→∞

ETr (Xk
n) = 0, k odd.

Henceforth, we assume that k is even. In this case, it is still true that most of the terms in the sum
in Equation 4.8 are 0. The following proposition testifies to this fact.
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Proposition 4.4. Let (G,w) ∈ Gk with w ≥ 2.
(a) If there exists a self-edge e ∈ Es in G, then |G| ≤ k/2.
(b) If there exists an edge e in G with w(e) ≥ 3, then |G| ≤ k/2.

Proof. (a) Since the graphG = (V,E) contains a loop, it is not a tree; it follows from Exercise
4.3.1 that #V < #E + 1. But w ≥ 2 implies that #E ≤ k/2, and so #V < k/2 + 1, and
so |G| = #V ≤ k/2.

(b) The sum of w over all edges E in G is k. Hence, the sum of w over E \ {e} is ≤ k − 3.
Since w ≥ 2, this means that the number of edges excepting e is ≤ (k − 3)/2; hence,
#E ≤ (k − 3)/2 + 1 = (k − 1)/2. By the result of Exercise 4.3.1, this means that
#V ≤ (k − 1)/2 + 1 = (k + 1)/2. Since k is even, it follows that |G| = #V ≤ k/2.

�

Combining proposition 4.4 with Equation 4.8 suggest we drastically refine the set Gk. Set Gk/2+1
k

to be the set of pairs (G,w) ∈ Gk where G has k/2 + 1 vertices, contains no self-edges, and the
walk w crosses every edge exactly 2 times. Then

1

n
ETr (Xk

n) =
∑

(G,w)∈Gk/2+1
k

Π(G,w) · n(n− 1) · · · (n− |G|+ 1)

nk/2+1
+Ok(n

−1), (4.9)

where Ok(n
−1) means that the absolute difference of the terms is ≤ Bk/n for some n-independent

constant Bk. Since |G| = k/2 + 1 and n(n − 1) · · · (n − k/2 + 1) ∼ nk/2+1, it follows therefore
that

lim
n→∞

ETr (Xk
n) =

∑
(G,w)∈Gk/2+1

k

Π(G,w).

Let (G,w) ∈ Gk/2+1
k . Since w traverses each edge exactly twice, the number of edges in G is

k/2. Since the number of vertices is k/2 + 1, Exercise 4.3.1 shows that G is a tree. In particular
there are no self-edges (as we saw already in Proposition 4.4) and so the value of Π(G,w) in
Equation 4.4 is

Π(G,w) =
∏
ec∈Ec

E(Y
w(ec)

12 ) =
∏
ec∈Ec

E(Y 2
12) = t#E = tk/2. (4.10)

Hence, we finally have
lim
n→∞

ETr (Xk
n) = tk/2 ·#Gk/2+1

k . (4.11)

Finally, we must enumerate the set Gk/2+1
k . To do so, we introduce another combinatorial structure:

Dyck paths. Given a pair (G,w) ∈ Gk/2+1
k , define a sequence d = d(G,w) ∈ {+1,−1}k recur-

sively as follows. Let d1 = +1. For 1 < j ≤ k, if wj /∈ {w1, . . . , wj−1}, set dj = +1; otherwise,
set dj = −1; then d(G,w) = (d1, . . . , dk). For example, with k = 10 suppose that G is the graph
in Figure 3, with walk

w = ({1, 2}, {2, 3}, {3, 2}, {2, 4}, {4, 5}, {5, 4}, {4, 6}, {6, 4}, {4, 2}, {2, 1}).
Then d(G,w) = (+1,+1,−1,+1,+1,−1,+1,−1,−1,−1). One can interpret d(G,w) as a

lattice path by looking at the successive sums: set P0 = (0, 0) and Pj = (j, d1 + · · · + dj) for
1 ≤ j ≤ k; then the piecewise linear path connecting P0, P1, . . . , Pk is a lattice path. Since
(G,w) ∈ G2

k , each edge appears exactly two times in w, meaning that the ±1s come in pairs in
d(G,w). Hence d1 + · · · + dk = 0. What’s more, for any edge e, the −1 assigned to its second
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FIGURE 3. A graph with associated walk in G2
10.

appearance in w comes after the +1 corresponding to its first appearance; this means that the
partial sums d1 + · · ·+ dj are all ≥ 0. That is: d(G,w) is a Dyck path.

Exercise 4.4.1. Let k be even and let Dk denote the set of Dyck paths of length k

Dk = {(d1, . . . , dk) ∈ {±1} :
k∑
i=1

di ≥ 0 for 1 ≤ j ≤ j, and
k∑
i=1

di = 0}.

For (G,w) ∈ Gk/2+1
k , the above discussion shows that d(G,w) ∈ Dk. Show that (G,w) 7→

d(G,w) is a bijection Gk/2+1
k → Dk by finding its explicit inverse.

It is well-known that #Dk = Ck/2 are enumerated by Catalan numbers. (For proof, see Stan-
ley’s Enumerative Combinatorics Vol. 2; or Lecture 7 from Math 247A Spring 2011, available at
www.math.ucsd.edu/˜tkemp/247ASp11.) Combining this with Equation 4.10 concludes
the proof. �

4.2. Convergence of Matrix Moments in Probability. Now, to complete the proof of Theorem
2.4, we must now proceed with Step 2: we must show that 1

n
Tr (Xk

n) has variance tending to 0 as
n→∞. Using the ideas of the above proof, this is quite straightforward. We will actually show a
little more: we will find the optimal rate that it tends to 0.

Proposition 4.5. Let {Yij}1≤i≤j be independent random variables, with {Yii}i≥1 identically dis-
tributed and {Yij}1≤i<j identically distributed. Suppose that rk = max{E(|Y11|k),E(|Y12|k)} <
∞ for each k ∈ N. Suppose further than E(Yij) = 0 for all i, j. If i > j, define Yij ≡ Yji,
and let Yn be the n × n matrix with [Yn]ij = Yij for 1 ≤ i, j ≤ n. Let Xn = n−1/2Yn be the
corresponding Wigner matrix. Then

Var

(
1

n
Tr (Xk

n)

)
= Ok

(
1

n2

)
.

Again, to be precise, saying F (k, n) = Ok(1/n
2) means that, for each k, there is a constant

Bk <∞ so that F (k, n) ≤ Bk/n
2.

Proof. We proceed as above, expanding the variance in terms of the entries of the matrix.

Var

(
1

n
Tr (Xk

n)

)
= E

[
1

n
· 1

nk/2
Tr (Yk

n)

]2

−
(
E
[

1

n
· 1

nk/2
Tr (Yk

n)

])2

=
1

nk+2

{
E
[

Tr (Yk
n)
]2 − (ETr (Yk

n)
)2
}
.
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Expanding the trace exactly as above, and squaring, gives

E
[

Tr (Yk
n)
]2

=
∑

i,j∈[n]k

E(YiYj),
(
ETr (Yk

n)
)2

=
∑

i,j∈[n]k

E(Yi)E(Yj).

Thus the variance in question is

Var

(
1

n
Tr (Xk

n)

)
=

1

nk+2

∑
i,j∈[n]k

[E(YiYj)− E(Yi)E(Yj)] .

Now, as above, the values E(YiYj) and E(Yi)E(Yj) only depend on i and j through a certain graph
structure underlying the 2k-tuple i, j. Indeed, let Gi#j ≡ Gi ∪Gj, where the union of two graphs
(whose vertices are chosen from the same underlying set, in this case [n]) is the graph whose vertex
set is the union of the vertex sets, and whose edge set is the union of the edge sets. For example, if
i = (1, 2, 1, 3, 2, 3) and j = (2, 4, 5, 1, 4, 3), then

YiYj = Y12Y21Y13Y32Y23Y31 · Y24Y45Y51Y14Y43Y32

and so

Gi#j = ({1, 2, 3, 4, 5} , {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {4, 5}, {1, 5}, {1, 4}, {3, 4}}) .
The word YiYj also gives rise to the two graph walks wi and wj; as the above example shows, they
do not constitute a single walk of length 2k, since there is no a priori reason for the endpoint of the
first walk to coincide with the starting point of the second walk.

Since we can recover (Gi, wi) and (Gj, wj) from (Gi#j, wi, wj), the same reasoning as in the
previous proposition shows that the quantity E(YiYj) − E(Yi)E(Yj) is determined by the data
(Gi#j, wi, wj). Denote this common value as

E(YiYj)− E(Yi)E(Yj) = π(Gi#j, wi, wj).

Let Gk,k be the set of connected graphs G with ≤ 2k vertices, together with two paths each of
length k whose union covers G. This means we can expand (as above)

Var

(
1

n
Tr (Xk

n)

)
=

1

nk+2

∑
(G,w,w′)∈Gk,k

π(G,w,w′)·#
{

(i, j) ∈ [n]2k : (Gi#j, wi, wj) = (G,w,w′)
}
.

As before, let Es
i#j denote the self edges and Ec

i#j the connecting edges in Gi#j. For any edge e
in Gi#j, let wi#j(e) denote the number of times the edge e is traversed by either of the two paths
wi and wj. Then, as in (4.4),

E(YiYj)− E(Yi)E(Yj) =
∏

es∈Esi#j

E(Y
wi#j(es)

11 ) ·
∏

ec∈Eci#j

E(Y
wi#j(ec)

12 )

−
∏
es∈Esi

E(Y
wi(es)

11 ) ·
∏
ec∈Eci

E(Y
wi(ec)

12 ) ·
∏
es∈Esj

E(Y
wj(es)

11 ) ·
∏
ec∈Ecj

E(Y
wj(ec)

12 ).

The key thing is to note that∑
e∈Gi#j

wi#j(e) = 2k =
∑
e∈Gi

wi(e) +
∑
e∈Gj

wj(e);

that is, the sum of all exponents in either term E(YiYj) or E(Yi)E(Yj) is the total length of the
words, which is 2k. Thus, each of these terms is bounded (in modulus) above by something of the
form rm1 · · · rm` for some positive integers m1, . . .m` for which m1 + · · ·+m` = 2k. (Recall that
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rm = max{E(|Y11|m),E(|Y12|m)}.) There are only finitely many such integer partitions of 2k, and
so the maximum M2k over all of them is finite. We therefore have the (blunt) upper bound

|π(Gi#j, wi, wj)| = |E(YiYj)− E(Yi)E(Yj)| ≤ 2M2k, ∀ i, j ∈ [n]k.

That being said, we can (as in the previous proposition) show that many of these terms are iden-
tically 0. Indeed, following the reasoning from above: by construction, every edge in the joined
graph Gi#j is traversed at least once by the union of the two paths wi and wj. Suppose that e is
an edge that is traversed only once. This means that wi#j(e) = 1, and so it follows that the two
values wi(e), wj(e) are {0, 1}. Hence, the above expansion and the fact that E(Y11) = E(Y12) = 0
show that π(Gi#j, wi, wj) = 0 in this case. If we think if a path as a labeling of edges (counting
the number of times an edge is traversed), then this means the variance sum reduces to

Var

(
1

n
Tr (Xk

n)

)
=

∑
(G,w,w′)∈Gk,k

w+w′≥2

π(G,w,w′) ·
#
{

(i, j) ∈ [n]2k : (Gi#j, wi, wj) = (G,w,w′)
}

nk+2
.

The enumeration of the number of 2k-tuples yielding a certain graph with two walks is the same as
in the previous proposition: the structure (G,w,w′) specifies the 2k-tuple precisely once we select
the |G| distinct indices for the vertices. So, as before, this ratio becomes

n(n− 1) · · · (n− |G|+ 1)

nk+2
.

Now, we have the condition w + w′ ≥ 2, meaning every edge is traversed at least twice. Since
there are k steps in each of the two paths, this means there are at most k edges. Appealing again to
Exercise 4.3.1, it follows that |G| ≤ k + 1. Hence, n(n− 1) · · · (n− |G|+ 1) ≤ n|G| ≤ nk+1, and
so we have already proved that

Var

(
1

n
Tr (Xk

n)

)
≤

∑
(G,w,w′)∈Gk,k

w+w′≥2

π(G,w,w′) · n
k+1

nk+2
≤ 1

n
· 2M2k ·#Gk,k.

The (potentially enormous) numberBk = 2M2k ·#Gk,k is independent of n, and so we have already
proved that the variance is = Ok(1/n), which is enough to prove Theorem 2.4 (convergence in
probability).

We will go one step further and show that there are also no terms with |G| = k + 1. From
Exercise 4.3.1 again, since there are at most k edges, it follows that there are exactly k edges and
so G is a tree; this means that w + w′ = 2, every edge is traversed exactly two times. It then
follows that Gi and Gj share no edges in common. Indeed, suppose e is a shared edge. Each walk
wi, wj traverses all edges of its graph Gi, Gj. Since wi(e) + wj(e) = 2, the values (wi(e), wj(e))
are either (2, 0), (1, 1), or (0, 2). The first and last cases are impossible: in the first case, this would
mean that wj does not traverse e, which is an edge in Gj, contradicting the definition of wj. But
(1, 1) is also impossible: since the union graph Gi#j is a tree, each subgraph Gi and Gj is a tree,
and since the walks wi and wj cover each edge and return to their starting points, each edge must
be traversed an even number of times (as there are no loops).

Hence, we see that the only graph walks (G,w,w′) ∈ Gk,k with |G| = k+ 1 must have the edge
sets covered by w and w′ distinct. In other words, if (Gi#j, wi, wj) = (G,w,w′), then the edge sets
do not intersect: {{i1, i2}, . . . , {ik, i1}} ∩ {{j1, j2}, . . . , {jk, j1}} = ∅. But that means that the
products Yi and Yj are independent, and so π(Gi#j, wi, wj) = E(YiYj)−E(Yi)E(Yj) = 0. Thus, we
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have shown that, for any (G,w,w′) ∈ Gk,k with k + 1 vertices, π(G,w,w′) = 0. So, we actually
have

Var

(
1

n
Tr (Xk

n)

)
=

∑
(G,w,w′)∈Gk,k
w+w′≥2,|G|≤k

π(G,w,w′) ·
#
{

(i, j) ∈ [n]2k : (Gi#j, wi, wj) = (G,w,w′)
}

nk+2
,

and so the same counting argument now bounded the variance by

Var

(
1

n
Tr (Xk

n)

)
≤

∑
(G,w,w′)∈Gk,k
w+w′≥2,|G|≤k

π(G,w,w′) · nk

nk+2
≤ 1

n2
· 2M2k ·#Gk,k.

This proves the proposition. �

Remark 4.6. We showed not only that Var[ 1
n

Tr (Xk
n)] → 0 as n → ∞, giving convergence in

probability by Chebyshev’s inequality; we actually proved that the variance is O(1/n2). This is
relevant because

∑
n

1
n2 <∞. It therefore follows from the Borel-Cantelli lemma that

1

n
Tr (Xk

n)→
∫
xk σt(dx) a.s.

as n → ∞, with the caveat that this almost sure convergence only makes sense if we artificially
sample all entries of all matrices from the same probability space.

4.3. Weak Convergence. We have now proved Theorem 2.4, which was a weaker form of Theo-
rem 2.3. In fact, we can now fairly easily prove this stronger theorem. Let us first remark that we
may easily fix the variance of the entries t to be t = 1: an elementary scaling argument then ex-
tends Theorem 2.3 to the general case. With this convention in hand, we begin with the following
useful cutoff lemma.

Lemma 4.7. Let k ∈ N and ε > 0. Then for any b > 4,

lim sup
n→∞

P
(∫
|x|>b
|x|k µXn(dx) > ε

)
= 0.

Proof. First, by Markov’s inequality, we have

P
(∫
|x|>b
|x|k µXn(dx) > ε

)
≤ 1

ε
E
(∫
|x|>b
|x|k µXn(dx)

)
.

Now, let ν be the random measure ν(dx) = |x|k µXn(dx). Markov’s inequality (which applies to
all positive measures, not just probability measures) now shows that∫
|x|>b
|x|k µXn(dx) = ν{x : |x| > b} = ν{x : |x|k > bk} ≤ 1

bk

∫
|x|k ν(dx) =

1

bk

∫
x2k µXn(dx).

So, taking expectations, we have

P
(∫
|x|>b
|x|k µXn(dx) > ε

)
≤ 1

εbk
E
(∫

x2k µXn(dx)

)
=

1

εbk
· 1

n
ETr (Xk

n).

Now, by Proposition 4.1, the right hand side converges to Ck/εbk where Ck is the Catalan number,
which is bounded by 4k. Hence, it follows that

lim sup
n→∞

P
(∫
|x|>b
|x|k µXn(dx) > ε

)
≤ 1

ε

(
4

b

)k
.
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On the other hand, when |x| > b > 4 > 1, the function k 7→ |x|k is strictly increasing, which
means that the sequence of lim sups on the left-hand-side is increasing. But this sequence decays
exponentially since 4/b < 1. The only way this is possible is if the sequence of lim sups is
constantly 0, as claimed. �

Proof of Theorem 2.3. Fix a bounded continuous function f ∈ Cb(R), fix ε > 0, and fix b > 4. By
the Weierstrass approximation theorem, there is a polynomial Pε such that

sup
|x|≤b
|f(x)− Pε(x)| < ε

6
.

Now, we have the triangle inequality estimates∣∣∣∣∫ f dµXn −
∫
f dσ1

∣∣∣∣ ≤ ∣∣∣∣∫ f dµXn −
∫
Pε dµXn

∣∣∣∣+

∣∣∣∣∫ Pε dµXn −
∫
Pε dσ1

∣∣∣∣
+

∣∣∣∣∫ Pε dσ1 −
∫
f dσ1

∣∣∣∣ .
Hence, the event {

∣∣∫ f dµXn −
∫
f dσ1

∣∣ > ε} is contained in the union of the three events that
each of the four above terms is > ε/3. But this means that

P
(∣∣∣∣∫ f dµXn −

∫
f dσ1

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∫ f dµXn −
∫
Pε dµXn

∣∣∣∣ > ε/3

)
+ P

(∣∣∣∣∫ Pε dµXn −
∫
Pε dσ1

∣∣∣∣ > ε/3

)
+ P

(∣∣∣∣∫ Pε dσ1 −
∫
f dσ1

∣∣∣∣ > ε/3

)
.

By construction, |Pε − f | < ε/6 on [−b, b], which includes the support [−2, 2] of σ1; thus, the last
term is identically 0. For the first term, we break up the integral over [−b, b] and its complement:∣∣∣∣∫ (f − Pε) dµXn

∣∣∣∣ ≤ ∫
|x|≤b
|f(x)− Pε(x)|µXn(dx) +

∫
|x|>b
|f(x)− Pε(x)|µXn(dx).

By the same reasoning as above, we can estimate

P
(∣∣∣∣∫ f dµXn −

∫
Pε dµXn

∣∣∣∣ > ε/3

)
≤ P

(∫
|f − Pε|1|x|≤b dµXn > ε/6

)
+ P

(∫
|f − Pε|1|x|>b dµXn > ε/6

)
.

Again, by construction, |f − Pε| < ε/6 on [−b, b], and so since µXn is a probability measure, the
first term is identically 0. We therefore have the estimate

P
(∣∣∣∣∫ f dµXn −

∫
f dσ1

∣∣∣∣ > ε

)
≤ P

(∫
|f − Pε|1|x|>b dµXn > ε/6

)
(4.12)

+ P
(∣∣∣∣∫ Pε dµXn −

∫
Pε dσ1

∣∣∣∣ > ε/3

)
. (4.13)

That the terms in (4.13) tend to 0 as n → ∞ follows immediately from Theorem 2.4 (since
convergence in probability respects addition and scalar multiplication). So we are left only to
estimate (4.12). We do this as follows. Let k = degPε. Since f is bounded, we have |f(x) −
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Pε(x)| ≤ ‖f‖∞ + |Pε(x)|, and on the set |x| > b, this is ≤ c|x|k for some constant c (since b > 0).
This means that

P
(∫
|f − Pε| 1|x|≥b dµXn > ε/6

)
≤ P

(∫
c|x|k1|x|≥b µXn(dx) > ε/6

)
,

and therefore, by Lemma 4.7, this sequence has lim supn→∞ = 0. This concludes the proof. �

Remark 4.8. From (4.13) and our proof of Theorem 2.4, we actually have decay rate Ok(1/n
2) for

(4.13). A much more careful analysis of the proof of Lemma 4.7 shows that (4.12) also decays
summably fast, and so we can actually conclude almost sure weak convergence in general. We will
reprove this result in a different way later in these notes.

Finally, this brings us to the proof of Theorem 2.1.

Proof of Theorem 2.1. The random variable En(I) in the statement of the theorem can be written
as

En(I) =
1

n
·#{j ∈ [n] : λj(Xn) ∈ I} = µXn(I).

That is to say, the desired conclusion is that µXn(I) → σt(I) in probability for all intervals I . By
an easy scaling argument, we can take t = 1, in which case we have proved above that µXn → σ1

weakly in probability. By a standard convergence theorem in probability theory (c.f. Theorem 25.8
in Billingsley’s “Probability and Measure” (Third Edition)), this implies that µXn(A) → σ1(A)
in probability for every σ1-continuous measurable seat A. But since σ1 has a continuous density,
every measurable set is a σ1-continuous set. This proves the theorem. �
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5. REMOVING MOMENT ASSUMPTIONS

In the proof we presented of Wigner’s theorem, we were forced to assume that all the moments
of the i.i.d. random variables Y11 and Y12 are finite. In this section, we concern ourselves with
removing these unnecessary assumptions; all that is truly required is r2 = max{E(Y 2

11),E(Y 2
12)} <

∞. To that end, the idea is as follows: begin with a Wigner matrix Xn = n−1/2Yn. We will find
an approximating Wigner matrix X̂n = n−1/2Ŷn with entries having all moments finite, such
that the empirical laws µXn and µX̂n

are “close”. To be a little more precise: for simplicity,
let us standardize so that we may assume that the off-diagonal entries of Yn have unit variance.
Our goal is to show that

∫
f dµXn →

∫
f dσ1 in probability, for each f ∈ Cb(R). To that end,

fix ε > 0 from the outset. For any approximating Wigner matrix X̂n, if we may arrange that∣∣∫ f dµXn −
∫
f dµX̂n

∣∣ ≤ ε/2 and
∣∣∫ f dµX̂n

−
∫
f dσ1

∣∣ ≤ ε/2, then by the triangle inequality∣∣∫ f dµXn −
∫
f dσ1

∣∣ ≤ ε. The contrapositive of this implication says that{∣∣∣∣∫ f dµXn −
∫
f dσ1

∣∣∣∣ < ε

}
⊆
{∣∣∣∣∫ f dµXn −

∫
f dµX̂n

∣∣∣∣ > ε/2

}
∪
{∣∣∣∣∫ f dµX̂n

−
∫
f dσ1

∣∣∣∣ > ε/2

}
.

Hence

P
(∣∣∣∣∫ f dµXn −

∫
f dσ1

∣∣∣∣ < ε

)
≤P
(∣∣∣∣∫ f dµXn −

∫
f dµX̂n

∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣∫ f dµX̂n
−
∫
f dσ1

∣∣∣∣ > ε/2

)
.

(5.1)

Since Xn is a Wigner matrix possessing all finite moments, we know that the second term above
tends to 0. Hence, in order to prove that µXn → σ1 weakly in probability, it suffices to show that
we can find an approximating Wigner matrix X̂n with all finite moments such that

∫
f dµXn −∫

f dµX̂n
is small (uniformly in n) for given f ∈ Cb(R); this is the sense of “close” we need.

Actually, it will turn out that we can find such an approximating Wigner matrix provided we
narrow the scope of the test functions f a little bit.

Definition 5.1. A function f ∈ Cb(R) is said to be Lipschitz if

‖f‖Lip ≡ sup
x 6=y

|f(x)− f(y)|
|x− y|

+ sup
x
|f(x)| <∞.

The set of Lipschitz functions is denoted Lip(R). The quantity ‖ · ‖Lip is a norm on Lip(R), and
makes it a Banach space.

Lipschitz functions are far more regular than generic continuous functions. (For example, they
are differentiable almost everywhere.) Schemes like the Weierstraß approximation theorem can
be used to approximate generic continuous functions by Lipschitz functions; as such, restricting
test functions to be Lipschitz still metrizes weak convergence. We state this standard theorem here
without proof.

Proposition 5.2. Suppose µn, νn are sequences of measures on R. Suppose that
∫
f dµn−

∫
f dνn →

0 for each f ∈ Lip(R). Then
∫
f dµn −

∫
f dνn → 0 for each f ∈ Cb(R).

Thus, we will freely assume the test functions are Lipschitz from now on. This is convenient,
due to the following.
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Lemma 5.3. Let A,B be symmetric n × n matrices, with eigenvalues λA1 ≤ · · · ≤ λAn and λB1 ≤
· · · ≤ λBn . Denote by µA and µB the empirical laws of these eigenbalues. Let f ∈ Lip(R). Then∣∣∣∣∫ f dµA −

∫
f dµB

∣∣∣∣ ≤ ‖f‖Lip

(
1

n

n∑
i=1

(λAi − λBi )2

)1/2

.

Proof. By definition
∫
f dµA −

∫
f dµB = 1

n

∑n
i=1[f(λAi )− f(λBi )]. Hence we have the straight-

forward estimate∣∣∣∣∫ f dµA −
∫
f dµB

∣∣∣∣ ≤ 1

n

n∑
i=1

|f(λAi )− f(λBi )| = 1

n

n∑
i=1

‖f‖Lip|λAi − λBi |,

where we have used the fact that |f(x)− f(y)| ≤ ‖f‖Lip|x− y|. (This inequality does not require
the term supx |f(x)| in the definition of ‖f‖Lip; this term is included to make ‖·‖Lip(R) into a norm,
for without it all constant functions would have “norm” 0.) The proof is completed by noting the
equivalence of the `1 and `2 norms on Rn: for any vector v = [v1, . . . , vn] ∈ Rn,

‖v‖1 =
n∑
i=1

|vi| = [1, 1, . . . , 1] · [|v1|, |v2|, . . . , |vn|] ≤ ‖[1, . . . , 1]‖2‖v‖2 =
√
n‖v‖2.

Hence

1

n

n∑
i=1

|λAi − λBi | ≤
1√
n

(
n∑
i=1

|λAi − λBi |2
)1/2

.

�

The quantity on the right-hand-side of the estimate in Lemma 5.3 can be further estimated by a
simple expression in terms of the matrices A and B.

Lemma 5.4 (Hoffman–Wielandt). Let A,B be n× n symmetric matrices, with eigenvalues λA1 ≤
· · · ≤ λAn and λB1 ≤ · · · ≤ λBn . Then

n∑
i=1

(λAi − λBi )2 ≤ Tr [(A−B)2].

Proof. Begin by diagonalizing A = U>ΛAU and B = V >ΛBV where U, V are orthogonal ma-
trices (with columns that are normalized eigenvectors of A and B) and ΛA,ΛB diagonal with
[ΛA]jj = λAj and [ΛB]jj = λBj . Thus

Tr (AB) = Tr (U>ΛAUV >ΛBV ) = Tr [(V U>)ΛA(UV >)ΛB].

Set W = UV >, which is also an orthogonal matrix. Then

Tr (AB) = Tr (W>ΛAWΛB) =
∑

1≤i,j,k,`≤n

[W>]ij[Λ
A]jk[W ]k`[Λ

B]`i

=
∑

1≤i,j,k,`≤n

[W ]jiλ
A
j δjk[W ]k`λ

B
i δ`i

=
∑

1≤i,j≤n

λAj λ
B
i [W ]2ji.
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Now, W is an orthogonal matrix, which means that
∑

i[W ]2ji = 1 for each j and
∑

j[W ]2ji = 1 for
each i. Set υji = [W ]2ji, so that the matrix [υji]j,i is doubly-stochastic. Let Dn denote the set of
doubly-stochastic n× n matrices; thus, we have

Tr (AB) =
∑

1≤i,j≤n

λAj λ
B
i υij ≤ sup

[νij ]∈Dn

∑
1≤i,j≤n

λAi λ
B
j νij.

The set Dn is convex (it is easily checked that any convex combination of doubly-stochastic ma-
trices is doubly-stochastic). The function [νij] 7→

∑
i,j λ

A
i λ

B
j νij is a linear function, and hence its

supremum on the convex set Dn is achieved at an extreme point of Dn.

Claim. The extreme points of Dn are the permutation matrices.

This is the statement of the Birkhoff-von Neumann theorem. For a simple proof, see
http://mingus.la.asu.edu/˜hurlbert/papers/SPBVNT.pdf. The idea is: if any
row contains two non-zero entries, one can increase one and decrease the other preserving the row
sum; then one can appropriately increase/decrease non-zero elements of those columns to preserve
the column sums; then modify elements of the adjusted rows; continuing this way must result in a
closed path through the entries of the matrix (since there are only finitely-many). In the end, one
can then perturb the matrix to produce a small line segment staying in Dn. The same observation
works for columns; thus, extreme points must have exactly one non-zero entry in each row and
column: hence, the extreme points are permutation matrices. Thus, we have

Tr (AB) ≤ max
σ∈Sn

n∑
i=1

λAi λ
B
σ(i).

Because the sequences λAi and λBi are non-decreasing, this maximum is achieved when σ is the
identity permutation. To see why, first consider the case n = 2. Given x1 ≤ x2 and y1 ≤ y2, note
that

(x1y1 + x2y2)− (x1y2 + x2y1) = x1(y1 − y2) + x2(y2 − y1) = (x2 − x1)(y2 − y1) ≥ 0.

That is, x1y2 + x2y1 ≤ x1y1 + x2y2. Now, let σ be any permutation not equal to the identity.
Then there is some pair i < j with σ(i) > σ(j). Let σ′ be the new permutation with σ′(i) =
σ(j) and σ′(j) = σ(i), and σ = σ′ on [n] \ {i, j}. Then the preceding argument shows that∑n

i=1 λ
A
i λ

B
σ(i) ≤

∑n
i=1 λ

A
i λ

B
σ′(i). The permutation σ′ has one fewer order-reversal than σ; iterating

this process shows that σ = id maximizes the sum. In particular, taking negatives shows that

−
n∑
i=1

λAi λ
B
i ≤ −Tr (AB).

Finally, since Tr [A2] =
∑

i(λ
A
i )2 and Tr [B2] =

∑
i(λ

B
i )2, we have

n∑
i=1

(λAi − λBi )2 =
n∑
i=1

(λAi )2 +
n∑
i=1

(λBi )2 − 2
n∑
i=1

λAi λ
B
i

= Tr (A2) + Tr (B2)− 2
n∑
i=1

λAi λ
B
i

≤ Tr (A2) + Tr (B2)− 2 Tr (AB) = Tr [(A−B)2].

�



22 TODD KEMP

Now, let A = Xn and let B = X̂n be an approximating Wigner matrix. Combining Lemmas 5.3
and 5.4, we have for any Lipschitz function f ,∣∣∣∣∫ f dµXn −

∫
f dµX̂n

∣∣∣∣ ≤ ‖f‖Lip

(
1

n
Tr [(Xn − X̂n)2]

)1/2

. (5.2)

Now fix δ > 0. Then using Markov’s inequality,

P
(

1

n
Tr [(Xn − X̂n)2] > δ

)
≤ 1

δ
· E
(

1

n
Tr [(Xn − X̂n)2]

)
.

Letting X̂n = n−1/2Ŷn where Ŷn has entries Ŷij , we can expand this expected trace as

1

n
ETr [(Xn − X̂n)2] =

1

n2
ETr [(Yn − Ŷn)2] =

1

n2

∑
1≤i,j≤n

E[(Yij − Ŷij)2].

Breaking the sum up in terms of diagonal and off-diagonal terms, and using identical distributions,
we get

1

n2

n∑
i=1

E[(Yii − Ŷii)2] +
2

n2

∑
1≤i<j≤n

E[(Yij − Ŷij)2]

=
1

n
E[(Y11 − Ŷ11)2] +

(
1− 1

n

)
E[(Y12 − Ŷ12)2]

≤ E[(Y11 − Ŷ11)2] + E[(Y12 − Ŷ12)2].

So, using Equation 5.2 setting δ = (ε/2‖f‖Lip)2 we have

P
(∣∣∣∣∫ f dµXn −

∫
f dµX̂n

∣∣∣∣ > ε/2

)
≤ P

(
‖f‖Lip

(
1

n
Tr [(Xn − X̂n)2]

)1/2

> ε/2

)

≤
4‖f‖2

Lip

ε2

(
E[(Y11 − Ŷ11)2] + E[(Y12 − Ŷ12)2]

)
. (5.3)

This latter estimate is uniform in n. We see, therefore, that it suffices to construct the approximating
Ŷn in such a way that the entries are close in the L2 sense: i.e. we must be able to choose Yij with
E[(Yij − Ŷij)2] < ε3/16‖f‖2

Lip.

We are now in a position to define appropriate approximating Wigner matrices X̂n. Fix a cut-off
constant C > 0. Morally, we want to simply define the entries of the approximating matrix to
be Yij1|Yij |≤C , which are bounded and hence have moments of all orders. This cut-off does not
preserve mean or variance, though, so we must standardize. For 1 ≤ i, j ≤ n, define

Ŷij =
1

σij(C)

(
Yij1|Yij |≤C − E(Yij1|Yij |≤C)

)
, (5.4)

where σij(C)2 = Var
(
Yij1|Yij |≤C

)
when i 6= j and σii(C) = 1. Note: it is possible that, for small

C and i 6= j, σij(C) = σ12(C) = 0, but it is > 0 for all sufficiently large C (and we assume C
is large), so Ŷij is meaningful. Let Ŷn have entries Ŷij . Of course, the Ŷii are all i.i.d. as are the
Ŷij with i < j. These entries are centered and the off-diagonal ones have unit variance; they are
all bounded random variables, hence all moments are finite. Thus, setting X̂n = n−1/2Ŷn, X̂n is a
Wigner matrix with all moments finite, and so Theorem 2.3 (Wigner’s Semicircle Law), even with
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moment assumptions, holds for X̂n: for any f ∈ Cb(R),
∫
f dµX̂n

→
∫
f dσ1 in probability as

n→∞.

Thus, combining Equation 5.1 with Inequality 5.3, we merely need to show that, for sufficiently
large C > 0, the random variables Y1j − Ŷ1j (for j = 1, 2) are small in L2-norm. Well,

Yij1|Yij |≤C − E(Yij1|Yij |≤C) = Yij − (Yij1|Yij |>C − E(Yij1|Yij |>C))

where we have used the fact that E(Yij) = 0 in the last equality. Hence

Yij − Ŷij =

(
1− 1

σij(C)

)
Yij +

1

σij(C)

(
Yij1|Yij |>C − E(Yij1|Yij |>C)

)
. (5.5)

The key point is that the random variable Yij1|Yij |>C converges to 0 in L2 as C → ∞. This is
because

E
[
(Yij1|Yij |>C)2

]
=

∫
|Yij |>C

Y 2
ij dP,

and since E(Y 2
ij) < ∞ (i.e. Y 2

ij ∈ L1(P)), it suffices to show that P(|Yij| > C) → 0 as C → ∞.
But this follows by Markov’s inequality (which we apply to Y 2

ij here just for æsthetic reasons):

P(|Yij| > C) = P(Y 2
ij > C2) ≤

E(Y 2
ij)

C2
.

Thus, Yij1|Yij |>C → 0 in L2 as n → ∞, and so Yij1|Yij |≤C → Yij in L2 as C → ∞. In particular,
it then follows that σij(C)→ 1 as C →∞. Convergence in L2(P) implies convergence in L1(P),
and so E(Yij1|Yij |>C) → 0. Altogether, this shows that Yij − Ŷij → 0 in L2, which completes the
proof.

�
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6. LARGEST EIGENVALUE

In the previous section, we saw that we could remove the technical assumption that all moments
are finite – Wigner’s semicircle law holds true for Wigner matrices that have only moments of
order 2 and lower finite. This indicates that Wigner’s theorem is very stable: the statistic we are
measuring (the density of eigenvalues in the bulk) is very universal, and not sensitive to small
fluctuations that result from heavier tailed entries. The fluctuations and large deviations of µXn

around the semicircular distribution as n→∞, however, are heavily depending on the distribution
of the entries.

Let us normalize the variance of the (off-diagonal) entries, so that the resulting empirical law of
eigenvalues is σ1. The support of this measure is [−2, 2]. This suggests that the largest eigenvalue
should converge to 2. Indeed, half of this statement follows from Wigner’s law in general.

Lemma 6.1. Let Xn be a Wigner matrix (with normalized variance of off-diagonal entries). Let
λn(Xn) be the largest eigenvalue of Xn. Then for any δ > 0,

lim
n→∞

P(λn(Xn) < 2− δ) = 0.

Proof. Fix δ > 0, and let f be a continuous (or even C∞c , ergo Lipschitz) function supported in
[2− δ, 2], satisfying

∫
f dσ1 = 1. If λn(Xn) < 2− δ, then µXn is supported in (−∞, 2− δ), and

so
∫
f dµXn = 0. On the other hand, since

∫
f dσ1 = 1 > 1

2
, we have

P(λn(Xn) < 2− δ) ≤ P
(∫

f dµXn = 0

)
≤ P

(∣∣∣∣∫ f dµXn −
∫
f dσ1

∣∣∣∣ > 1

2

)
,

and the last quantity tends to 0 as n→∞ by Wigner’s law. �

To prove that λn(Xn)→ 2 in probability, it therefore suffices to prove a complementary estimate
for the probability that λn(Xn) > 2 + δ. As it happens, this can fail to be true. If the entries of
Xn have heavy tails, the largest eigenvalue may fail to converge at all. This is a case of local
statistics having large fluctuations. However, if we assume that all moments of Xn are finite (and
sufficiently bounded), then the largest eigenvalue converges to 2.

Theorem 6.2. Let Xn be a Wigner matrix with normalized variance of off-diagonal entries and
bounded entries. Then λn(Xn)→ 2 in probability. In fact, for any ε, δ > 0,

lim
n→∞

P
(
n1/6−ε(λn(Xn)− 2) > δ

)
= 0.

Remark 6.3. (1) As with Wigner’s theorem, the strong moment assumptions are not actually
necessary for the statement to be true; rather, they make the proof convenient, and then
can be removed afterward with a careful cutoff argument. However, in this case, it is
known that second moments alone are not enough: in general, λn(Xn) → 2 if and only
if the fourth moments of the entries are finite. (This was proved by Bai and Yin in the
Annals of Probability in 1988). If there are no fourth moments, then it is known that the
largest eigenvalue does not converge to 2; indeed, it has a Poissonian distribution (proved
by Soshnikov in Electronic Communications in Probability, 2004).

(2) The precise statement in Theorem 6.2 shows not only that the largest eigenvalue converges
to 2, but that the maximum displacement of this eigenvalue above 2 is about O(n−1/6). In
fact, this is not tight. It was shown by Vu (Combinatorica, 2007) that the displacement is
O(n−1/4). Under the additional assumption that the entries have symmetric distributions,
it is known (Sinai-Soshnikov, 1998) that the maximum displacement is O(n−2/3), and that
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this is tight: at this scale, the largest eigenvalue has a non-trivial distribution. (Removing
the symmetry condition is one of the front-line research problems in random matrix theory;
for the most recent progress, see Péché-Soshnikov, 2008.) We will discuss this later in the
course, in the special case of Gaussian entries.

Proof of Theorem 6.2. The idea is to use moment estimates, as follows. We wish to estimate
P(λn > 2 + δn−1/6+ε) (for fixed ε, δ > 0). Well, for any k ∈ N,

λn > 2 + δn−1/6+ε =⇒ λ2k
n > (2 + δn−1/6+ε)2k =⇒ λ2k

1 + · · ·+ λ2k
n > (2 + δn−1/6+ε)2k.

But λ2k
1 + · · ·+ λ2k

n = Tr (X2k
n ). Hence, using Markov’s inequality, we have

P(λn(Xn) > 2 + δn−1/6+ε) ≤ P
(

Tr (X2k
n ) > (2 + δn−1/6+ε)2k

)
≤ ETr (X2k

n )

(2 + δn−1/6+ε)2k
. (6.1)

Equation 6.1 holds for any k; we have freedom to choose k as n → ∞. The idea of this proof
(which is due to Füredi and Komlós) is to let k = k(n) grow with n in a precisely controlled
fashion.

To begin, we revisit the proof of Wigner’s theorem to estimate ETr (Xk
n). Recall Equation 4.8,

which shows (substituting 2k for k)

1

n
ETr (X2k

n ) =
∑

(G,w)∈G2k
w≥2

Π(G,w) · n(n− 1) · · · (n− |G|+ 1)

nk+1
.

Here G2k denotes the set of pairs (G,w) where G is a connected graph with ≤ 2k vertices, w is a
closed walk on G of length 2k; the condition w ≥ 2 means that w crosses each edge in G at least
2 times. The coefficients Π(G,w) are given in Equation 4.4:

Π(G,w) =
∏

es∈Es(G)

E(Y
w(es)

11 ) ·
∏

ec∈Ec(G)

E(Y
w(ec)

12 ),

where Es(G) is the set of self-edges {i, i} in G, and Ec(G) is the set of connecting-edge {i, j}
with i 6= j inG; here w(e) denotes the number of times the word w traverses the edge e. It is useful
here to further decompose this sum according to the number of vertices in G. Let Gt2k denote the
subset of G2k consisting of those pairs (G,w) where the number of vertices |G| in G is t, and
w(e) ≥ 2 on each edge e of G. Since the length of w is 2k, the number of edges in each G is ≤ k.
According to Exercise 4.3.1, it follows that Gt2k (with condition w ≥ 2) is empty if t > k + 1. So
we have the following refinement of Equation 4.8

1

n
ETr (X2k

n ) =
k+1∑
t=1

n(n− 1) · · · (n− t+ 1)

nk+1

∑
(G,w)∈Gt2k

Π(G,w). (6.2)

Then we can estimate

1

n
ETr (X2k

n ) =

∣∣∣∣ 1nETr (X2k
n )

∣∣∣∣ ≤ k+1∑
t=1

nt−(k+1) ·#Gt2k · sup
(G,w)∈Gt2k

|Π(G,w)|. (6.3)

First let us upper-bound the value of |Π(G,w)|. Let M = max{‖Y11‖∞, ‖Y12‖∞}. For fixed
(G,w), break up the set of edges E of G into E = E0 t E1 t E2, where E0 are the self-edges
and E2 = {e ∈ Ec : w(e) = 2}; denote ` = |E2|. Since

∑
e∈E w(e) = 2k, we then have
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e∈E0tE1

w(e) = 2k − 2`. Now, for any edge e, |E(Y
w(e)
ij )| ≤ Mw(e) since |Yij| ≤ M a.s. Thus,

we have
|Π(G,w)| ≤

∏
e0∈E0

Mw(e0)
∏
e1∈E1

Mw(e1)
∏
e2∈E2

E(Y 2
12) = M2k−2` (6.4)

because of the normalization E(Y 2
12) = 1. To get a handle on the statistic `, first consider the new

graph G′ whose vertices are the same as those in G, but whose edges are the connecting edges
E1 t E2. Since (G,w) ∈ Gt2k, t = |G| = |G′|, and (cf. Exercise 4.3.1) the number of edges in G′

is ≥ t− 1; that is |E1|+ ` ≥ t− 1. Hence, we have

2k =
∑
e∈E

w(e) ≥
∑
e∈E1

w(e) +
∑
e∈E2

w(e) ≥ 3|E1|+ 2` ≥ 3(t− `− 1) + 2`,

where the second inequality follows from the fact that every edge in E1 is traversed ≥ 3 times by
w. Simplifying yields 2k ≥ 3t−3− `, and so 3k−3t+ 3 ≥ k− `. Hence 2(k− `) ≤ 6(k− t+ 1),
and (assuming without loss of generality that M ≥ 1) Inequality 6.5 yields

|Π(G,w)| ≤M6(k−t+1). (6.5)

This is true for all (G,w) ∈ Gt2k; so combining with Inequality 6.2 we find that∣∣∣∣ 1nETr (X2k
n )

∣∣∣∣ ≤ k+1∑
t=1

nt−(k+1)M6(k−t+1) ·#Gt2k =
k+1∑
t=1

(
M6

n

)k−t+1

·#Gt2k. (6.6)

We are left to estimate the size of Gt2k.
Proposition 6.4. For t ≤ k + 1,

#Gt2k ≤
(

2k

2t− 2

)
Ct−1t

4(k−t+1)

where Ct−1 = 1
t

(
2t−2
t−1

)
is the Catalan number.

The proof of Proposition 6.4 is fairly involved; we reserve it until after have used the result to
complete the proof of Theorem 6.2. Together, Proposition 6.4 and Equation 6.6 yield∣∣∣∣ 1nETr (X2k

n )

∣∣∣∣ ≤ k+1∑
t=1

(
M6

n

)k−t+1(
2k

2t− 2

)
Ct−1t

4(k−t+1).

Recombining and reindexing using r = k − t+ 1, noting that
(

2k
2(k−r+1)−2

)
=
(

2k
2k−2k

)
=
(

2k
2r

)
, this

becomes ∣∣∣∣ 1nETr (X2k
n )

∣∣∣∣ ≤ k∑
r=0

(
M6(k − r + 1)4

n

)r (
2k

2r

)
Ck−r.

To simplify matters a little, we replace k−r+1 ≤ k (valid for r ≥ 1, but when r = 0 the exponent
r makes the overestimate k + 1 > k irrelevant). So, define

S(n, k, r) =

(
M6k4

n

)r (
2k

2r

)
Ck−r.

Then we wish to bound
∑k

r=0 S(n, k, r). We will estimate this by a geometric series, by estimating
the successive ratios. For 1 ≤ r ≤ k,

S(n, k, r)

S(n, k, r − 1)
=
M6k4

n
·
(

2k
2r

)(
2k

2(r−1)

) Ck−r
Ck−(r−1)

. (6.7)
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Expanding out the radio of binomial coefficients gives
(2k)(2k−1)···(2k−2r+1)

(2r)!

(2k)(2k−1)···(2k−2r+3)
(2r−2)!

=
(2k − 2r + 2)(2k − 2r + 1)

(2r)(2r − 1)
≤ 2k2.

Similarly, for any j ≥ 1,

Cj−1

Cj
=

1
j

(
2j−2
j−1

)
1
j+1

(
2j
j

) =
j + 1

j

(2j−2)(2j−3)···(j)
(j−1)!

(2j)(2j−1)···(j+1)
j!

=
j + 1

2(2j − 1)
≤ 1. (6.8)

(The ratio is close to 1
4

when j is large.) Using this with j − 1 = k − r, Equation 6.7 yields

S(n, k, r)

S(n, k, r − 1)
≤ M6k4

n
· 2k2 =

2(Mk)6

n
.

Hence, for all r, we have

S(n, k, r) ≤
(

2(Mk)6

n

)r
S(n, k, 0) =

(
2(Mk)6

n

)r
Ck. (6.9)

Now, let k = k(n) be a function of n which satisfies

cn1/6 ≤ k(n) ≤ 1

M

(n
4

)1/6

(6.10)

for some c > 0. The upper bound on k(n) is designed so the 2(Mk(n))6

n
≤ 1

2
; this, together with

Inequality 6.9, gives∣∣∣∣ 1nETr (X2k(n)
n )

∣∣∣∣ ≤ k(n)∑
r=0

S(n, k(n), r) ≤
k(n)∑
r=0

(
1

2

)r
Ck(n) ≤

∞∑
r=0

(
1

2

)r
Ck(n) = 2Ck(n).

From Equation 6.8, we have Cj/Cj−1 = 2(2j − 1)/(j + 1) ≤ 4, so Cj ≤ 4j . With j = k(n),
plugging this into Inequality 6.1 (noting the missing 1/n to be accounted for) gives

P(λn(Xn) > 2 + δn−1/6 + ε) ≤ n · 2 · 4k(n)

(2 + δn−1/6+ε)2k(n)
= 2n

(
1 +

δ

2
n−1/6+ε

)−2k(n)

.

Since 1 + δ
2
n−1/6+ε > 1, this quantity increases if we decrease the exponent. Using the lower

bound in Inequality 6.10, this shows that

P(λn(Xn) > 2 + δn−1/6+ε) ≤ 2n

(
1 +

δ

2
n−1/6+ε

)−2cn1/6

.

It is now a simple matter of calculus to check that the right-hand-side converges to 0, proving the
theorem. �

Exercise 6.4.1. Refine the statement of Theorem 6.2 to show that, for any δ > 0,

lim
n→∞

P(n1/6ρ(n)(λn(Xn)− 2) > δ) = 0

for any function ρ > 0 which satisfies

lim
n→∞

(log n)ρ(n) = 0, lim inf
n→∞

n1/12ρ(n) > 0.

For example, one can take ρ(n) = 1/ log(n)1+ε. [Hint: use the Taylor approximation log(1 +x) ≥
x− 1

2
x2.]
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Proof of Proposition 6.4. We will count Gt2k by producing a mapping into a set that is easier to
enumerate (and estimate). The idea, originally due to Füredi and Komlós (1981), is to assign
codewords to elements (G,w) ∈ Gt2k. To illustrate, we will consider a (fairly complicated) example
throughout this discussion. Consider the pair (G,w) ∈ G8

22 with walk

w = 1231454636718146367123

where, recall, the walk automatically returns to 1 at the end. It might be more convenient to list the
consecutive edges in the walk:

w ∼ 12, 23, 31, 14, 45, 54, 46, 63, 36, 67, 71, 18, 81, 14, 46, 63, 36, 67, 71, 12, 23, 31.

Figure 6 gives a diagram of the pair (G,w).

To begin our coding procedure, we produce a spanning tree for G: this is provided by w. Let
T (G,w) be the tree whose vertices are the vertices of G; the edges of T (G,w) are only those
edges wiwi+1 in w = w1 · · ·w2k such that wi+1 /∈ {w1, . . . , wi}. (I.e. we include an edge from
G in T (G,w) only if it is the first edge traversed by w to reach its tip.) The spanning tree for the
preceding example is displayed in Figure 6.

Now, here is a first attempt at a coding algorithm for the pair (G,w). We produce a preliminary
codeword c(G,w) ∈ {+,−, 1, . . . , t}2k as follows. Thinking of w as a sequence of 2k edges, we
assign to each edge a symbol as follows: to the first appearance of each T (G,w)-edge in w, assign
a +; to the second appearance of each T (G,w)-edge in w, assign a −. Refer to the other edges
in the sequence w as neutral edges; these are the edges in G that are not in T (G,w). If uv is a
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neutral edge, assign it the symbol v. In our example above, this procedure produces the preliminary
codeword

c(G,w) = + + 1 + +−+36 + 1 +−−−36− 1−−1. (6.11)
Let us pause here to make some easy observations: because T (G,w) is a tree, the number of edges
is t−1. Each edge appears a first time exactly once, and a second time exactly once, so the number
of +s and the number of−s in c(G,w) are both equal to t−1. This leaves 2k−2(t−1) = 2(k−t+1)
neutral edges in w. We record this for future use:

(G,w) ∈ Gt2k =⇒

{
#{+ ∈ c(G,w)} = #{− ∈ c(G,w)} = t− 1,

#{netural edges in w} = 2(k − t+ 1).
(6.12)

Now, if c : Gt2k → {+,−, 1, . . . , t}2k were injective, we could attempt to estimate the size of its
range to get an upper-bound on #Gt2k. Unfortunately, c is not injective, as our example above
demonstrates. Let us attempt to “decode” the preliminary codeword in Equation 6.11, repeated
here for convenience

+ + 1 + +−+36 + 1 +−−−36− 1−−1

• Each + indicates an edge to a new vertex; so the initial ++ indicates the edges 12, 23.
• Whenever a symbol from {1, . . . , t} appears, the next edge connects to that vertex, so we

follow with 31.
• Another ++ indicates two new vertices, yielding 14, 45.
• The − means the next edge in w must be its second appearance; so it must be an edge in

the tree already generated that has a +. There is only one such edge: 45. Hence, the next
edge in w is 54.
• The following +36+1+−, by similar reasoning to the above, must now give 46, 63, 36, 67, 71, 18, 81.

We have decoded the initial segment + + 1 + + − +36 + 1 + − to build up the initial segment
12, 23, 31, 14, 45, 54, 46, 63, 36, 67, 71, 18, 81 of w. It is instructive to draw the (partial) spanning
tree with (multiple) labels obtained from this procedure. This is demonstrated in Figure 6.

But now, we cannot continue the decoding procedure. The next symbol in c(G,w) is a −, and we
are sitting at vertex 1, which is adjacent to two edges that, thus far, have +s. Based on the data we
have, we cannot decide whether the next edge is 12 or 24. Indeed, one can quickly check that there
are two possible endings for the walk w,

14, 46, 63, 36, 67, 71, 12, 23, 31 or 12, 23, 33, 36, 67, 71, 14, 46, 61.
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Thus, the function c is not injective. Following this procedure, it is easy to see that each + yields a
unique next vertex, as does each appearance of a symbol in {1, . . . , t}; the only trouble may arise
with some − labels.

Definition 6.5. Let (G,w) ∈ Gt2k. A vertex u in G is a critical vertex if there is an edge uv in w
such that, in the preliminary codeword c(G,w), the label of uv is −, while there are at least two
edges adjacent to u whose labels in c(G,w) before uv are both +.

The set of critical vertices is well defined by (G,w). One way to “fix” the problem would be as
follows. Given (G,w), produce c(G,w). Produce a new codeword c′(G,w) as follows: for each
critical vertex u, and any edge uv in w that is labeled − by c(G,w), replace this label by −v in
c′(G,w). One can easily check that this clears up the ambiguity, and the map (G,w) 7→ c′(G,w)
is injective. This fix, however, is too wasteful: easy estimates on the range of c′ are not useful for
the estimates needed in Equation 6.6. We need to be a little more clever.

To find a more subtle fix, first we make a basic observation. Any subword of c(G,w) of the
form + + · · · +−− · · ·− (with equal numbers of +s and −s) can always be decoded, regardless
of its position relative to other symbols. Such subwords yield isolated chains within T (G,w). In
our running example, the edges 45 and 18 are of this form; each corresponds to a subword +− in
c(G,w). We may therefore ignore such isolated segments, for the purposes of decoding. Hence, we
produce a reduced codeword cr(G,w) as follows: from c(G,w), successively remove all subwords
of the form + + · · ·+−− · · ·−. There is some ambiguity about the order to do this: for example,
+ + +−−+−− uv can be reduced as

+(+ +−−) +−− uv 7→ + +−− uv = (+ +−−)uv 7→ uv

or
+ + +−−(+−)− uv 7→ + + +−−− uv = (+ + +−−−)uv 7→ uv

(or others). One can check by a simple induction argument that such successive reductions always
result in the same reduced codeword cr(G,w).

Note, in our running example, the critical vertex 1 is followed in the word w by the isolated
chain 18, 81, yielding a +− in c(G,w) just before the undecodable next −. There was no problem
decoding this +− (there is never any problem decoding a +−).

Definition 6.6. An edge in w is called important if, in the reduced codeword cr(G,w), it is the
final edge labeled − in a string of −s following a critical vertex.

For example, suppose u is a critical vertex, and v is another vertex. If the preliminary codeword
continues after reaching u with

• −+ v −−− then the first edge is important (the codeword is reduced).
• −+ +−−v then the first edge is important (the reduced codeword is u− v).
• −+−−−v then the fifth edge is important (the reduced codeword is u−−− v).
• − −−+ v− then the third edge is important (the codeword is reduced).

In our running example, the only critical vertix is 1; the final segment of c(G,w) is 1 + − −
−36 − 1 − −1, and this reduces in cr(G,w) to the reduced segment 1 − −36 − 1 − −1. The
important edge is the one labeled by the second − sign after the 1; in the word w, this is the 46 (in
the 15th position).

Definition 6.7. Given a (G,w) ∈ Gt2k, define the Füredi-Komlós codeword cFK(G,w) as follows.
In c(G,w), replace the label − of each important edge uv by the label −v.



MATH 247A: INTRODUCTION TO RANDOM MATRIX THEORY 31

So, in our running example, we have

cFK(G,w) = + + 1 + +−+36 + 1 +−−−636− 1−−1.

The codeword cFK(G,w) usually requires many fewer symbols than the codeword c′(G,w). For
example, suppose that u is a critical vertex, and we have reached u with the adjacent segment of
the spanning tree shown in Figure 6.

Suppose the walk w continues uv2v21, and so the preliminary codeword c(G,w) continues −−.
Hence, since both u and v2 are critical vertices, c′(G,w) is modified to −v2−v21 . On the other
hand, cFK(G,w) only changes the label of the final −, yielding −−v21 . Of course, since T (G,w)
is a tree, knowing the final vertex in the path of −s determines the entire path.

Proposition 6.8. The map cFK : Gt2k → {+,−, 1, 2, . . . , t,−1,−2, . . . ,−t}2k is injective.

Proof of Proposition 6.8. We need to show that we can decode (G,w) from cFK(G,w). In fact, it
suffices to show that we can recover c′(G,w) from cFK(G,w), since (as described above) decoding
c′(G,w) is easy. The only points at which c′(G,w) and cFK(G,w) may differ are strings of the
form d − − · · ·− in c(G,w) following a critical vertex, where d is a sequence of +s and −s that
reduces to ∅ in cr(G,w). (One can easily check that d is a Dyck path.) The initial redundant
sequence d can be labeled independently of its position following a critical vertex, and so these
labels remain the same in both c′(G,w) and cFK(G,w). In cFK(G,w), only the final− is changed
to a −v for some vertex v in G. With this label in place, the information we have about w is:
w begins at u, follows the subtree decoded from d back again to u, and then follows a chain of
vertices in T (G,w) (since they are labeled by −s) to v. Since T (G,w) is a tree, there is only one
path joining u and v, and hence all of the vertices in this path are determined by the label −v at the
end. In particular, all label changes required in c′(G,w) are dictated, and so we recover c′(G,w)
as required. �

Thus, cFK : Gt2k → {+,−, 1, . . . , t,−1, . . . ,−t}2k is injective. It now behooves us to bound the
number of possible Füredi-Komlós codewords cFK . Let Gt,i2k denote the subset of Gt2k consisting
of those walks with precisely i important edges. Let I denote the maximum number of important
edges possible in a walk of length 2k (so I ≤ 2k; we will momentarily give a sharp bound on
I); so #Gt2k =

∑I
i=0 #Gt,i2k. So we can proceed to bound the image cFK(Gt,i2k) – Füredi-Komlós

codewords with precisely i important edges. We do this in two steps.
• Given any preliminary codeword c, we can determine the locations of the important edges

without knowledge of their FK-labelings. Indeed, proceed to attempt to decode c: if there
is an important edge, then at some point previous to it there is a critical vertex with an edge
labeled − following. We will not be able to decode the word at this point; so we simply
look at the final − in the reduced codeword following this point, and that is the location of
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the first important edge. Now, we proceed to “decode” from this point (actually decoding
requires knowledge of where to go after the critical vertex; but we can still easily check if
the next segment of c would allow decoding). Repeating this process, we can find all the
locations of the i important edges. Hence, knowing c, there are at most ti possible FK-
codewords corresponding to it, since each important edge is labeled with a iv for some
v ∈ {1, . . . , t}. That is:

#Gt,i2k ≤ #c(Gt,i2k) · t
i. (6.13)

• So we now have to count the number of preliminary codewords. This is easy to estimate.
First, note that there are t− 1 +s and t− 1 −s (cf. Equation 6.12); we have to choose the
2(t − 1) positions for them among the 2k total; there are

(
2k

2t−2

)
such choices. Once the

positions are chosen, we note that the sequence of +s and −s forms a Dyck path: each
closing − follows its opening +; hence, the number of ways to insert them is the Catalan
number Ct−1. Finally, for each neutral vertex, we must choose a symbol from {1, . . . , t};
there are complicated constraints on which ones may appear and in what order, but a simple
upper bound for the number of ways to do this is t2(k−t+1) since (again by Equation 6.12)
there are 2(k − t+ 1) neutral edges. Altogether, then, we have

#c(Gt,i2k) ≤
(

2k

2t− 2

)
Ct−1t

2(k−t+1). (6.14)

Combining Equations 6.13 and 6.14, we have the upper-bound

#Gt2k ≤
(

2k

2t− 2

)
Ct−1t

2(k−t+1)

I∑
i=0

ti. (6.15)

All we have left to do is bound the number of important edges. A first observation is as follows:
suppose there are no neutral edges (which, as is easy to see, implies that t = k + 1 since the
graph must be a tree). Then all the symbols in the preliminary codeword are ±, and the reduced
codeword is empty (since the Dyck path they form can be successively reduced to ∅). Then there
are no important edges. So, in this case, I = 0, and our estimate gives

#Gt2k ≤
(

2k

2t− 2

)
Ct−1t

2(k−(t−1)) =

(
2k

2k

)
Ckt

2(k−k) = Ck.

This is the exact count we did as part of the proof of Wigner’s theorem, so we have a sharp bound
in this case. This case highlights that, in general, the maximal number of important edges I is
controlled by the number of neutral edges.

Claim 6.9. In any codeword, there is a neutral edge preceding the first important edge; there is a
neutral edge between any two consecutive important edges; there is a neutral edge following the
final important edge.

Given Claim 6.9, it follows that in a codeword with i important edges, the number of neutral
edges is at least i + 1; this means that, in general, the maximal number of important edges is
I ≤ #{neutral edges} − 1 = 2(k − t+ 1)− 1 by Equation 6.12. Then we have

I∑
i=0

ti ≤
2(k−t+1)−1∑

i=0

ti ≤ t2(k−t+1),

and plugging this into Equation 6.15 completes the proof of Proposition 6.4. So we are left to
verify the claim.
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• If an initial segment of the codeword consists of only ±s, then this segment is eliminated
in the reduced codewords; hence none of the −s can label important edges. Thus, there
must be a neutral edge preceding the first important edge.
• Suppose e1 and e2 are two consecutive important edges, and suppose there is no neutral

edge between them. Hence each + following e1 has its − before e2; so in the reduced
codewords between e1 and e2, there are only −s. But e1 is important, which means by def-
inition that it is the final − following a critical vertex in the reduced codeword, producing
a contradiction.
• Let e be the final important edge, and let v be the critical vertex that defines it. Hence,

at the point the walk reaches v before traversing e, there are two + edges in the reduced
codeword emanating from v. If there are no neutral edges after e, then remainder of the
walk is along edges into the spanning tree, which means the walk cannot reach both +
edges (since doing so would require a loop). Since both + edges must be crossed again by
the walk, this is a contradiction.

�
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7. THE STILETJES TRANSFORM

We have seen that some interesting combinatorial objects crop up in the study of the behaviour
of random eigenvalues. We are now going to proceed in a different direciton, and introduce some
analytical tools to study said eigenvalues. The first such tool is a transform that is, in many ways,
analogous to the Fourier transform (i.e. characteristic function) of a probability measure.

Definition 7.1. Let µ be a positive finite measure on R. The Stieltjes transform of µ is the function

Sµ(z) =

∫
R

µ(dt)

t− z
, z ∈ C \ R.

Note: for fixed z = x+ iy with y 6= 0, we have

t 7→ 1

t− z
=

1

t− x− iy
=

t− x+ iy

(t− x)2 + y2

is a continuous function, and is bounded (with real and imaginary parts bounded by 1
2|y| and 1

|y|
respectively). Hence, since µ is a finite measure, the integral Sµ(z) exists for any z /∈ R, and we
have |Sµ(z)| ≤ µ(R)/|=z|. By similar reasoning, with careful use of the dominated convergence
theorem, one can see that Sµ is complex analytic on C \ R. What’s more, another application of
the dominated convergenc theorem yields

lim
|z|→∞

zSµ(z) =

∫
R

lim
|z|→∞

z

t− z
µ(dt) = −

∫
R
µ(dt) = −µ(R). (7.1)

In fact, morally speaking, Sµ is (a change of variables from) the moment-generating function of
the measure µ. Suppose that µ is actually compactly-supported, and letmn(µ) =

∫
R t

n µ(dt). Then
if suppµ ⊆ [−R,R], we have |mn(µ)| ≤ Rn, and so the generating function u 7→

∑
nmnu

n has a
positive radius of convergence (≥ 1/R). Well, in this case, using the geometric series expansion

1

t− z
= −

∞∑
n=0

tn

zn+1
,

we have

Sµ(z) =

∫ R

−R

µ(dt)

t− z
= −

∫ R

−R

∞∑
n=0

tn

zn+1
µ(dt).

So long as |z| > R, the sum is unformly convergent, and so we may interchange the integral and
the sum

Sµ(z) = −
∞∑
n=0

1

zn+1

∫ R

−R
tn µ(dt) = −

∞∑
n=0

mn(µ)

zn+1
.

Thus, in a neighborhood of∞, Sµ is a power series in 1/z whose coefficients (up to a shift and a
−) are the moments of µ. This can be useful in calculating Stieltjes transforms.

Example. Consider the semicircle law σ1(dt) = 1
2π

√
(4− t2)+ dt. From Exercise 2.4.1, we know

that m2n−1(σ1) = 0 for n ≥ 1 while m2n(σ1) = Cn are the Catalan numbers. Since Cn ≤ 4n, this
shows that mn(σ1) ≤ 2n, and so for |z| > 2, we have

Sσ1(z) = −
∞∑
n=0

Cn
z2n+1

. (7.2)
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This sum can actually be evaluated in closed-form, by utilizing the Catalan recurrence relation:

Cn =
n∑
j=1

Cn−jCj−1, n ≥ 1

which is easily proved by induction. (This is kind of backwards: usually one proves that the number
of Dyck paths of length 2n satisfies the Catalan recurrence relation, which therefore implies they
are counted by Catalan number!) Hence we have

Sσ1(z) = −C0

z
−
∞∑
n=1

Cn
z2n+1

= −1

z
−
∞∑
n=1

1

z2n+1

n∑
j=1

Cn−jCj−1.

For the remaining double sum, it is convenient to make the change of variables m = n− 1; so the
sum becomes

Sσ1(z) = −1

z
−
∞∑
m=0

1

z2m+3

m+1∑
j=1

Cm+1−jCj−1.

Now we reindex the internal sum by i = j − 1, yielding

Sσ1(z) = −1

z
− 1

z

∞∑
m=0

1

z2m+2

m∑
i=0

Cm−iCi.

For each i in the internal sum, we distribute
1

z2m+2
=

1

z2(m−i)+1

1

z2i+1

so that

Sσ1(z) = −1

z
− 1

z

∞∑
m=0

m∑
i=0

(
Cm−i

z2(m−i)+1

)(
Ci
z2i+1

)
.

The double sum is a series of the form
∑∞

m=0

∑m
i=0 am−iai (where ai = Ci/z

2i+1), which is a
reindexing of the sum

∑∞
m=0

∑∞
k=0 amak = (

∑∞
m=0 am)

2. Thus, we have

Sσ1(z) = −1

z
− 1

z

(
∞∑
m=0

Cm
z2m+1

)2

= −1

z
− 1

z
Sσ1(z)2

where the last equality follows from Equation 7.2. In other words, for each z ∈ C \ R, Sσ1(z)
satisfies the quadratic equation

Sσ1(z)2 + zSσ1 + 1 = 0.

The solutions are

Sσ1(z) =
−z ±

√
z2 − 4

2
.

Noting, from Equation 7.1, that Sσ1(z)→ 0 as |z| → ∞, we see the correct sign is +; and one can
easily check that

zSσ1(z) =
z(−z +

√
z2 − 4)

2
=
z((z2 − 4)− z2)

2(
√
z2 − 4 + z)

=
−2z√

z2 − 4 + z
→ −1 as |z| → ∞.

In the above example, we verified that, for |z| > 2, Sσ1(z) = 1
2
(−z +

√
z2 − 4). The function

z 7→ 1
2
(−z +

√
z2 − 4) is analytic everywhere on C \ R, however (in fact everywhere except at

[−2, 2]). Since Sσ1 is also analytic on C \ R, it follows that the two agree everywhere. This is one
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of the nice features of the Stieltjes transform: one only need calculate it on a neighborhood of∞
(or, indeed, on any set that contains an accumulation point) to determine its value everywhere.

Another important feature of the Stieltjes transform is that, as with the characteristic function,
the measure µ is determined by Sµ in a simple (and analytically robust) way.

Theorem 7.2 (Stieltjes inversion formula). Let µ be a positive finite measure on R. For ε > 0,
define a measure µε by

µε(dx) =
1

π
=Sµ(x+ iε) dx.

Then µε is a positive measure with µε(R) = µ(R), and µε → µ weakly as ε ↓ 0. In particular, if I
is an open interval in R and µ does not have an atom in ∂I , then

µ(I) = lim
ε↓0

1

π

∫
I

=Sµ(x+ iε) dx.

Proof. First note that the map µ 7→ Sµ is a linear map from the cone of positive finite measures into
the space of analytic functions on C \R. Hence, to verify that it is one-to-one, we need only check
that its kernel is 0. Suppose, then, that Sµ(z) = 0 for all z. In particular, this means Sµ(i) = 0.
Well

=Sµ(i) = =
∫
R

µ(dt)

t− i
=

∫
R

µ(dt)

t2 + 1
and so if this is 0, then the positive measure µ is 0. So, we can in principle recover µ from Sµ.
Now, assume Sµ is not identically 0. Then µ(R) > 0, and 1

µ(R)
Sµ = Sµ/µ(R); thus, without loss of

generality, we assume that µ is a probability measure. We can now calculate in general

=Sµ(x+ iε) = =
∫
R

µ(dx)

x+ iε− t
=

∫
R

ε

(x− t)2 + ε2
µ(dx).

Thus µε = χε ∗ µ where χε(dx) = ε dx
π(x2+ε2)

is the Cauchy distribution. A convolution of two
probability measures is a probability measure, verifying that µε(R) = 1. Moreover, it is well-
known that the density of χε forms an apporximate identity sequence as ε ↓ 0; hence, µε = χε ∗ µ
converges weakly to µ as ε ↓ 0. The second statement (in terms of measures of intervals I) follows
by a standard approximation of 1I by C∞c functions. �

Remark 7.3. The approximating measures µε in Theorem 7.2 all have smooth densities ρε(x) =
1
π
=Sµ(x + iε). If the measure µ also has a density µ(dx) = ρ(x) dx, then in particular µ has no

atoms; the statement of the theorem thus implies that, in this case, ρε → ρ pointwise as ε ↓ 0.

Example. As calculated above, the Stieltjes transform of the semicircle law σ1 is Sσ1(z) = 1
2
(−z+√

z2 − 4). Hence, the approximating measures from the Stieltjes inversion formula have densities

ρε(x) =
1

π
=Sµ(x+ iε) =

1

2π
=
(
−(x+ iε) +

√
(x+ iε)2 − 4

)
= − ε

2π
+

1

2π
=
√

(x+ iε)2 − 4.

Taking the limit inside the square root, this yields

lim
ε↓0

ρε(x) =
1

2π
=
√
x2 − 4 =

1

2π

√
(4− x2)+

yielding the density of σ1, as expected.
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8. THE STIELTJES TRANSFORM AND CONVERGENCE OF MEASURES

In order to fully characterize the robust features of the Stieltjes transform with respect to conver-
gent sequence of measures, it is convenient to introduce a less-well-known form of convergence.

8.1. Vague Convergence.

Definition 8.1. Say that a sequence µn of measures on R converge vaguely to a measure µ on R
if, for each f ∈ Cc(R),

∫
R f dµn →

∫
R f dµ.

Vague convergence is a slight weakening of weak convergence. Since constants are no longer
allowed test functions, vague convergence is not required to preserve total mass: it may allow
some mass to escape at ±∞, while weak convergence does not. For example, the sequence of
point-masses δn converges vaguely to 0, but does not converge weakly. This is the only difference
between the two: if the measures µn and µ are all probability measures, then vague convergence
implies weak convergence.

Lemma 8.2. Let µn be a sequence of probability measures, and suppose µn → µ vaguely where µ
is a probability measure. Then µn → µ weakly.

Proof. Fix ε > 0. Because µ(R) = 1 and the nested sets [−R,R] increase to R as R → ∞, there
is an Rε such that µ([−Rε, Rε]) > 1 − ε/2. Let R′ε > Rε, and fix a positive Cc test function ψε
that equals 1 on [−Rε, Rε], equals 0 outside of [−R′ε, R′ε], and is always ≤ 1. Now, by assumption
µn → µ vaguely. Hence

µn([−R′ε, R′ε]) =

∫
1[−R′ε,R′ε] dµn ≥

∫
ψε dµn →

∫
ψε dµ ≥

∫
1[−Rε,Rε]

= µ([−Rε, Rε]) > 1− ε/2.
Therefore, there is Nε ∈ N so that for all n > Nε, µn([−R′ε, R′ε]) > 1 − ε. Denote the interval
[−R′ε, R′ε] as Iε; so for large enough n, µn satisfy µn(Iε) > 1− ε, and also µ(Iε) > 1− ε.

Now, let g ∈ Cb(R). Fix a positive test function ϕε ∈ Cc(R) that is equal to 1 on Iε, and ϕ ≤ 1.
Then gϕε ∈ Cc(R), and so by the assumption of vague convergence, there is an N ′ε ∈ N such that,
for n > N ′ε, ∣∣∣∣∫ gϕε dµn −

∫
gϕε dµ

∣∣∣∣ < ‖g‖∞ε. (8.1)

Now we compute∫
g dµn =

∫
g · (ϕε + (1− ϕε)) dµn =

∫
gϕε dµn +

∫
g · (1− ϕε) dµn∫

g dµ =

∫
g · (ϕε + (1− ϕε)) dµ =

∫
gϕε dµ+

∫
g · (1− ϕε) dµ.

Subtracting, we get∣∣∣∣∫ g dµn −
∫
g dµ

∣∣∣∣ ≤ ∣∣∣∣∫ gϕε dµn −
∫
gϕε dµ

∣∣∣∣+

∫
|g| · (1− ϕε) dµn +

∫
|g| · (1− ϕε) dµ.

The first term is < ‖g‖∞ε for n > N ′ε by Equation 8.1. The function 1 − ϕε is 0 on Iε, and since
ϕε ≤ 1, we have 1− ϕε ≤ 1Icε . By construction, µIcε < ε, and so∫

|g| · (1− ϕε) dµn ≤ ‖g‖∞
∫

(1− ϕε) dµn ≤ ‖g‖∞
∫

1Icε dµn = ‖g‖∞µn(Iε) < ‖g‖∞ε,
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the final inequality holding true for n > Nε. Similarly
∫
|g| · (1 − ϕε) dµ < ‖g‖∞ε for n > Nε.

Altogether, we have∣∣∣∣∫ g dµn −
∫
g dµ

∣∣∣∣ < 3‖g‖∞ε, for n > max{Nε, N
′
ε}.

It follows that
∫
g dµn →

∫
g dµ. We have therefore shown that µn → µ weakly. �

Remark 8.3. The statement (and proof) of Lemma 8.2 remain valid for finite measures µn, µ, pro-
vided there is a uniform upper bound on the total mass of µn.

Remark 8.4. Since Cc ⊂ Cb, we can define other convergence notions relative to other classes
of test functions in between these two; while they may give different results for general measures,
Lemma 8.2 shows that they will all be equivalent to weak convergence when the measures involved
are all probability measures. In particular, many authors define vague convergen in terms ofC0(R),
the space of continuous functions that tend to 0 at ±∞, rather than the smaller subspace Cc(R).
This is a useful convention for us on two counts: the “test function” 1

z−t in the definition of the
Stieltjes transform is in C0 but not in Cc, and also the space C0 is a nicer space than Cc from a
functional analytic point of view. We expound on this last point below.

From a functional analytic point of view, vague convergence is more natural than weak conver-
gence. Let X be a Banach space. Its dual space X∗ is the space of bounded linear functionals
X → C. The dual space has a norm, given by

‖x∗‖X∗ = sup
x∈X, ‖x‖X=1

|x∗(x)|.

This norm makes X∗ into a Banach space (even if X itself is not complete but merely a normed
vector space). There are, however, other topologies onX∗ that are important. The weak∗ topology
on X∗, denoted (X∗, wk∗), is determined by the following convergence rule: a sequence x∗n in X∗

converges to x ∈ X∗ if x∗n(x) → x∗(x) for each x ∈ X . This is strictly weaker than the weak
topology, where convergence means ‖x∗n − x‖X∗ → 0; i.e. supx∈X, ‖x‖X=1 |x∗n(x) − x∗(x)| → 0.
The terms for each fixed x can converge even if the supremum doesn’t; weak∗-convergence is
sometimes called simply pointwise convergence.

The connection between these abstract notions and our present setting is as follows. The space
X = C0(R) is a Banach space (with the uniform norm ‖f‖∞ = supt |f(t)|). According to the
Riesz Representation theorem, its dual spaceX∗ can be identified with the spaceM(R) of complex
Radon measures on R. (Note: any finite positive measure on R is automatically Radon.) The
identification is the usual one: a measure µ ∈ M(R) is identified with the linear functional f 7→∫
R f dµ on C0(R). As such, in (C0(R)∗, wk∗), the convergence µn → µ is given by∫

R
f dµn →

∫
R
f dµ, ∀ f ∈ C0(R).

That is, weak∗ convergence inM(R) ∼= C0(R)∗ is equal to vague convergence. This is the reason
vague convergence is natural: it has a nice functional analytic description. The larger space Cb(R)
is also a Banach space in the uniform norm; however, the dual space Cb(R)∗ cannot be naturally
identified as a space of measures. (For example: C0(R) is a closed subspace of Cb(R); by the
Hahn-Banach theorem, there exists a bounded linear functional Λ ∈ Cb(R)∗ that is identically 0 on
C0(R), and Λ(1) = 1. It is easy to check that Λ cannot be given by integration against a measure.)

The main reason the weak∗ topology is useful is the following important theorem.
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Theorem 8.5 (Banach-Alaoglu theorem). Let X be a normed space, and let B(X∗) denote the
closed unit ball inX∗: B(X∗) = {x∗ ∈ X∗ : ‖x∗‖X∗ ≤ 1}. ThenB(X∗) is compact in (X∗, wk∗).

Compact sets are hard to come by in infinite-dimensional spaces. In the X∗-topology, B(X∗)
is definitely not compact (if X is infinite-dimensional). Thinking in terms of sequential compact-
ness, the Banach-Alaoglu theorem therefore has the following important consequence for vague
convergence.

Lemma 8.6. Let µn be a collection of finite positive measures on R with µn(R) ≤ 1. Then there
exists a subsequence µnk that converges vaguely to some finite positive measure µ.

Proof. Let M≤1(R) denote the set of positive measures µ on R with µ(R) ≤ 1. As noted above,
M≤1(R) ⊂M(R) = C0(R)∗. Now, for any f ∈ C0(R) with ‖f‖∞ = 1, and any µ ∈M≤1(R), we
have ∣∣∣∣∫

R
f dµ

∣∣∣∣ ≤ ∫
R
‖f‖∞ dµ = ‖f‖∞µ(R) ≤ 1.

Taking the supremum over all such f shows that µ ∈ B(C0(R)∗); thus M≤1(R) is contained in the
closed unit ball of C0(R)∗.

Now, suppose that µn is a sequence in M≤1 that converges vaguely to µ ∈ M(R). First note
that µ must be a positive measure: given any f ∈ Cc(R) ⊂ C0(R), we have (by the assumption of
vague convergence) that

∫
f dµ = limn→∞ f dµn ≥ 0, and so µ is positive on all compact subsets

of R, hence is a positive measure. Now, fix a sequence fk ∈ Cc(R) that increases to 1 pointwise.
Then

µ(R) =

∫
R
dµ =

∫
R

lim
k→∞

fk dµ ≤ lim sup
k→∞

∫
fk dµ = lim sup

k→∞
lim
n→∞

∫
fk dµn,

where the inequality follows from Fatou’s lemma. Because fk ≤ 1, and µn ∈ M≤1(R), all the
terms in this double sequence are ≤ 1, and so the lim sup is ≤ 1, as desired. This shows that
µ ∈M≤1(R).

Thus, we have shown thatM≤1 is a subset ofB(C0(R)∗) that is closed under vague convergence:
i.e. it is closed in (C0(R)∗, wk∗). A closed subset of a compact set is compact, and therefore by the
Banach-Alaoglu theorem, M≤1 is compact in the weak∗ topology. This is precisely the statement
of the lemma (in sequential compactness form). �

Remark 8.7. Compactness and sequential compactness are not generally equivalent, but they are
equivalent in metric spaces. In fact, for any separable normed space X (such as C0(R)), the unit
ball (B(X∗), wk∗) is metrizable: fix a countable dense subset {xn}∞n=1 of X . Then

d(x∗, y∗) =
∞∑
n=1

2−n
|x∗(xn)− x∗(xn)|

1 + |x∗(xn)− y∗(xn)|

is a metric onB(X∗) which can easily be seen to yield the weak∗ topology. Indeed, this is probably
the best approach to prove the Banach-Alaoglu theorem: one can use a diagonalization argument
mimicking the standard proof of the Arzelà-Ascoli theorem.

Lemma 8.6 and Remark 8.7 show that the set M≤1(R) of positive measures with mass ≤ 1 is a
compact metric space in the vague topology. It is therefore worth noting the following simple fact
about compact metric spaces.
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Lemma 8.8. Let (M,d) be any compact metric space. If µn is a sequence in M and µ ∈ M , if
µn does not converge to µ (i.e. d(µn, µ) does not converge to 0), then there exists a subsequence
{µnk} that converges to some µ′ ∈M with µ′ 6= µ.

Proof. Since µn does not converge to µ, there is some ε > 0 such that d(µn, µ) ≥ ε for infinitely
many n. So there is a subsequence contained in the closed set {ν ∈ M : d(ν, µ) ≥ ε}. Since M is
compact, this closed set is compact, and hence there is a further subsequence which converges in
this set – ergo to a limit µ′ with d(µ, µ′) ≥ ε. �

8.2. Robustness of the Stieltjes transform. We are now ready to prove the main results on con-
vergence of Stieltjes transforms of sequences of measures.

Proposition 8.9. Let µn be a sequence of probability measures on R.
(a) If µn converges vaguely to the probability measure µ, then Sµn(z) → Sµ(z) for each

z ∈ C \ R.
(b) Conversely, suppose that limn→∞ Sµn(z) = S(z) exists for each z ∈ C \ R. Then there

exists a finite positive measure µ with µ(R) ≤ 1 such that S = Sµ, and µn → µ vaguely.

Proof. We noted following the definition of the Stieltjes transform that the function t 7→ 1
t−z is

continuous and bounded; it is also clear that it is in C0(R), and hence, part (a) follows by the
definition of vague convergence. To prove part (b), begin by selecting from µn a subsequence µnk
that converges vaguely to some sub-probability measure µ, as per Lemma 8.6. Then, as in part (a),
it follows that Sµnk (z) → Sµ(z) for each z ∈ C \ R. Thus S(z) = Sµ(z) for each z ∈ C \ R. By
the Stieltjes inversion formula, if S(z) = Sν(z) for some finite positive measure ν, then ν = µ. So
we have shown that every vaguely-convergent subsequence of µn converges to the same limit µ. It
follows from Lemma 8.8 that µn → µ vaguely. �

Remark 8.10. It would be more desirable to conclude in part (b) that S is the Stieltjes transform of
a probability measure. But this cannot be true in general: for example, with µn = δn, the sequence
Sδn(z) = 1

n−z converges pointwise to 0, the Stieltjes transform of the 0 measure. The problem
is that the set M1(R) of probability measures is not compact in the vague topology; indeed, it is
not closed, since mass can escape at ±∞. Unfortunately M1(R) is also not compact in the weak
topology, for the same reason: by letting mass escape to∞, it is easy to find sequences in M1(R)
that have no weakly convergent subsequences (for example δn).

Our main application of the Stieltjes transform will be to the empirical eigenvalue measure of
a Wigner matrix. As such, we must deal with Sµ as a random variable, since µ will generally
be a random measure. The following result should be called the Stieltjes continuity theorem for
random probability measures.

Theorem 8.11. Let µn and µ be random probability measures on R. Then µn converges weakly
almost surely to µ if and only if Sµn(z)→ Sµ(z) almost surely for each z ∈ C \ R.

Remark 8.12. We could state this theorem just as well for convergence in probability in each case;
almost sure convergence is stronger, and generally easier to work with.

Proof. For the “only if” direction, we simply apply Proposition 8.9(a) pointwise. That is to say:
by assumption µn → µ weakly a.s., meaning there is an event Ω with probability P(Ω) = 1 such
that, for all ω ∈ Ω, µn(ω)→ µ(ω) weakly. Now, fix z ∈ C \R; then the function fz(t) = 1

t−z is in
Cb(R). Thus, by definition of weak convergence, we have

Sµn(ω)(z) =

∫
fz dµn(ω)→

∫
fz dµ(ω) = Sµ(ω)(z),
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establishing the desired statement.
The converse “if” direction requires slightly more work; this proof was constructed by Yinchu

Zhu in Fall 2013. By assumption, Sµn(z) → Sµ(z) a.s. for each z ∈ C \ R. To be precise, this
means that, for each z ∈ C \ R, there is an event Ωz of full probability P(Ωz) = 1 such that
Sµn(ω)(z)→ Sµ(ω)(z) for all ω ∈ Ωz. We would like to find a single z-independent full probability
event Ω such that Sµn(ω)(z) → Sµ(ω)(z) for all z ∈ C \ R and ω ∈ Ω. Näively, we should take
Ω = ∩z∈C\RΩz; but C \ R is uncountable, so this intersection need not be full probability (indeed,
it need not be measurable, or could well be empty). Instead, we take a countable dense subset. Let
Q(i) = {x′ + iy′ : x′, y′ ∈ Q}. Then Q(i) \Q is dense in C \ R. Define

Ω ≡
⋂

z′∈Q(i)\Q

Ωz′ .

Then P(Ω) = 1, and essentially by definition we have Sµn(ω)(z
′) → Sµ(ω)(z

′) for all ω ∈ Ω and
z′ ∈ Q(i) \Q.

Claim 8.13. For any ω ∈ Ω and z ∈ C \ R, Sµn(ω)(z)→ Sµ(ω)(z) as n→∞.

To prove the claim, we use the triangle inequality in the usual way: for any z′ ∈ Q(i) \Q,

|Sµn(ω)(z)−Sµ(ω)(z)| ≤ |Sµn(ω)(z)−Sµn(ω)(z
′)|+ |Sµn(ω)(z

′)−Sµ(ω)(z
′)|+ |Sµ(ω)(z

′)−Sµ(ω)(z)|.
By assumption, the middle term tends to 0 as n→∞. For the first and last terms, simply note the
following: for any probability measure ν on R,

|Sν(z)−Sν(z′)| =
∣∣∣∣∫ ( 1

t− z
− 1

t− z′

)
ν(dt)

∣∣∣∣ =

∣∣∣∣∫ z − z′

(t− z)(t− z′)
ν(dt)

∣∣∣∣ ≤ ∫ |z − z′|
|t− z||t− z′|

ν(dt).

Since t is real, |t− z| ≥ |=z|, and so we have the estimate

|Sν(z)− Sν(z′)| ≤
∫
|z − z′|
|=z||=z′|

ν(dt) =
|z − z′|
|=z||=z′|

.

Applying this to the first and third terms above (with ν = µn(ω) or ν = µ(ω)), we therefore have
the estimate

|Sµn(ω)(z)− Sµ(ω)(z)| ≤ |Sµn(ω)(z
′)− Sµ(ω)(z

′)|+ 2|z − z′|
|=z||=z′|

(8.2)

which holds for any z′.
Now, fix ε > 0. To simplify, let us assume=z > 0 (a nearly identical argument works in the case
=z < 0). Let ¿.0 be such that 1

δ
> =z+ 4

ε
. By the density of Q(i)\Q in C\R, there is a rational point

z′ with |z − z′| < (=z)2δ. Then we also have |=z −=z′| = |=(z − z′)| ≤ |z − z′| < (=z)2δ, and
so, in particular, =z′ > =z− (=z)2δ = =z(1−=zδ). By the assumption on δ, 1−=zδ > 4/.ε > 0.
Thus

2|z − z′|
|=z||=z′|

=
2|z − z′|
=z · =z′

<
2(=z)2δ

=z · =z(1−=zδ)
=

2δ

1−=zδ
<

2δ

4/.ε
=
ε

2
.

Now, since Sµn(ω)(z
′)→ Sµ(ω)(z

′), there is anN(ω) ∈ N such that, for all n ≥ N(ω), |Sµn(ω)(z
′)−

Sµ(ω)(z
′)| < ε

2
. From (8.2), it therefore follows that, for n ≥ N(ω), |Sµn(ω)(z) − Sµ(ω)(z)| < ε.

This establishes the claim.
Now with Claim 8.13 in hand: from Proposition 8.9(b), we may conclude that, for each ω ∈ Ω,

µn(ω)→ µ(ω) vaguely. Since both µn(ω) and µ(ω) are known a priori to be probability measures,
it therefore follows from Lemma 8.2 that µn(ω) → µ(ω) weakly for all ω ∈ Ω. Since P(Ω) = 1,
this proves the theorem. �
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8.3. The Stieltjes Transform of an Empirical Eigenvalue Measure. Let Xn be a Wigner ma-
trix, with (random) empirical law of eigenvalues µXn . Let µ̄Xn denote the averaged empirical
eigenvalue law: that is, µ̄Xn is determined by∫

R
f dµ̄Xn = E

(∫
f dµXn

)
∀ f ∈ Cb(R). (8.3)

The Stieltjes transforms of these measures are easily expressible in terms of the matrix Xn, without
explicit reference to the eigenvalues λi(Xn). Indeed, for z ∈ C \ R,

SµXn (z) =

∫
R

1

t− z
µXn(dt) =

1

n

n∑
i=1

1

λi(Xn)− z
.

Now, for a real symmetrix matrix X, the eigenvalues λi(X) are real, and so the matrix X − zI
(where I is the n× n identity matrix) is invertible for each z ∈ C \ R. Accordingly, define

SX(z) = (X− zI)−1.

(This function is often called the resolvent of X.) By the spectral theorem, the eigenvalues of
SX(z) are (λi(X)− z)−1. Thus, we have

SµXn (z) =
1

n

n∑
i=1

λi(SXn(z)) =
1

n
TrSXn(z). (8.4)

Now, since the function fz(t) = 1
t−z is in Cb(R), Equation 8.3 yields

ESµXn = E
(∫

fz dµXn

)
=

∫
fz dµ̄Xn = Sµ̄Xn (z),

and so we have the complementary formula

Sµ̄Xn (z) =
1

n
ETrSXn(z). (8.5)

We will now proceed to use (matrix-valued) calculus on the functions X 7→ SX(z) (for fixed z) to
develop an entirely different approach to Wigner’s Semicircle Law.
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9. THE STIELTJES TRANSFORM AND THE AVERAGED EMPIRICAL LAW OF EIGENVALUES

9.1. Gaussian Random Matrices. To get a sense for how the Stieltjes transform may be used to
prove Wigner’s theorem, we begin by considering a very special matrix model. We take a Wigner
matrix Xn = n−1/2Yn with the following characteristics:

Yii = 0, Yij = Yji ∼ N(0, 1) for i < j.

That is: we assume that the diagonal entries are 0 (after all, we know they do not contribute to
the limit), and the off-diagonal entries are standard normal random variables, independent above
the main diagonal. Now, we may identify the space of symmetric, 0-diagonal n× n matrices with
Rn(n−1)/2 in the obvious manner. Under this identification, Yn becomes a random vector whose
joint law is the standard n(n− 1)/2-dimensional Gaussian.

With this in mind, let us attempt to calculuate the Stieltjes transform of µ̄Xn , a la Equation 8.5.
First, note the following identity for the resolvent SX of any matrix X. Since SX(z) = (X−zI)−1,
we have (X− zI)SX(z) = I. In other words, XSX(z)− zSX(z) = I, and so

SX(z) =
1

z
(XSX(z)− I). (9.1)

Taking the normalized trace, we then have
1

n
TrSX(z) =

1

nz
Tr XSX(z)− 1

z
. (9.2)

Now, as with the Gaussian matrix above, assume that X has 0 diagonal. In accordance with
thinking of X as a vector in Rn(n−1)/2, we introduce some temporary new notation: for z ∈ C \R,
let Fz(X) = SX(z); that is, we think of X 7→ SX(z) as a (C \ R-parametrized) vector-field Fz.
The inverse of a (complex) symmetric matrix is (complex) symmetric, and so Fz(X) is symmetric.
It generally has non-zero diagonal, however. Nevertheless, let us write out the trace term:

Tr XSX(z) = Tr XFz(X) =
n∑
i=1

[XFz(X)]ii =
∑
i,j

[X]ij[F
z(X)]ji.

Since [X]ii = 0, and since both X and Fz(X) are symmetric, we can rewrite this as∑
i 6=j

[X]ij[F
z(X)]ij = 2

∑
i<j

[X]ij[F
z(X)]ij.

So, although Fz takes values in a space larger than Rn(n−1)/2, the calculation only requires its
values on Rn(n−1)/2, and so we restrict our attention to those components of Fz. Let us now use
notation more becoming of a Euclidean space: the product above is nothing else but the dot product
of X with the vector field Fz(X).

In the case X = Xn, the Gaussian Wigner matrix above, let γ denote the joint law of the random
vector X ∈ Rn(n−1)/2. Then, taking expectation, we have (from Equation 9.2)

1

n
ETrSXn(z) =

1

nz
ETr XnSXn −

1

z
=

2

nz
E (Xn · Fz(Xn))− 1

z

= −1

z
+

2

nz

∫
Rn(n−1)/2

x · Fz(x) γ(dx).

Evaluating this integral can be accomplished through a standard integration by parts formula for
Gaussians.
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Lemma 9.1 (Gaussian integration by parts). Let γt denote the standard Gaussian law on Rm, with
variance t > 0:

γt(dx) = (2πt)−m/2e−|x|
2/2t dx.

Let F : Rm → Rm be C1 with Fj and ∂jFj of polynomial growth for all j. Then∫
x · F(x) γt(dx) = t

∫
∇ · F(x) γt(dx)

Proof. We will prove the Lemma term by term in the dot-product sum; that is, for each j,∫
xjFj(x) γt(dx) = t

∫
∂jFj(x) γt(dx).

As such, we set F = Fj and only deal with a single function. We simply integrate by parts on the
right-hand-side: ∫

∂jF dγt = (2πt)−m/2
∫

(∂jF )(x)e−|x|
2/2t dx

= −(2πt)−m/2
∫
F (x)∂j(e

−|x|2/2t) dx

= −(2πt)−m/2
∫
F (x)(−xj/t)e−|x|

2/2t dx

=
1

t

∫
xjF (x) γt(dx),

where the integration by parts is justified since ∂jF ∈ L1(γt) and F ∈ L1(xjγt) due to the
polynomial-growth assumption. �

The Gaussian Wigner matrix Xn = n−1/2Yn is built out of standard normal entries Yij , with
variance 1. Thus the variance of the entries in Xn is 1

n
. The vector field Fz has the form Fz(X) =

SX(z) = (X − zI)−1 which is a bounded function of X. The calculations below show that its
partial derivatives are also bounded, so we may use Lemma 9.1.

1

n
ETrSXn(z) = −1

z
+

2

n2z

∫
Rn(n−1)/2

∇ · Fz(x) γ1/n(dx) = −1

z
+

2

n2z
E (∇ · Fz(Xn)) .

We must now calculate the divergence ∇ · Fz, where [Fz(X)]ij = [SX(z)]ij for i < j. To begin,
we calculate the partial derivatives of the (vector-valued) function Fz. By definition

∂ijF
z(X) = lim

h→0

1

h
[Fz(X + hEij)− Fz(X)] ,

where Eij is the standard basis vector in the ij-direction. Under the identification of Rn(n−1)/2

with the space of symmetric 0-diagonal matrices, this means that Eij is the matrix with 1s in the
ij and ji slots, and 0s elsewhere. The difference then becomes

SX+hEij(z)− SX(z) = (X + hEij − zI)−1 − (X− zI)−1.

We now use the fact that A−1 − B−1 = A−1(B − A)B−1 for two invertible matrices A,B to
conclude that

SX+hEij(z)− SX(z) = (X + hEij − zI)−1 (−hEij) (X− zI)−1.

Dividing by h and taking the limit yields

∂ijF
z(X) = −SX(z)EijSX(z).
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Now, the divergence in question is

∇ · Fz(X) =
∑
i<j

∂ijF
z
ij(X) = −

∑
i<j

[SX(z)EijSX(z)]ij.

Well, for any matrix A,

[AEijA]ij =
∑
k,`

Aik[Eij]k`A`j =
∑
k,`

Aik(δikδj` + δi`δjk)A`j = AiiAjj + AijAji.

Thus, we have the divergence of Fz:

∇ · Fz(X) = −
∑
i<j

(
[SX(z)]ii[SX(z)]jj + [SX(z)]2ij

)
. (9.3)

Combining with the preceding calculations yields

1

n
ETrSXn(z) = −1

z
− 2

n2z
E

( ∑
1≤i<j≤n

([SXn(z)]ii[SXn(z)]jj) + E
(
[SXn(z)]2ij

))
. (9.4)

Let sij = [SXn(z)]ij; then sij = sji. So, the first term in the above sum is

2
∑
i<j

siisjj =
∑
i 6=j

siisjj =
∑
i,j

siisjj −
∑
i

s2
ii =

(∑
i

sii

)2

−
∑
i

s2
ii.

The second term is
2
∑
i<j

s2
ij =

∑
i 6=j

s2
ij =

∑
i,j

s2
ij −

∑
i

s2
ii.

Two of these terms can be expressed in terms of traces of powers of SX(z):∑
i

sii = TrSX(z),
∑
i,j

s2
ij = Tr (SX(z)2).

Plugging these into Equation 9.4 yields

1

n
ETrSXn(z) = −1

z
− 1

n2z
E

(
( TrSXn(z))2 + Tr (SXn(z)2)− 2

n∑
i=1

[SXn(z)]2ii

)
. (9.5)

It is convenient to rewrite this as

1 + z · 1

n
ETrSXn(z) + E

((
1

n
TrSXn(z)

)2
)

= − 1

n2
E

(
Tr (SXn(z)2)− 2

n∑
i=1

[SXn(z)]2ii

)
.

Employing Equation 8.4, the left-hand-side can be rewritten as

1 + zESµXn (z) + E(SµXn (z)2).

Let us now estimate the right-hand-side. For the second term, we can make a blunt estimate:∣∣∣∣∣
n∑
i=1

[SXn(z)]2ii

∣∣∣∣∣ ≤ ∑
1≤i,j≤n

|[SXn(z)]ij|2 = Tr (SXn(z)∗SXn(z)).
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Similarly, the trace term is bounded in absolute value by the same quantity. Hence, the right-hand-
side is bounded in absolute value as follows:∣∣∣∣∣1 + z · 1

n
ETrSXn(z) + E

((
1

n
TrSXn(z)

)2
)∣∣∣∣∣ ≤ 3

n2
ETr (SXn(z)∗SXn(z)). (9.6)

But SXn(z)∗ = SXn(z̄) since Xn is a real matrix. So we have

1

n2
ETr (SXn(z)SXn(z̄)) =

1

n2
ETr |Xn − zI|−2 =

1

n2
E

(
n∑
i=1

|λi(Xn)− z|−2

)

=
1

n

∫
1

|t− z|2
µ̄Xn(dt).

Note that, for fixed z ∈ C \ R, we have |t − z|−2 ≤ |=z|−2 for all t ∈ R; thus, since µ̄Xn is a
probability measure, it follows that the last quantity is ≤ 1

|=z|2n . Equation 9.6 therefore shows that

1 + zESµXn (z) + E(SµXn (z)2)→ 0 as n→∞. (9.7)

Now, at this point, we need to make a leap of faith (which we will, in the next lectures, proceed to
justify). Suppose that we can bring the expectation inside the square in this term; that is, suppose
that it holds true that

E(SµXn (z)2)−
(
ESµXn (z)

)2 → 0 as n→∞. (9.8)

Combining Equations 9.7 and 9.8, and utilizing the fact that ESµXn (z) = Sµ̄Xn (z) (cf. Equation
8.5), we would then have, for each z ∈ C \ R

1 + zSµ̄Xn (z) + Sµ̄Xn (z)2 → 0 as n→∞.

For fixed z, the sequence S̄n(z) = Sµ̄Xn (z) is contained in the closed ball of radius 1
|=z|2 in C. This

ball is compact, hence there is a subsequence S̄nk(z) that converges to a limit S̄(z). This limit then
satisfies the quadratic equation

1 + zS̄(z) + S̄(z)2 = 0

whose solutions are

S̄(z) =
−z ±

√
z2 − 4

2
.

Now, S̄(z) is the limit of a sequence of Stieltjes transforms of probability measures; hence, by
Proposition 8.9(b), there is a positive finite measure µ such that S̄(z) = Sµ(z). It follows, then,
since S̄(z) is a Stieltjes transform, that for =z > 0,

=S̄(z) = =Sµ(z) = =
∫
R

µ(dt)

t− z
=

∫
R

y

(t− x)2 + y2
µ(dt) > 0.

Hence, this shows that the correct sign choice is +, uniformly: we have

S̄(z) =
−z +

√
z2 − 4

2
= Sσ1(z),

the Stieltjes transform of the semicircle law. Thus, we have shown that every convergent subse-
quence of Sµ̄Xn (z) converges to Sσ1(z); it follows that the limit exists, and

lim
n→∞

Sµ̄Xn (z) = Sσ1(z), z ∈ C \ R.
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Finally, by Theorem 8.11, it follows that µ̄Xn → σ1 weakly, which verifies Wigner’s semicircle
law (on the level of expectations) for the Gaussian Wigner matrix Xn.

Now, the key to this argument was the interchange of Equation 9.8. But looking once more
at this equation, we see what it says is that VarSµXn (z) → 0. In fact, if we know this, then the
theorem just proved – that the averaged empirical eigenvalue distribution µ̄Xn converges weakly
to σ1 – yields stronger convergence. Indeed, we will see that this kind of concentration of measure
assumption implies that the random measure µXn converges weakly almost surely to σ1, giving us
the full power of Wigner’s semicircle law.

Before we can get there, we need to explore some so-called coercive functional inequalities for
providing concentration of measure. First, let us consider how to work this same kind of argument
for a more general Wigner matrix.

9.2. More General Wigner Matrices. In the vector calculus approach taken in the previous sec-
tion, Gaussian integration by parts (Lemma 9.1) played an important role. In fact, this integration
by parts formula characterizes Gaussians (this is Stein’s lemma), and so for more general Wigner
matrices, we need a somewhat different approach.

The first step is a general linear algebra lemma, regarding the resolvent function SX(z) of a
generic symmetric matrix X.

Lemma 9.2. Let X ∈ Xn be a symmetric n × n matrix, with columns X = [x1,x2, . . . ,xn]. For
1 ≤ j ≤ n, denote by x̃j ∈ Rn−1 the vector achieved by deleting the jth component of xj , and
let X(j) ∈ Xn denote the symmetric matrix obtained by deleting the jth column and row from X.
Then, for z ∈ C \ R,

[SX(z)]jj =
1

Xjj − z − x>j SX(j)(z)xj
.

Proof. To be clear: the statement is that

[(X− zIn)−1]jj =
1

Xjj − z − x>j (X(j) − zIn−1)−1xj
.

To prove this, we use Cramer’s rule, which tells us directly that

[(X− zIn)−1]jj =
det(X(j) − zIn−1)

det(X− zIn)
.

Now, write out X− zIn in block form:

X− zIn =

[
X(n) − zIn−1 x̃n

x̃>j Xnn − z

]
.

Now we use the following block-diagonal matrix identity: ifA,B,C,D are matrices of appropriate
dimension and A is invertible, then

det

[
A B
C D

]
= det(A) · det(D − CA−1B).

Applying this with A = X(n) − zIn−1, B = C> = x̃n, and D = Xnn − z proves the result in the
case j = n; other j follow from the same argument by first conjugating X− zI by the permutation
matrix that interchanges columns j and n. �
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Now, let Xn = 1√
n
Yn be a Wigner matrix. As above, we may assume that the diagonal is

identically 0 = [X]jj . We continue to use the notations x̃j and X(j) from Lemma 9.2, suppressing
the explicit n-dependence unless necessary for clarity. The lemma therefore implies that

1

n
Tr (SXn) =

1

n

n∑
j=1

1

−z − x̃>j (X(j) − zI)−1x̃j
.

Now, multiply through as follows:(
z +

1

n
Tr (SXn(z))

)
· 1

n
Tr (SXn) =

(
z +

1

n
Tr (SXn(z))

)
· 1

n

n∑
j=1

1

−z − x̃>j (X(j) − zI)−1x̃j

= −1 + δn(z),

where

δn(z) =
1

n

n∑
j=1

εj,n(z)

−z − 1
n

Tr (SXn(z)) + εj,n(z)
,

and
εj,n(z) =

1

n
Tr (SXn(z))− x̃>j (X(j) − zI)−1x̃j.

Now, as in the previous section, we have 1
n

Tr (SXn(z)) = SµXn (z), and so we have

SµXn (z)2 + zSµXn (z) + 1 = δn(z).

Taking expectations, we see that the argument (that SµXn (z)→ Sσ1(z) for all z ∈ C \R) proceeds
exactly as it did following (9.7), provided we can show that E(δn(z)) → 0. In fact, we will
show that δn(z) → 0 in probability for each z ∈ C \ R. To do so, it suffices to prove that
supj≤n |εj,n(z)| → 0 in probability as n→∞. This is somewhat tricky, but not very deep to prove:
see page 49 of “An Introduction to Random Matrices” by Anderson, Guionnet, and Zeitouni.
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10. LOGARITHMIC SOBOLEV INEQUALITIES

We consider here some ideas that fundamentally come from information theory. Let µ, ν be
probability measures on Rm. The entropy of ν relative to µ is

Entµ(ν) =

∫
Rm

dν

dµ
log

dν

dµ
dµ

if ν is absolutely continuous with respect to µ, and Entµ(ν) = +∞ if not. We will utilize entropy,
thinking of the input not as a measure ν, but as its density f = dν/dµ. In fact, we can be even
more general than this. Let f : Rm → R+ be a non-negative function in L1(µ). Then f̂ = f/‖f‖1

(where ‖f‖1 = ‖f‖L1(µ)) is a probability density with respect to µ. So we have

Entµ(f̂ dµ) =

∫
Rm

f̂ log f̂ dµ =

∫
Rm

f

‖f‖1

log
f

‖f‖1

dµ

=
1

‖f‖1

(∫
Rm

f log f dµ− log ‖f‖1

∫
Rm

f dµ

)
.

This allows us to define the entropy of a non-negative function, regardless of whether it is a proba-
bility density. Abusing notation slightly (and leaving out the global factor of 1/‖f‖1 as is custom-
ary), we define

Entµ(f) =

∫
Rm

f log f dµ−
∫
Rm

f dµ · log

∫
Rm

f dµ.

This quantity is not necessarily finite, even for f ∈ L1(µ). It is, however, finite, provided∫
f log(1 + f) dµ < ∞. This condition defines an Orlicz space. In general, for 0 < p < ∞,

set

Lp logL(µ) = {f :

∫
|f |p log(1 + |f |) dµ <∞}.

For any p and any ε > 0, Lp(µ) ⊃ Lp logL(µ) ⊃ Lp+ε(µ); Lp logL is infinitesimally smaller than
Lp. In particular, if f ∈ L1 logL then f ∈ L1, and so f ∈ L1 logL implies that Entµ(f) <∞.

The function [0,∞) 3 x 7→ ϕ(x) = x log x is convex. Note that

Entµ(f) =

∫
Rm

ϕ(f) dµ− ϕ
(∫

Rm
f dµ

)
and since µ is a probability measure, by Jensen’s inequality we have Entµ(f) ≥ 0 for all f . It is
also useful to note that, for scalars α > 0,

Entµ(αf) =

∫
Rm

(αf) log
αf∫

Rm αf dµ
dµ = αEntµ(f).

That is, Entµ is a positive functional, homogeneous of degree 1.

Definition 10.1. The probability measure µ on Rm is said to satisfy the logarithmic Sobolev
inequality with constant c > 0 if, for all sufficiently smooth f ∈ L2 logL,

Entµ(f 2) ≤ 2c

∫
Rm
|∇f |2 dµ. (LSI)

On the right-hand-side,∇f is the usual gradient of f , and | · | denotes the Euclidean length. The
integral of |∇f |2 is a measure of the energy in f (relative to the state µ). It might be better to refer
to Inequality LSI as an energy-entropy inequality. The inequality was discovered by L. Gross,
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in a context where it made sense to compare it to Sobolev inequalities (which are used to prove
smoothness properties of solutions of differential equations).

Remark 10.2. Since f 7→
∫
|∇f |2 dµ is homogeneous of order 2, we must take Entµ(f 2) in LSI;

if the two sides scale differently, no inequality could possibly hold in general. An alternative
formulation, however, is to state Inequality LSI in terms of the function g = f 2. Using the chain
rule, we have

∇f = ∇(
√
g) =

1

2
√
g
∇g

and so we may restate the log-Sobolev inequality as

Entµ(g) ≤ c

2

∫
Rm

|∇g|
g

dµ (LSI’)

which should hold for all g = f 2 where f ∈ L2 logL is sufficiently smooth; this is equivalent to
g ∈ L1 logL being sufficiently smooth. The quantities in Inequality LSI’ are even more natural
from an information theory perspective: the left-hand-side is Entropy, while the right-hand-side is
known as Fisher information.

The first main theorem (and the one most relevant to our cause) about log-Sobolev inequalities
is that Gaussian measures satisfy LSIs.

Theorem 10.3. For t > 0, the Gaussian measure γt(dx) = (2πt)−m/2e−|x|
2/2t dx on Rm satisfies

Inequality LSI with constant c = t.

Remark 10.4. Probably the most important feature of this theorem (and the main reason LSIs are
useful) is that the constant c is independent of dimension.

Remark 10.5. In fact, it is sufficient to prove the Gaussian measure γ1 satisfies the LSI with con-
stant c = 1. Assuming this is the case, the general statement of Theorem 10.3 follows by a change
of variables. Indeed, for any measurable function ϕ : R→ R, we have∫
Rm

(ϕ ◦ f) dγt = (2πt)−m/2
∫
Rm

ϕ(f(x)) e−|x|
2/2t dx = (2πt)−m/2

∫
Rm

ϕ(f(
√
ty))e−|y|

2/2tm/2dy

where we have substituted y = x/
√
t. Setting ft(x) = f(

√
tx), this shows that∫

Rm
(ϕ ◦ f) dγt =

∫
Rm

(ϕ ◦ ft) dγ1. (10.1)

Applying this with ϕ(x) = x log x in the first term and ϕ(x) = x in each half of the product in
the second term of Entγt , this shows Entγt(f) = Entγ1(ft). Scaling the argument preserves the
spaces Lp logL (easy to check), and also preserves all smoothness classes, so by the assumption
of LSI for γ1, we have

Entγ1(ft) ≤ 2

∫
Rm
|∇ft|2 dγ1.

Now, note that
∇ft(x) = ∇(f(

√
tx)) =

√
t(∇f)(

√
tx) =

√
t(∇f)t(x).

Hence
Entγ1(ft) ≤ 2

∫
Rm
|
√
t(∇f)t|2 dγ1 = 2t

∫
Rm
|∇f |2t dγ1.

Now, applying Equation 10.1 withϕ(x) = x2 to the function |∇f |, the last term becomes
∫
Rm |∇f |

2 dγt,
proving the desired inequality.
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The proof of Theorem 10.3 requires a diversion into heat kernel analysis. Let us take a look at
the right-hand-side of Inequality LSI. Using Gaussian integration by parts,∫
Rm
|∇f |2 dγ1 = (2π)−m/2

m∑
j=1

∫
Rm

(∂jf(x))2e−|x|
2/2 dx = −(2π)−m/2

m∑
j=1

f(x)∂j[∂jf(x)e−|x|
2/2] dx.

From the product rule we have

∂j[∂jf(x)e−|x|
2/2] = ∂2

j f(x)e−|x|
2/2 − xj∂jf(x)e−|x|

2/2.

The operator ∆ =
∑m

j=1 ∂
2
j is the Laplacian on Rm. The above equations say that∫

Rm
|∇f |2 dγ1 = −

∫
Rm

f(x)(∆− x · ∇)f(x) γ1(dx). (10.2)

The operator L = ∆ − x · ∇ is called the Ornstein-Uhlenbeck operator. It is a first-order
perturbation of the Laplacian. One might hope that it possesses similar properties to the Laplacian;
indeed, in many ways, it is better. To understand this statement, we consider the heat equation for
L.

10.1. Heat kernels. The classical heat equation on Rm is the following PDE:

∂tu−∆u = 0, t > 0.

A solution is a function u : R+×Rm → R which satisfies the equation (perhaps in a weak sense, a
priori. Typically we are interested in an initial value problem: we want a solution u(t,x) = ut(x)
satisfying the heat equation, and with a given initial condition limt↓0 ut = f in an appropriate
sense. On all of Rm, no specialized tools are necessary to solve the heat equation: it is given by
the heat kernel. That is, for any Lp(Rm) function f , define Htf = γt ∗ f . It is an easy exercise
that u(t,x) = Htf(x) satisfies the heat equation, and the initial condition limt↓0Htf = f in
Lp(Rm)-sense (and even stronger senses if f is nice enough).

In fact, we can do much the same with the Ornstein-Uhlenbeck operator L. It is, in fact, more
adapted to the Gaussian measure γ1 than is the Laplacian.

Definition 10.6. Let f ∈ L2(Rm, γ1). Say that a function u : R+ × Rm → R is a solution to the
Ornstein-Uhlenbeck heat equation with initial condition f if ut(x) = u(t,x) is in L2(Rm, γ1) for
each t > 0 and

∂tu− Lu = 0, t > 0

lim
t↓0
‖ut − f‖L2(γ1) = 0.

It is a remarkable theorem (essentially discovered by Mehler in the 19th century) that the OU-
heat equation is also solved by a heat kernel. For f ∈ L2(Rm, γ1) (note that this allows f to grow
relatively fast at∞), define

Ptf(x) =

∫
Rm

f(e−tx +
√

1− e−2ty) γ1(dy). (10.3)

This Mehler formula has a beautiful geometric interpretation. For fixed t, choose θ ∈ [0, π/2]

with cos θ = e−t. Then f(e−tx +
√

1− e−2ty) = f(cos θx + sin θy). This is a function of
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two Rm-variables, while f is a function of just one. So we introduce two operators between the
one-variable and two-variable L2-spaces:

Φ: L2(γ1)→ L2(γ1 × γ1) : (Φf)(x,y) = f(x)

Φ∗ : L2(γ1 × γ1)→ L2(γ1) : (ΦF )(x) =

∫
F (x,y) γ1(dy).

Also define the block rotation Rθ : Rm × Rm → Rm × Rm by

Rθ(x,y) = (cos θx− sin θy, sin θx + cos θy).

Then Rθ also acts dually on function F : Rm × Rm → R via

(R∗θF )(x,y) = F (R−1
θ (x,y)).

Putting these pieces together, we see that

Pt = Φ∗R∗θ Φ. (10.4)

So, up to the maps Φ and Φ∗, Pt is just a rotation of coordinates by the angle θ = cos−1(e−t). This
is useful because all three composite maps in Pt are very well-behaved on L2.

Lemma 10.7. Let θ ∈ [0, π/2], and define Φ, Φ∗, and R∗θ as above.
(a) The map Φ is an L2-isometry ‖Φf‖L2(γ1×γ1) = ‖f‖L2(γ1).
(b) The map Φ∗ is an L2-contraction ‖Φ∗F‖L2(γ1) ≤ ‖F‖L2(γ1×γ1).
(c) Each of the maps R∗θ is an isometry on L2(γ1 × γ1). Moreover, the map

[0, π/2]→ L2(γ1 × γ1) : θ 7→ R∗θ

is uniformly continuous.

Proof. (a) Just calculate

‖Φf‖2
L2(γ1×γ1) =

∫
R2m

|(Φf)(x,y)|2 (γ1 × γ1)(dxdy) =

∫
R2m

|f(x)|2 γ1(dx) γ1(dy)

where Fubini’s theorem has been used since the integrand is positive. The integrand does not
depend on y, and γ1 is a probability measure, so integrating out the y yields ‖f‖2

L2(γ1).

(b) Again we calculate

‖ΦF‖2
L2(γ1) =

∫
Rm
|(ΦF )(x)|2 γ1(dx) =

∫
Rm

∣∣∣∣∫
Rm

F (x,y) γ1(dy)

∣∣∣∣2 γ1(dx).

The function x 7→ |x|2 is convex, and γ1 is a probability measure, so the inside integral satisfies,
for (almost) every x, ∣∣∣∣∫

Rm
F (x,y) γ1(dy)

∣∣∣∣2 ≤ ∫
Rm
|F (x,y)|2 γ1(dy).

Combining, and using Fubini’s theorem (again justified by the positive integrand) yields the result.

(c) We have

‖R∗θF‖2
L2(γ1×γ1) =

∫
R2m

|F (R−1
θ (x,y))|2 (γ1 × γ1)(dxdy).

Now we make the change of variables (u,v) = R−1
θ (x,y). This is a rotation, so has determinant

1; thus dudv = dxdy. The density of the Gaussian measure transforms as

(γ1 × γ1)(dxdy) = (2πt)−me−(|x|2+|y|2)/2t dxdy.
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But the Euclidean length is invariant under rotations, so |x|2 + |y|2 = |u|2 + |v|2, and so we see
that γ1 × γ1 is invariant under the coordinate transformation. (Gaussian measures are invariant
under rotations.) Thus∫

R2m

|F (R−1
θ (x,y))|2 (γ1 × γ1)(dxdy) =

∫
R2m

|F (u,v)|2 (γ1 × γ1)(dudv) = ‖F‖2
L2(γ1×γ1).

proving that R∗θ is an isometry.

Now, let θ, φ ∈ [0, π/2]. Fix ε > 0, and choose a continuous approximating functionG ∈ Cb(R)
with ‖F −G‖L2(γ1×γ1) <

ε
3
. The maps R∗θ and R∗φ are linear, and so we have

‖R∗θF −R∗θG‖2 = ‖R∗θ(F −G)‖2 = ‖F −G‖2 <
ε

3

‖R∗φF −R∗φG‖2 = ‖R∗φ(F −G)‖2 = ‖F −G‖2 <
ε

3
.

Thus

‖R∗θF −R∗φF‖2 ≤ ‖R∗θF −R∗θG‖2 + ‖R∗θG−R∗φG‖2 + ‖R∗φG−R∗φF‖2

≤ 2

3
ε+ ‖R∗θG−R∗φG‖2.

Now,

‖R∗θG−R∗φG‖2
2 =

∫
R2m

|G(R−1
θ (x,y))−G(R−1

φ (x,y))|2 (γ1 × γ1)(dxdy).

Since G is continuous, the integrand converges uniformly to 0 as φ → θ, and is bounded by
2‖G‖∞; so by the dominated convergence theorem, for |φ − θ| sufficiently small we can make
‖R∗θG−R∗φG‖2 <

ε
3
. This shows that θ 7→ R∗θ is uniformly continuous. �

Corollary 10.8. The operator Pt of Equations 10.3 and 10.4 is a contraction on L2(γ1) for each
t ≥ 0. Moreover, for any f ∈ L2(γ1),

(1) Ptf → f in L2(γ1) as t ↓ 0, and Ptf →
∫
f dγ1 in L2(γ1) as t ↑ ∞,

(2) If f ≥ 0, then
∫
Ptf dγ1 =

∫
f dγ1 for all t ≥ 0.

Proof. From Equation 10.4, Pt = Φ∗R∗θ Φ. Lemma 10.7 shows that this is a composition of
isometries and a contraction, hence is a contraction. By part (c) of that lemma, for any f ∈ L2(γ1),
R∗φ Φf → R∗θ Φf in L2(γ1 × γ1) as φ → θ. Since Φ∗ is a contraction, we also have Ptf =

Φ∗R∗φ Φf → Φ∗R∗θΦf in L2(γ1) as φ → θ, where θ = cos−1(e−t) is a continuous function of
t. The two limits in (1) are just the special cases θ = 0 (corresponding to t ↓ 0) and θ = π/2
(corresponding to t ↑ ∞. In the former case, since R0 = Id, we have Ptf → Φ∗Φf = f as the
reader can quickly verify. In the latter case, R∗π/2F (x,y) = F (y,−x), and so

(Φ∗Rπ/2 Φf)(x) =

∫
f(y) γ1(dy)

is a constant function, the γ1-expectation of f .
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For part (2), we simply integrate and use Fubini’s theorem (on the positive integrant Ptf ). With
cos θ = e−t as usual,

∫
Rm

Ptf dγ1 =

∫
Rm

(∫
Rm

f(e−tx +
√

1− e−2ty) γ1(dy)

)
γ1(dx)

=

∫
R2m

f(cos θx + sin θy) (γ1 × γ1)(dxdy).

Changing variables and using the rotational invariance of the Gaussian measure γ1 × γ1 as in the
proof of Lemma 10.7(c), this is the same as

∫
R2m f d(γ1×γ1), which (by integrating out the second

Rm-variable with respect to which f is constant) is equal to
∫
Rm f dγ1 as claimed. �
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This finally brings us to the purpose of Pt: it is the OU-heat kernel.

Proposition 10.9. Let f ∈ L2(Rm, γ1), and for t > 0 set ut(x) = u(t,x) = Ptf(x). Then u solves
the Ornstein-Uhlenbeck heat equation with initial value f .

Proof. By Corollary 10.8, ‖ut‖ = ‖Ptf‖2 ≤ ‖f‖2 so ut is in L2; also ut = Ptf converges to
f in L2 as t ↓ 0. Hence, we are left to verify that u satisfies the OU-heat equation, ∂tu = Lu.
For the duration of the proof we will assume that f ∈ C2

c (Rm); this assumption can be removed
by a straightforward approximation afterward. Thus, all the derivatives of f are bounded. We
leave it to the reader to provide the (easy dominated convergence theorem) justification that we
can differentiate Ptf(x) under the integral in both t and x. As such, we compute

∂tf(e−tx +
√

1− e−2ty) =
(
−e−tx + e−2t(1− e−2t)−1/2y

)
· ∇f(e−tx +

√
1− e−2ty).

Thus,

∂tu(t,x) = −e−t
∫
Rm

x · ∇f(e−tx +
√

1− e−2ty) γ1(dy)

+ e−2t(1− e−2t)−1/2

∫
Rm

y · ∇f(e−tx +
√

1− e−2ty) γ1(dy).

For the space derivatives, we have

∂

∂xj
f(e−tx +

√
1− e−2ty) = e−t(∂jf)(e−tx +

√
1− e−2ty).

Mutiplying by xj , adding up over 1 ≤ j ≤ m, and integrating with respect to γ1 shows that the
first term in ∂tu(t,x) is −x · ∇u(t,x). That is:

∂tu(t,x) = −x · ∇u(t,x) + e−2t(1− e−2t)−1/2

∫
Rm

y · ∇f(e−tx +
√

1− e−2ty) γ1(dy). (10.5)

For the second term, we now do Gaussian integration by parts. For fixed x, let F(y) = ∇f(e−tx+√
1− e−2ty). Then the above integral is equal to∫

Rm
y · F(y) γ1(dy) =

∫
Rm
∇ · F dγ1

where the equality follows from Lemma 9.1. Well,

∇ · F(y) =
m∑
j=1

∂

∂yj
(∂jf)(e−tx +

√
1− e−2ty) =

√
1− e−2t

n∑
j=1

(∂2
j f)(e−tx +

√
1− e−2ty).

Combining with Equation 10.5 gives

∂tu(t,x) = −x · ∇u(t,x) + e−2t

∫
Rm

∆f(e−tx +
√

1− e−2ty) γ1(dy).

Finally, note that

∆u(t,x) =
n∑
j=1

∂2

∂x2
j

∫
Rm

f(e−tx+
√

1− e−2ty) γ1(dy) = e−2t

∫
Rm

∆f(e−tx+
√

1− e−2ty) γ1(dy),

showing that ∂tu(t,x) = −x · ∇u(t,x) + ∆u(t,x) = Lu(t,x). Thus, u = Ptf satisfies the
OU-heat equation, completing the proof. �
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Remark 10.10. An alternate approach, avoiding approximation of f by smoother functions, is to
rewrite the operator Ptf by doing a change of variables. One can rewrite it in terms of a kernel
agains Lebesgue measure: the reader should verify that

Ptf(x) =

∫
Rm

Mt(x,y)f(y) dy (10.6)

where

Mt(x,y) = π−m/2(1− e−2t)−m/2 exp

{
−|y − e

−tx|2

1− e−2t

}
. (10.7)

In this form, one simply has to verify that, for fixed y, the function x → Mt(x,y) satisfies the
OU-heat equation. The functions ∂tMt(x,y) and ∆xMt(x,y) still have Gaussian tail decay, and
a straightforward dominated converge argument shows one can differentiate under the integral in
Equation 10.6, proving the result for generic f ∈ L2(γ1).

10.2. Proof of the Gaussian log-Sobolev inequality, Theorem 10.3. Here we will show that any
sufficiently smooth non-negative function f ∈ L2(γ1) satisfies the log-Sobolev inequality in the
L1 form of Equation LSI’:

Entγ1(g) ≤ 1

2

∫
|∇g|
g

dγ1. (10.8)

To begin, we make a cutoff approximation. Fix ε > 0, and assume ε ≤ f ≤ 1
ε
. For example,

let hε be a smooth, positive function that is equal to 1 on the set where 2ε ≤ g ≤ 1
2ε

, equal to 0

where g < ε or g > 1
ε
, and has bounded partial derivatives; then set f = hεg + ε. If we can prove

Inequality 10.8 with f in place of g, then we can use standard limit theorems to send ε ↓ 0 on both
sides of the inequality to conclude it holds in general.

Let ϕ(x) = x log x. By definition

Entγ1(f) =

∫
f log f dγ1 −

∫
f dγ1 · log

∫
f dγ1 =

∫
ϕ(f) dγ1 − ϕ

(∫
f dγ1

)
=

∫ [
ϕ(f)− ϕ

(∫
f dγ1

)]
dγ1.

Now, from Corollary 10.8, we have limt↓0 Ptf = f while limt→∞ Ptf =
∫
f dγ1; hence, using

the dominated convergence theorem (justified by the assumption ε ≤ f ≤ 1
ε
, which implies that

ε ≤ Ptf ≤ 1
ε

from Equation 10.3, and so logPtf is bounded)

Entγ1(f) = lim
t↓0

∫
ϕ(Ptf) dγ1 − lim

t→∞

∫
ϕ(Ptf) dγ1.

The clever trick here is to use the Fundamental Theorem of Calculus (which applies since the
function t 7→

∫
ϕ(Ptf) dγ1 is continuous and bounded) to write this as

Entγ1(f) = −
∫ ∞

0

d

dt

(∫
ϕ(Ptf) dγ1

)
dt = −

∫ ∞
0

d

dt

(∫
Ptf logPtf dγ1

)
dt. (10.9)

Now, for fixed t > 0, we differentiate under the inside integral (again justified by dominated
convergence, using the boundedness assumption on f ).

d

dt

(∫
Ptf logPtf dγ1

)
=

∫
∂t (Ptf logPtf) dγ1.
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Let ut = Ptf . By Proposition 10.9, ut solves the OU-heat equation. So, we have

∂t(Ptf logPtf) = ∂t(ut log ut) = (∂tut) log ut + ∂tut = (Lut) log ut + Lut.

Integrating, ∫
∂t(ut log ut) dγ1 =

∫
(Lut) log ut dγ1 +

∫
Lut dγ1. (10.10)

Now, remember where L came from in the first place: Gaussian integration by parts. Polarizing
Equation 10.2, we have for any g, h sufficiently smooth∫

∇g · ∇h dγ1 = −
∫
g Lh dγ1. (10.11)

In particular, this means∫
Lut dγ1 =

∫
1Lut dγ1 = −

∫
∇1 · ∇h dγ1 = 0,

while ∫
(Lut) log ut dγ1 = −

∫
∇ut · ∇(log ut) dγ1 = −

∫
|∇ut|2

ut
dγ1.

Combining with Equation 10.10 gives

d

dt

(∫
Ptf logPtf dγ1

)
= −

∫
|∇Ptf |2

Ptf
dγ1. (10.12)

We now utilize the Mehler formula for the action of Pt to calculate∇Ptf :

∂jPtf(x) =
∂

∂xj

∫
f(e−tx +

√
1− e−2ty) γ1(dy) = e−t

∫
∂jf(e−tx +

√
1− e−2ty) γ1(dy)

= e−tPt(∂jf)(x).

In other words, ∇Ptf = e−tPt(∇f) where Pt is defined on vector-valued functions component-
wise Pt(f1, . . . , fm) = (Ptf1, . . . , Ptfm). In particular, if v is any vector in Rm, we have by the
linearity of Pt

∇Ptf · v = e−tPt(∇f · v). (10.13)
Now, for any functions h ≤ h̃, it is easy to verify that Pth ≤ Pth̃. It follows also that |Pth| ≤ Pt|h|.
Using these facts and the Cauchy-Schwarz inequality in Equation 10.13 yields

|∇Ptf · v| ≤ e−tPt(|∇f · v|) ≤ e−tPt(|∇f | |v|) = |v|e−tPt(|∇f |).
Taking v = ∇Ptf shows that

|∇Ptf |2 ≤ |∇Ptf | e−tPt(|∇f |).
If |∇Ptf | = 0 then it is clearly ≤ e−tPt(|∇f |). Otherwise, we can divide through by it to find that

|∇Ptf | ≤ e−tPt(|∇f |). (10.14)
We further estimate this pointwise bound as follows. For fixed t and x, set h(y) = |∇f(e−tx +√

1− e−2ty)|. Similarly, set r(y)2 = f(e−tx +
√

1− e−2ty). Then we have

Pt(|∇f |)2 =

(∫
h dγ1

)2

=

(∫
h

r
· r dγ1

)2

≤
∫ (

h

r

)2

dγ1 ·
∫
r2 dγ1

= Pt

(
|∇f |2

f

)
Ptf (10.15)
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where the inequality is the Cauchy-Schwarz inequality. Combining Equations 10.14 and 10.15
yields

|∇Ptf |2 ≤ e−2tPt

(
|∇f |2

f

)
Ptf

and combining this with Equation 10.12 gives

− d

dt

(∫
Ptf logPtf dγ1

)
=

∫
|∇Ptf |2

Ptf
dγ1 ≤ e−2t

∫
Pt

(
|∇f |2

f

)
dγ1.

The function |∇f |2/f is ≥ 0, and so by Corollary 10.8(2), it follows that∫
Pt

(
|∇f |2

f

)
dγ1 =

∫
|∇f |2

f
dγ1.

Integrating over t ∈ (0,∞), Equation 10.9 implies that

Entγ1(f) = − d

dt

(∫
Ptf logPtf dγ1

)
≤
∫ ∞

0

e−2t

(∫
|∇f |2

f
dγ1

)
dt. (10.16)

Since
∫∞

0
e−2t dt = 1

2
, this proves the result.

Remark 10.11. This argument extends beyond Gaussian measures, to some degree. Suppose that
µ has a density of the form Z−1e−U where U > 0 is a smooth “potential” and Z =

∫
e−U(x) dx <

∞. One may integrate by parts to find the associated heat operator LU = ∆ − ∇U · ∇. It is
not always possible to write down an explicit heat kernel PU

t for the LU -heat equation, but most
of the preceding argument follows through. Without an explicit formula, one cannot prove an
equality like Equation 10.13, but it is still possible to prove the subsequent inequality in a form
|∇PU

t f | ≤ e−ctPU
t (|∇f |) with an appropriate constant – provided that x 7→ U(x) − |x|2/2c is

convex. Following the rest of the proof, one sees that such log-concave measures do satisfy the log-
Sobolev inequality with constant c. (This argument is due to Ledoux, with generalizations more
appropriate for manifolds other than Euclidean space due to Bakry and Emery.) This is basically
the largest class of measures known to satisfy LSIs, with many caveats: for example, an important
theorem of Stroock and Holley is that if µ satisfies a log-Sobolev inequality and h is a µ-probability
density that is bounded above and below, then hµ also satisfies a log-Sobolev inequality (with a
constant determined by suph− inf h).
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11. THE HERBST CONCENTRATION INEQUALITY

The main point of introducing the log-Sobolev inequality is the following concentration of mea-
sure which it entails.

Theorem 11.1 (Herbst). Let µ be a probability measure on Rm satisfying the logarithmic Sobolev
inequality LSI with constant c. Let F : Rm → R be a Lipschitz function. Then for all λ ∈ R,∫

eλ(F−Eµ(F )) dµ ≤ ecλ
2‖F‖2Lip/2. (11.1)

It follows that, for all ¿. 0,

µ{|F − Eµ(F )| ≥ δ} ≤ 2e−δ
2/2c‖F‖2Lip . (11.2)

Remark 11.2. The key feature of the concentration of measure for the random variable F above is
that the behavior is independent of dimension m. This is the benefit of the log-Sobolev inequality:
it is dimension-independent.

Proof. The implication from Equation 11.1 to 11.2 is a very standard exponential moment bound.
In general, by Markov’s inequality, for any random variable F possessing finite exponential mo-
ments,

P(|F − E(F )| > δ) = P
(
eλ|F−E(F )| > eλδ

)
≤ 1

eλδ
E
(
eλ|F−E(F )|) .

We can estimate this expectation by

E(eλ|F−E(F )|) = E
(
eλ(F−E(F ))

1{F≥E(F )}
)

+ E
(
e−λ(F−E(F ))

1{F≤E(F )}
)

≤ E
(
eλ(F−E(F ))

)
+ E

(
e−λ(F−E(F ))

)
.

In the case P = µ at hand, where Inequality 11.1 holds for Lipschitz F (for all λ ∈ R), each of
these terms is bounded above by ecλ

2‖F‖2Lip/2, and so we have

µ{|F − Eµ(F )| ≥ δ} ≤ 2e−λδecλ
2‖F‖2Lip/2

for any λ ∈ R. By elementary calculus, the function λ 7→ cλ2‖F‖2
Lip/2− λδ achieves its minimal

value at λ = /.c‖F‖2
Lip, and this value is δ2/2c‖F‖2

Lip, thus proving that Inequality 11.2 follows
from Inequality 11.1.

To prove Inequality 11.1, we will first approximate F by a C∞ function G whose partial deriva-
tives are bounded. (We will show how to do this at the end of the proof.) We will, in fact, prove
the inequality ∫

eλ(G−Eµ(G)) dµ ≤ ecλ
2‖|∇G|2‖∞/2, λ ∈ R (11.3)

for all such G. First note that, by taking G̃ = G − Eµ(G), ∇G̃ = ∇G; so it suffices to prove
Inequality 11.3 under the assumption that Eµ(G) = 0. Now, for fixed λ ∈ R, set

fλ = eλG/2−cλ
2‖|∇G|2‖∞/4 and so ∇fλ = fλ ·

λ

2
∇G.

Then the µ-energy of fλ is∫
|∇fλ|2 dµ =

λ2

4

∫
|∇G|2f 2

λ dµ ≤
λ2

4
‖|∇G|2‖∞

∫
f 2
λ dµ. (11.4)
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Now, set Λ(λ) =
∫
f 2
λ dµ. Note that

∂

∂λ
f 2
λ = f 2

λ · (G− cλ‖|∇G|2‖∞),

which is bounded uniformly for λ in any compact set (since G is bounded); hence, by the domi-
nated convergence theorem, Λ is differentiable and

Λ′(λ) =

∫
∂

∂λ
f 2
λ dµ =

∫
f 2
λ · (G− cλ‖|∇G|2‖∞) dµ. (11.5)

Thus, we have

λΛ′(λ) =

∫
f 2
λ · (λG− cλ2‖|∇G|2‖∞) dµ

=

∫
f 2
λ · (λG−

c

2
λ2‖|∇G|2‖∞) dµ− c

2
λ2‖|∇G|2‖∞

∫
f 2
λ dµ

=

∫
f 2
λ log f 2

λ dµ−
c

2
λ2‖|∇G|2‖∞Λ(λ). (11.6)

Note also that

Entµ(f 2
λ) =

∫
f 2
λ log f 2

λ dµ−
∫
f 2
λ dµ · log

∫
f 2
λ dµ =

∫
f 2
λ log f 2

λ dµ− Λ(λ) log Λ(λ). (11.7)

Combining Equations 11.6 and 11.7 gives

Entµ(f 2
λ) = λΛ′(λ)− Λ(λ) log Λ(λ) +

c

2
λ2‖|∇G|2‖∞Λ(λ). (11.8)

Now using the log-Sobolev inequality LSI applied to fλ, Equations 11.4 and 11.8 combine to give

λΛ′(λ)−Λ(λ) log Λ(λ)+
c

2
λ2‖|∇G|2‖∞Λ(λ) = Entµ(f 2

λ) ≤ 2c

∫
|∇fλ|2 dµ ≤

c

2
λ2‖|∇G|2‖∞Λ(λ).

That is, miraculously, we simply have

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ 0, λ ∈ R. (11.9)

Notice that f 2
λ > 0 and so Λ(λ) > 0 for all λ ∈ R. So we divide through by Λ(λ), giving

λ
Λ′(λ)

Λ(λ)
≤ log Λ(λ). (11.10)

Now, define

H(λ) =

{
1
λ

log Λ(λ), λ 6= 0

0, λ = 0
.

Since Λ is strictly positive and differentiable,H is differentiable at all points except possibly λ = 0.
At this point, we at least have

lim
λ→0

H(λ) = lim
λ→0

log Λ(λ)

λ
=

d

dλ
log Λ(λ)|λ=0 =

Λ′(0)

Λ(0)

where the second equality follows from the fact that f0 ≡ 1 so Λ(0) =
∫
f 2

0 dµ = 1, and so
log Λ(0) = 0. Similarly, from Equation 11.5, we have Λ′(0) =

∫
f 2

0 ·Gdµ =
∫
Gdµ = Eµ(G) = 0

by assumption. Thus, H is continuous at 0. For λ 6= 0, we have

H ′(λ) =
d

dλ

log Λ(λ)

λ
= − 1

λ2
log Λ(λ) +

1

λ

Λ′(λ)

Λ(λ)
=

1

λ2

[
λ

Λ′(λ)

Λ(λ)
− log Λ(λ)

]
≤ 0



MATH 247A: INTRODUCTION TO RANDOM MATRIX THEORY 61

where the inequality follows from 11.10. So, H is continuous, differentiable except (possibly) at
0, and has non-positive derivatve at all other points; it follows that H is non-increasing on R. That
is, for λ > 0, 0 = H(0) ≥ H(λ) = log Λ(λ)/λ which implies that 0 ≥ log Λ(λ), so Λ(λ) ≤ 1.
Similarly, for λ < 0, 0 = H(0) ≤ H(λ) = log Λ(λ)/λ which implies that log Λ(λ) ≤ 0 and so
Λ(λ) ≤ 1 once more. Ergo, for all λ ∈ R, we have

1 ≥ Λ(λ) =

∫
f 2
λ dµ =

∫
eλG−cλ

2‖|∇G|2‖∞/2 dµ = e−cλ
2‖|∇G|2‖∞/2

∫
eλG dµ

and this proves Inequality 11.3 (in the case Eµ(G) = 0), as desired.

To complete the proof, we must show that Inequality 11.3 implies Inequality 11.1. Let F be
Lipschitz. Let ψ ∈ C∞c (Rm) be a bump function: ψ ≥ 0 with suppψ ⊆ B1 (the unit ball), and∫
ψ(x) dx = 1. For each ε > 0, set ψε(x) = ε−mψ(x/ε), so that suppψε ⊆ Bε but we still have∫
ψε(x) dx = 1. Now, define Fε = F ∗ ψε. Then Fε is C∞. For any x

Fε(x)− F (x) =

∫
F (x− y)ψε(y) dy − F (x) =

∫
[F (x− y)− F (x)]ψε(y) dy

where the second equality uses the fact that ψε is a probability density. Now, since F is Lipschitz,
we have |F (x− y)− F (x)| ≤ ‖F‖Lip|y| uniformly in x. Therefore

|Fε(x)− F (x)| ≤
∫
|F (x− y)− F (x)|ψε(y) dy ≤ ‖F‖Lip

∫
|y|ψε(y) dy.

Since suppψε ⊆ Bε, this last integral is bounded above by∫
Bε

|y|ψε(y) dy ≤
∫
Bε

εψε(y) dy = ε.

This shows that Fε → F uniformly. Moreover, note that for any x,x′ ∈ Rm,

|Fε(x)− Fε(x′)| ≤
∫
|F (x− y)− F (x′ − y)|ψε(y) dy

≤
∫
‖F‖Lip|(x− y)− (x′ − y)|ψε(y) dy

= ‖F‖Lip|x− x′| (11.11)

which shows that ‖Fε‖Lip ≤ ‖F‖Lip.

Now, by a simple application of the mean value theorem, ‖Fε‖Lip ≤ ‖|∇Fε|‖∞, but this in-
equality runs the wrong direction. Instead, we use the following linearization trick: for any pair of
vectors u,v, since 0 ≤ |v − u|2 = |v|2 − 2v · u + |u|2 with equality if and only if u = v, the
quantity |v|2 can be defined variationally as

|v|2 = sup
u∈Rm

[
2v · u− |u|2

]
.

Taking v = ∇Fε(x) for a fixed x, this means that

|∇Fε(x)|2 = sup
u∈Rm

[
2∇Fε(x) · u− |u|2

]
.

Now, the dot-product here is the directional derivative (since Fε is C∞, ergo differentiable):

∇Fε(x) · u = DuFε(x) = lim
t→0

Fε(x + tu)− Fε(x)

t
≤ sup

t>0

∣∣∣∣Fε(x + tu)− Fε(x)

t

∣∣∣∣ ≤ ‖Fε‖Lip|u|.
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Hence, since ‖Fε‖Lip ≤ ‖F‖Lip by Equation 11.11,

|∇Fε(x)|2 ≤ sup
u∈Rm

[
2‖F‖Lip|u| − |u|2

]
= ‖F‖2

Lip

holds for all x. This shows that ‖|∇Fε|2‖∞ ≤ ‖F‖2
Lip. In particular, this shows that Fε has bounded

partial derivatives.

Hence, applying Inequality 11.3 to G = Fε, we have∫
eλ(Fε−Eµ(Fε)) dµ ≤ ecλ

2‖|∇Fε|2‖∞/2 ≤ ecλ
2‖F‖2Lip/2. (11.12)

Since Fε → F uniformly, and F is Lipschitz (ergo bounded), for all sufficiently small ε > 0 we
have ‖Fε‖∞ ≤ ‖F‖∞ + 1. Hence, by the dominated convergence theorem, Eµ(Fε) → Eµ(F ) as
ε ↓ 0. It then follows that Fε − Eµ(Fε)→ F − Eµ(F ) uniformly, and so for any λ ∈ R,

eλ(Fε−Eµ(Fε)) → eλ(F−Eµ(F )) uniformly as ε ↓ 0.

The boundedness the right-hand-side therefore yields, by the dominated convergence theorem, that

lim
ε↓0

∫
eλ(Fε−Eµ(Fε)) dµ =

∫
eλ(F−Eµ(F )) dµ.

Combining this with Inequality 11.12 yields Inequality 11.1 for F , as desired. �

Remark 11.3. Theorem 11.1 is stated and proved for globally Lipschitz functions F ; in particular,
this means F is bounded, and we used this heavily in the proof. This will suffice for the applications
we need it for, but it is worth mentioning that the theorem holds true for locally Lipschitz functions:
i.e. F for which supx 6=y

|F (x)−F (y)|
|x−y| < ∞, but F is not necessarily bounded (it can grow sub-

linearly at∞). The proof need only be modified in the last part, approximating F by a smooth G
with bounded partial derivatives. One must first cut off F so |F | takes no values greater than 1/ε,
and then mollify. (Fε cannot converge uniformly to F any longer, so it is also more convenient to
use a Gaussian mollifier for the sake of explicit computations.) The remainder of the proof follows
much like above, until the last part, showing that the exponential moments converge appropriately
as ε ↓ 0; this becomes quite tricky, as the dominated convergence theorem is no longer easily
applicable. Instead, one uses the concentration of measure (Inequality 11.2) known to hold for
the smoothed Fε to prove the family {Fε} is uniformly integrable for all small ε > 0. This, in
conjunction with Fatou’s lemma, allows the completion of the limiting argument.
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12. CONCENTRATION FOR RANDOM MATRICES

We wish to apply Herbst’s concentration inequality to the Stieltjes transform of a random Gauss-
ian matrix. To do so, we need to relate Lipschitz functions of the entries of the matrix to functions
of the eigenvalues.

12.1. Continuity of Eigenvalues. Let Xn denote the linear space of n×n symmetric real matrices.
As a vector space, Xn can be identified with Rn(n+1)/2. However, the more natural inner product
for Xn is

〈X,Y〉 = Tr [XY] =
∑

1≤i,j≤n

XijYij =
n∑
i=1

XiiYii + 2
∑

1≤i<j≤n

XijYij.

We use this inner-product to define the norm on symmetrix matrices:

‖X‖2 = 〈X,X〉1/2 =
(

Tr [X2]
)1/2

.

If we want this to match up with the standard Euclidean norm, the correct identification XN →
RN(N+1)/2 is

X 7→ (X11, . . . ,Xnn,
1√
2
X12,

1√
2
X13, . . . ,

1√
2
Xn−1,n).

That is: ‖X‖2 ≤
√

2‖X‖ (where ‖X‖2 =
∑

1≤i≤j≤n X2
ij is the usual Euclidean norm). It is

this norm that comes into play in the Lipschitz norm we used in the discussion of log Sobolev
inequalities and the Herbst inequality, so it is the norm we should use presently.

Lemma 12.1. Let g : Rn → R be a Lipschitz function. Extend g to a function on Xn (the space of
symmetric n× n matrices) as follows: letting λ1(X), . . . , λn(X) denote the eigenvalues as usual,
set g̃ : Xn → R to be

g̃(X) = g(λ1(X), . . . , λn(X)).

Then g̃ is Lipschitz, with ‖g̃‖Lip ≤
√

2‖g‖Lip.

Proof. Recall the Hoffman–Wielandt lemma, Lemma 5.4, which states that for any pair X,Y ∈
Xn,

n∑
i=1

|λi(X)− λi(Y)|2 ≤ Tr [(X−Y)2].

Thus, we have simply

|g̃(X)− g̃(Y)| = |g(λ1(X), . . . , λn(X))− g(λ1(Y), . . . , λn(Y))|
≤ ‖g‖Lip‖(λ1(X)− λ1(Y), . . . , λn(X)− λn(Y))‖Rn

= ‖g‖Lip

(
n∑
i=1

|λi(X)− λi(Y)|2
)1/2

≤ ‖g‖Lip

(
Tr [(X−Y)2]

)1/2
= ‖g‖Lip‖X−Y‖2.

The result follows from the inequality ‖X−Y‖2 ≤
√

2‖X−Y‖ discussed above. �

Corollary 12.2. Let f ∈ Lip(R). Extend f to a map fTr : Xn → R via

fTr(X) = Tr [f(X)],

where f(X) is defined in the usual way using the Spectral Theorem. Then fTr is Lipschitz, with
‖fTr‖Lip ≤

√
2n‖f‖Lip.
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Proof. note that

fTr(X) =
n∑
i=1

f(λi(X)) = g̃(X)

where g(λ1, . . . , λn) = f(λ1) + · · ·+ f(λn). Well,

|g(λ1, . . . , λn)− g(µ1, . . . , µn)| ≤ |f(λ1)− f(µ1)|+ · · ·+ |f(λn)− f(µn)|
≤ ‖f‖Lip|λ1 − µ1|+ · · ·+ ‖f‖Lip|λn − µn|
≤ ‖f‖Lip ·

√
n‖(λ1 − µ1, . . . , λn − µn)‖.

This shows that ‖g‖Lip ≤
√
n‖f‖Lip. The result follows from Lemma 12.1. �

12.2. Concentration of the Empirical Eigenvalue Distribution. Let Xn be a Wigner matrix.
Denote by νXn the joint-law of entries of Xn; this is a probability measure on Rn2 (or Rn(n+1)/2 if
we like). We will suppose that νXn satisfies a logarithmic Sobolev inequality LSI with constant c.
Our primary example is the Gaussian Wigner matrix from Section 9.1. Recall this was defined by
Xn = n−1/2Yn where Yii = 0 and, for i < j, Xn ∼ N(0, 1). This means that νXn should properly
be thought of as a probability measure on Rn(n−1)/2, and as such it is a standard Gaussian measure
with variance 1

n
: i.e. νXn = γ 1

n
on Rn(n−1)/2. By Theorem 10.3, this law satisfies the LSI with

constant c = 1
n

. Hence, by the Herbst inequality (Theorem 11.1), if F is any Lipschitz function on
Rn(n−1)/2, we have

νXn

{
|F − EνXn (F )| ≥ δ

}
≤ 2e−δ

2/2c‖F‖2Lip = 2e−nδ
2/2‖F‖2Lip . (12.1)

Now, let f : R→ R be Lipschitz, and apply this with F = fTr . Then we have

EνXn (F ) =

∫
Tr f(X) νXn(dX) = E( Tr f(Xn)) = nE

(∫
f dµXn

)
where µXn is, as usual, the empirical distribution of eigenvalues. So, we have

νXn

{∣∣∣∣fTr − n
∫
f dµXn

∣∣∣∣ ≥ δ

}
= νXn

{
X :

∣∣∣∣Tr f(X)− nE
(∫

f dµXn

)∣∣∣∣ ≥ δ

}
= νXn

{
X :

∣∣∣∣n∫ f dµX − nE
(∫

f dµXn

)∣∣∣∣ ≥ δ

}
= P

(∣∣∣∣∫ f dµXn − E
(∫

f dµXn

)∣∣∣∣ ≥ /.n
)
.

Combining this with Equation 12.1, and letting ε = /.n, this gives

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε

)
≤ 2e−n

3ε2/2‖fTr ‖2Lip .

Now, from Corollary 12.2, ‖fTr ‖Lip ≤
√

2n‖f‖Lip. Hence − 1
‖fTr ‖2Lip

≤ − 1
2n

1
‖f‖2Lip

. We have
thence proved the following theorem.

Theorem 12.3. Let Xn be the Gaussian Wigner matrix of Section 9.1 (or, more generally, any
Wigner matrix whose joint law of entries satisfies a LSI with constant c = 1

n
). Let f ∈ Lip(R).

Then

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε

)
≤ 2e−n

2ε2/4‖f‖2Lip . (12.2)
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Thus, the random variable
∫
f dµXn converges in probability to its mean. The rate of conver-

gence is very fast: we have normal concentration (i.e. at least as fast as e−cn2 for some c > 0). In
this case, we can actually conclude almost sure convergence.

Corollary 12.4. Let Xn satisfy Inequality 12.2. Let f ∈ Lip(R). Then as n→∞∫
f dµXn → E

(∫
f dµXn

)
a.s.

Proof. Fix ε > 0, and note that
∞∑
n=1

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε

)
≤ 2

∞∑
n=1

2−n
2ε2/4‖f‖2Lip <∞.

By the Borel-Cantelli lemma, it follows that

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε i.o.

)
= 0

That is, the event that
∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣ < ε for all sufficiently large n has probability
1. This shows that we have almost sure convergence. �

We would also like to have L2 (or generally Lp) convergence, which would follow from the a.s.
convergence using the dominated convergence theorem if there were a natural dominating bound.
Instead, we will prove Lp-convergence directly from the normal concentration about the mean,
using the following very handy result.

Proposition 12.5 (Layercake Representation). Let X ≥ 0 be a random variable. Let κ be a
positive Borel measure on [0,∞), and define φ(x) = κ([0, x]). Then

E(φ(X)) =

∫ ∞
0

P(X ≥ t)κ(dt).

Proof. Using positivity of integrands, we apply Fubini’s theorem to the right-hand-side:∫ ∞
0

P(X ≥ t)κ(dt) =

∫ ∞
0

∫
1{X≥t} dPκ(dt) =

∫ ∫ ∞
0

1{X≥t} κ(dt) dP.

The inside integral is ∫ ∞
0

1{X≥t} κ(dt) =

∫ X

0

κ(dt) = φ(X),

proving the result. �

Corollary 12.6. Let Xn satisfy Inequality 12.2. Let f ∈ Lip(R), and let p ≥ 1. Then

lim
n→∞

E
[∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣p] = 0.

Proof. Let κp(dt) = ptp−1 dt on [0,∞); then the corresponding cumulative function is φp(x) =∫ x
0
dκp =

∫ x
0
ptp−1 dt = xp. Applying the Layercake representation (Proposition 12.5) to the

random variable Xn =
∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣ yields

E(Xp
n) =

∫ ∞
0

P(Xn ≥ t)ptp−1 dt ≤ 2p

∫ ∞
0

tp−1e−n
2t2/4‖f‖2Lip dt.
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Make the change of variables s = nt/2‖f‖Lip; then the integral becomes∫ ∞
0

tp−1e−n
2t2/4‖f‖2Lip dt =

∫ ∞
0

(
2‖f‖Lips

n

)p−1

e−s
2 2‖f‖Lip

n
ds =

(
2‖f‖Lip

n

)p ∫ ∞
0

sp−1e−s
2

ds.

The integral is some finite constant Mp, and so we have

E(Xp
n) ≤ 2pMp ·

(
2‖f‖Lip

n

)p
→ 0

as n→∞, as required. �

12.3. Return to Wigner’s Theorem. Now, for fixed z ∈ C \ R, take fz(t) = 1
t−z . Then f is

bounded and C1, and f ′z(t) = − 1
(t−z)2 ; thus

‖fz‖Lip = ‖f ′z‖∞ = |=z|−2.

By definition
∫
fz dµXn = SµXn (z) is the Stieltjes transform. In this context, Corollary 12.6 with

p = 2 gives us
lim
n→∞

E
[∣∣SµXn (z)− ESµXn (z)

∣∣2] = 0.

It follows that∣∣∣E(SµXn (z)2)−
(
ESµXn (z)

)2
∣∣∣ =

∣∣∣E [(SµXn (z)− ESµXn (z)
)2
]∣∣∣

≤ E
[∣∣SµXn (z)− ESµXn (z)

∣∣2]→ 0 as n→∞,

which confirms Equation 9.8. This finally completes the argument in Section 9.1 demonstrating
that the Stieltjes transform of Xn satisfies

lim
n→∞

ESµXn (z) = Sσ1(z)

and ergo the averaged empirical eigenvalue distribution converges to the semicircular law σ1. (This
is what we already proved in the general case of finite moments in Section 4.) But we can also com-
bine this result immediately with Corollary 12.4: since we also know that SµXn (z) → ESµXn (z)
a.s. for each z, we conclude that for all z ∈ C \ R

lim
n→∞

SµXn (z) = Sσ1(z) a.s.

Now employing the Stieljtes Continuity Theorem 8.11, we conclude that µXn → σ1 weakly a.s.
This completes the proof of Wigner’s theorem (for Gaussian Wigner matrices) in the almost sure
convergence form.
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13. GAUSSIAN WIGNER MATRICES, AND THE GENUS EXPANSION

We have now seen a complete proof of the strong Wigner Law, in the case that the (upper-
triangular) entries of the matrix are real Gaussians. (As we verified in Section 5, the diagonal
does not influence the limiting empirical eigenvalue distribution.) We will actually spend the rest
of the course talking about this (and a related) specific matrix model. There are good reasons to
believe that basically all fundamental limiting behavior of Wigner eigenvalues is universal (does
not depend on the distribution of the entries), and so we may as well work in a model where finer
calculations are possible. (Note: in many cases, whether or not the statistics are truly universal is
still very much a front-line research question.)

13.1. GOEn and GUEn. For j ≥ i ≥ 1, let {Bjk} and {B′jk} be two families of independent
N(0, 1) random variables (independent from each other as well). We define a Gaussian Orthog-
onal Ensemble GOEn to be the sequence of Wigner matrices Xn with

[Xn]jk = [Xn]kj = n−1/2 1√
2
Bjk, 1 ≤ j < k ≤ n

[Xn]jj = n−1/2Bjj, 1 ≤ j ≤ n.

Except for the diagonal entries, this is the matrix we studied through the last three sections. It
might seem natural to have the diagonal also consist of variance 1/n normals, but in fact this
normalization is better: it follows (cf. the discussion at the beginning of Section 12.1) that the
Hilbert Schmidt norm ‖Xn‖2

2 = Tr [X2
n] exactly corresponds to the Euclidean norm of the n(n +

1)/2-dimensional vector given by the upper-triangular entries.

Let us now move into the complex world, and consider a Hermitian version of the GOEn. Let
Zn be the n× n complex matrix whose entries are

[Zn]jk = [Zn]kj = n−1/2 1√
2

(Bjk + iB′jk), 1 ≤ j < k ≤ n

[Zn]jj = n−1/2Bjj, 1 ≤ j ≤ n.

(Note: the i above is i =
√
−1.) The sequence Zn is called a Gaussian Unitary EnsembleGUEn.

Since Zn is a Hermitian n×n matrix, its real dimension is n+2 · n(n−1)
2

= n2 (n real entries on the
diagonal, n(n−1)

2
complex strictly upper-triangular entries). Again, one may verify that normalizing

the off-diagonal entries to scale with 1√
2

of the diagonal entries gives an isometric correspondence

between the Hilbert-Schmidt norm and the Rn2-Euclidean norm.

Although we have worked exclusively with real Wigner matrices thus far, Wigner’s theorem
applies equally well to complex Hermitian matrices (whose eigenvalues are real, after all). The
combinatorial proof of Wigner’s theorem requires a little modification to deal with the complex
conjugations involved, but there are no substantive differences. In fact, we will give an extremely
concise version of this combinatorial proof for theGUEn in this section. In general, there are good
reasons to work on the complex side: most things work more or less the same, but the complex
structure gives some new simplifying tools.

Why “Gaussian Orthogonal Ensemble” and “Gaussian Unitary Ensemble”? To understand this,
we need to write down the joint-law of entries. Let us begin with the GOEn Xn. Let V be a Borel
subset of Rn(n+1)/2, and for now assume B is a Cartesian product set: V =

∏
j≤k Vjk. Let Ṽ be the
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set V identified as a subset of the symmetrix n × n matrices. By the independence of the entries,
we have

P(
√
nXn ∈ Ṽ ) =

∏
j≤k

P(
√
n[Xn]jk ∈ Vjk).

For j < k,
√
n[Xn]jk = 1√

2
Bjk is aN(0, 1

2
) random variable; for the diagonal entries,

√
n[Xn]jj =

Bjj is a N(0, 1) random variable. Hence, the above product is
n∏
j=1

∫
Vjj

(2π)−1/2e−x
2
jj/2 dxjj ·

∏
j<k

∫
Vjk

π−1/2e−x
2
jk dxjk.

Let dx denote the Lebesgue measure on Rn(n+1)/2. Rearranging this product, we have

P(
√
nXn ∈ Ṽ ) = 2−n/2π−n(n+1)/4

∫
V

e−
1
2

∑n
j=1 x

2
jj−

∑
j<k x

2
jk dx.

Having verified this formula for product sets V , it naturally holds for all Borel sets. The Gaussian
density on the right-hand-side may not look particularly friendly (having difference variances in
different coordinates), but in fact this is extremely convenient. If we think of the variables as the
entries of a symmetric matrix X, then we have

Tr X2 =
∑
j,k

x2
jk =

n∑
j=1

x2
jj + 2

∑
j<k

x2
jk.

In light of this, let us write everything in terms of symmetric matrices (so we suppress the Ṽ
in favor of V being a set of symmetric matrices). Let dX denote the Lebesgue measure on the
n(n+ 1)/2-dimensional space of symmetric real matrices. Hence, the law of Xn can be written as

P(
√
nXn ∈ V ) = 2−n/2π−n(n+1)/2

∫
V

e−
1
2

Tr X2

dX. (13.1)

By making the change of variables Y = X/
√
n, we have dY = (

√
n)−n(n+1)/2dX, and so

P(
√
nXn ∈ V ) = 2−n/2π−n(n+1)/4nn(n+1)/4

∫
V/
√
n

e−
1
2
nTr Y2

dY.

Letting W = V/
√
n, this shows us that the joint law of entries νXn has a density with respect to

Lebesgue measure,
dνXn

dX
= Cne

− 1
2
nTr X2

where Cn = 2−n/2π−n(n+1)/4nn(n+1)/4 is a normalization coefficient. It will usually be more con-
venient to work with Equation 13.1, which gives the density of the joint law of entries ν√nXn

.

Now, let Q be an orthogonal n × n matrix. If we use it to rotate Xn, we can calculate from
Equation 13.1 that

P(
√
nQXnQ

> ∈ V ) = P(
√
nXn ∈ Q>VQ) = 2−n/2π−n(n+1)/2

∫
Q>VQ

e−
1
2

Tr X2

dX.

If we make the change of variables Y = QXQ>, this is a linear transformation and so its Ja-
cobian (derivative) is itself. In terms of the Hlibert-Schmidt norm (which is the Euclidean dis-
tance), we have ‖Y‖2

2 = Tr Y2 = Tr (QXQ>)2 = Tr (QXQ>QXQ>) = Tr (QX2Q>) =
Tr (Q>QX2) = Tr (X2) = ‖X‖2

2, where the penultimate equality uses the trace property Tr (AB) =
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Tr (BA). Thus, the map X 7→ Y = QXQ> is an isometry, and thus its Jacobian determinant is 1:
i.e. dX = dY. Also by the above calculation we have Tr X2 = Tr Y2. So, in total, this gives

P(
√
nQXnQ

> ∈ V ) = 2−n/2π−n(n+1)/2

∫
V

e−
1
2

Tr Y2

dY = P(
√
nXn ∈ V ).

This is why Xn is called a Gaussian orthogonal ensemble: its joint law of entries is invariant under
the natural (conjugation) action of the orthogonal group. That is: if we conjugate a GOEn by a
fixed orthogonal matrix, the resulting matrix is another GOEn.

Turning now to the GUEn, let us compute its joint law of entries. The calculation is much the
same, in fact, with the modification that there are twice as many off-diagonal entries. A product
Borel set looks like V =

∏
j Vj ×

∏
j<k Vjk ×

∏
j<k V

′
jk, and independence again gives

P(
√
nZn ∈ V ) =

n∏
j=1

∫
Vj

(2π)−1/2e−x
2
jj/2 dxjj ·

∏
j<k

∫
Vjk

π−1/2e−x
2
jk dxjk

∫
V ′jk

π−1/2e−(x′jk)2 dx′jk.

Collecting terms as before, this becomes

2−n/2π−n
2/2

∫
V

e−
1
2

∑n
j=1 x

2
jj−

∑
j<k(x2jk+(x′jk)2) dx,

where this time dx denotes Lebesgue measure on the n2-dimensional real vector space of Hermit-
ian n× n matrices. Now, if we interpret the variables xjk and x′jk as the real and imaginary parts,

then we have for any Hermitian matrix Z = Z∗ = Z
>

Tr (Z2) = Tr (ZZ∗) =
∑
j,k

|[Z]jk|2 =
n∑
j=1

x2
jj + 2

∑
j<k

|xjk + ix′jk|2

which then allows us to identify the law of Zn as

P(
√
nZn ∈ V ) = 2−n/2π−n

2/2

∫
V

e−
1
2

Tr Z2

dZ (13.2)

where dZ denotes the Lebesuge measure on the n2-dimensional real vector space of Hermitian
n× n matrices.

An entirely analogous argument to the one above, based on formula 13.2, shows that if U is an
n × n unitary matrix, then UZnU

∗ is also a GUEn. This is the reason for the name Gaussian
unitary ensemble.

13.2. Covariances of GUEn. It might seem that the only difference between the GOEn and the
GUEn is dimensional. This is true for the joint laws, which treat the two matrix-valued random
variables simply as random vectors. However, taking the matrix structure into account, we see that
they have somewhat difference covariances.

Let us work with the GUEn. For convenience, denote Zjk = [Zn]jk. Fix (j1, k1) and (j2, k2);
for the time being, suppose they are both strictly upper-triangular. Then

E(Zj1k1Zj2k2) = E
[
(2n)−1/2(Bj1k1 + iB′j1k1) · (2n)−1/2(Bj2k2 + iB′j2k2)

]
=

1

2n

(
E(Bj1k1Bj2k2) + iE(Bj1k1B

′
j2k2

) + iE(B′j1k1Bj2k2)− E(B′j1k1B
′
j2k2

)
)
.
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Because all of theBjk andB′jk are independent, all four of these terms are 0 unless (j, k) = (j′, k′).
In this special case, the two middle terms are still 0 (since Bjk and B′`m are independent for all
j, k, `,m), and the two surviving terms give

E(B2
j1k1

)− E((B′j1k1)
2) = 1− 1 = 0.

That is, the covariance of any two strictly upper-triangular entries is 0. (Note: in the case (j1, k1) =
(j2, k2) considered above, what we have is the at-first-hard-to-believe fact that if Z is a complex
Gaussian random variable, then E(Z2) = 0. It is basically for this reason that theGUEn is, in many
contexts, easier to understand than the GOEn.) Since Zjk = Zkj , it follows that the covariance of
any two strictly lower-triangular entries is 0.

Now, let us take the covariance of a diagonal entry with an off-diagonal entry.

E(ZjkZmm) = E
[
(2n)−1/2(Bjk + iB′jk) · n−1/2Bmm

]
=

1√
2n

(
E(BjkBmm) + iE(B′jkBmm)

)
.

Since j 6= k, independence gives 0 for both expectations, and so again we get covariance 0.
Similarly, for two diagonal entries,

E(ZjjZkk) = E
[
n−1/2Bjj · n−1/2Bkk

]
=

1

n
E (BjjBkk) =

1

n
δjk.

Of course we do get non-zero contributions from the variances of the diagonal entries, but inde-
pendence gives 0 covariances for distinct diagonal entries.

Finally, let us consider the covariance of a strictly-upper-triangular entry Zj1k1 with a strictly
lower-triangular entry Zj2k2 .

E(Zj1k1Zj2k2) = E
[
(2n)−1/2(Bj1k1 + iB′j1k1) · (2n)−1/2(Bj2k2 − iB′j2k2)

]
=

1

2n

(
E(Bj1k1Bj2k2)− iE(Bj1k1B

′
j2k2

) + iE(B′j1k1Bj2k2) + E(B′j1k1B
′
j2k2

)
)
.

As noted before, the two middle terms are always 0. The first and last terms are 0 unless (j1, k1) =
(j2, k2), in which case the sum becomes 1

n
. That is

E(Zj1k1Zj2k2) =
1

n
δj1j2δk1k2

in this case. We can then summarize all the above calculations together as follows: for all 1 ≤
j, k, `,m ≤ n, we have

E[ZjkZ`m] =
1

n
δjmδk`. (13.3)

In other words: E(|Zjk|2) = E(ZjkZjk) = 1
n

, and all other covariances are 0.

Remark 13.1. The calculation for covariances of the entries Xjk = [Xn]jk of a GOEn are much
simpler, but the result is more complicated: because there is no distinction between E(X2

jk) and
E(|Xjk|2) in this case, the covariances are

E(XjkX`m) =
1

n
(δj`δkm + δjmδk`). (13.4)

The additional term presents serious challenges for the analysis in the next two sections, and
demonstrates some substantial differences in the very fine structure of theGUEn versus theGOEn.
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13.3. Wick’s Theorem. Formula 13.3 expresses more than just the covariances; implicitly, it
allows the direct calculation of all mixed moments in the Zjk. This is yet another wonderful sym-
metry of Gaussian random variables. The result is known as Wick’s theorem, although in the form
it was stated by Wick (in the physics literature) it is unrecognizable. It is, however, the same
statement below. First, we need a little bit of notation.

Definition 13.2. Let m be even. A pairing of the set {1, . . . ,m} is a collection of disjoint two el-
ement sets (pairs) {j1, k1}, . . . , {jm/2, km/2} such that {j1, . . . , jm/2, k1, . . . , km/2} = {1, . . . ,m}.
The set of all pairings is denoted P2(m). If m is odd, P2(m) = ∅.

Pairings may be thought of as special permutations: the pairing
{
{j1, k1}, . . . , {jm/2, km/2}

}
can

be identified with the permutation (j1, k1) · · · (jm/2, km/2) ∈ Sm/2 (written in cycle-notation). This
gives a bijection between P2(m) and the set of fixed-point-free involutions in Sm/2. We usually
denoted pairings by lower-case Greek letters π, σ, τ .

Theorem 13.3 (Wick). Let B1, . . . , Bm be independent normal N(0, 1) random variables, and let
X1, . . . , Xm be linear functions of B1, . . . , Bm. Then

E(X1 · · ·Xm) =
∑

π∈P2(m)

∏
{j,k}∈π

E(XjXk). (13.5)

In particular, when m is odd, E(X1 · · ·Xm) = 0.

Remark 13.4. The precise condition in the theorem is that there exists a linear map T : Cm → Cm

such that (X1, . . . , Xm) = T (B1, . . . , Bm); complex coefficients are allowed. The theorem is
sometimes stated instead for a “jointly Gaussian random vector (X1, . . . , Xm)”, which is actually
more restrictive: that is the requirement that the joint law of (X1, . . . , Xm) has a density of the
form (2π)−m/2(detC)−1/2e−

1
2
〈xC−1x〉 where C is a positive definite matrix (which turns out to be

the covariance matrix of the entries). One can easily check that the random vector (B1, . . . , Bm) =
C−1/2(X1, . . . , Xm) is a standard normal, and so this fits into our setting above (the linear map is
T = C1/2) which allows also for “degenerate Gaussians”.

Proof. Suppose we have proved Wick’s formula for a mixture of the i.i.d. normal variables B:

E(Bi1 · · ·Bim) =
∑

π∈P2(m)

∏
{a,b}∈π

E(BiaBib). (13.6)

(We do not assume that the ia are all distinct.) Then since (X1, . . . , Xm) = T (B1, . . . , Bm) for lin-
ear T , E(X1 · · ·Xm) is a linear combination of terms on the left-hand-side of (13.6). Similarly, the
right-hand-side of (13.6) is multi-linear in the entries, and so with Wick sum

∑
π∈P2(m)

∏
{i,j}∈π E(XiXj)

is the same linear combination of terms on the right-hand-side of (13.6). Hence, to prove formula
(13.5), it suffices to prove formula (13.6).

We proceed by induction onm. We use Gaussian Integration by Parts (Theorem 9.1) to calculate

E
[
(Bi1 · · ·Bim−1) ·Bim

]
= E

[
∂Bim (Bi1 · · ·Bim−1)

]
=

m−1∑
a=1

E
[
(∂BimBia) · (Bi1 · · ·Bia−1Bia+1 · · ·Bim−1)

]
.
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Of course, ∂BimBia = δimia , but since the Bi are indepenedent N(0, 1) random variables, this is
also equal to E(BimBia). Hence, we have

E(Bi1 · · ·Bim) =
m−1∑
a=1

E(BiaBim)E(Bi1 · · ·Bia−1Bia+1 · · ·Bim−1). (13.7)

By the inductive hypothesis applied to the variables Bi1 , . . . , Bim−1 , the inside expectations are
sums over pairings. To ease notation, let’s only consider the case a = m− 1:

E(Bi1 · · ·Bim−2) =
∑

π∈P2(m−2)

∏
{c,d}∈π

E(BicBid).

Given any π ∈ P2(m − 2), let πm−1 denote the pairing in P2(m) that pairs {m − 1,m} along
with all the pairings in π. Then we can write the a = m− 1 terms in Equation 13.7 as

E(Bim−1Bim) ·
∑

π∈P2(m−2)

∏
{c,d}∈π

E(BicBid) =
∑

π∈P2(m−2)

∏
{c′,d′}∈πm−1

E(Bic′
Bid′

).

The other terms in Equation 13.7 are similar: given a pairing π ∈ P2(m), suppose that m pairs
with a; then we can decompose π as a pairing of the indices {1, . . . , a−1, a+1, . . . ,m−1} (which
can be though of as living in P2(m− 2) together with the pair {a,m}; the product of covariances
of the Bi over such a π is then equal to the ath term in Equation 13.7. Hence, we recover all the
terms in Equation 13.6, proving the theorem. �

13.4. The Genus Expansion. Let us now return to our setup for Wigner’s theorem. Recall, in
the combinatorial proof of Section 4, our approach was to compute the matrix moments 1

n
ETr Xk

n

for fixed k, and let n → ∞ to recover the moments of the limit (in expectation) of the empirical
eigenvalue distribution. We will carry out the same computation here (with Zn), but in this case
we can compute everything exactly. To begin, as in Section 4, we have

1

n
ETr [Zk

n] =
1

n

∑
1≤j1,j2,...,jk≤n

E(Zj1j2Zj2j3 · · ·Zjkj1).

Now, the variables Zjk are all (complex) linear combinations of the independent N(0, 1) variables
Bjk and B′jk; thus, we may apply Wick’s theorem to calculate the moments in this sum:

E(Zj1j2Zj2j3 · · ·Zjkj1) =
∑

π∈P2(k)

∏
{a,b}∈π

E(Zjaja+1Zjbjb+1
)

where we let ik+1 = i1. But these covariances were calculated in Equation 13.3:

E(Zjaja+1Zjbjb+1
) =

1

n
δjajb+1

δja+1jb .

There are k/2 pairs in the product, and so combining the last three equations, we therefore have
1

n
ETr [Zk

n] =
1

nk/2+1

∑
π∈P2(k)

∑
1≤j1,...,jk≤n

∏
{a,b}∈π

δjajb+1
δja+1jb .

To understand the internal product, it is useful here to think of π as a permutation as discussed
above. Hence {a, b} ∈ π means that π(a) = b, and since these are involotions, also π(b) = a.
Thus, we have ∏

{a,b}∈π

δjajb+1
δia+1ib =

k∏
a=1

δjajπ(a)+1
.



MATH 247A: INTRODUCTION TO RANDOM MATRIX THEORY 73

Let us introduce the shift permutation γ ∈ Sk given by the cycle γ = (1 2 · · · k) (that is,
γ(a) = a+ 1 mod k). Then we have

1

n
ETr [Zk

n] =
1

nk/2+1

∑
π∈P2(k)

∑
1≤j1,...,jk≤n

k∏
a=1

δjajγπ(a) .

To simplify the internal sum, think of the indices {j1, . . . , jk} as a function j : {1, . . . , k} →
{1, . . . , n}. In this form, we can succinctly describe the product of delta functions:

k∏
a=1

δjajγπ(a) 6= 0 iff j is constant on the cycles of γπ, in which case it = 1.

Thus, we have
1

n
ETr [Zk

n] =
1

nk/2+1

∑
π∈P2(k)

# {j : [k]→ [n] : j is constant on the cycles of γπ}

where, for brevity, we write [k] = {1, . . . , k} and [n] = {1, . . . , n}. This count is trivial: we must
simply choose one value for each of the cycles in γπ (with repeats allowed). For any permutation
σ ∈ Sk, let #(σ) denote the number of cycles in σ. Hence, we have

1

n
ETr [Zk

n] =
1

nk/2+1

∑
π∈P2(k)

n#(γπ) =
∑

π∈P2(k)

n#(γπ)−k/2−1. (13.8)

Equation 13.8 gives an exact value for the matrix moments of a GUEn. It is known as the genus
expansion. To understand why, first note that P2(k) = ∅ if k is odd, and so we take k = 2m
even. Then we have

1

n
E[Z2m

n ] =
∑

π∈P2(2m)

n#(γπ)−m−1. (13.9)

Now, let us explore the exponent of n in the terms in this formula. There is a beautiful geo-
metric way to visualize #(γπ). Draw a regular 2m-gon, and label its vertices in cyclic order
v1, v2, . . . , v2m. Its edges may be identified as (cyclically)-adjacent pairs of vertices: e1 = v1v2,
e2 = v2v3, until e2m = v2mv1. A pairing π ∈ P2(2m) can now be used to glue the edges of the
2m-gon together to form a compact surface. Note: by convention, we always identify edges in
“tail-to-head” orientation. For example, if π(1) = 3, we identify e1 with e3 by gluing v1 to v4 (and
ergo v2 to v3). This convention forces the resultant compact surface to be orientable.

Lemma 13.5. Let Sπ be the compact surface obtained by gluing the edges of a 2m-gon according
to the pairing π ∈ P2(2m) as described above; let Gπ be the image of the 2m-gon in Sπ. Then
the number of distinct vertices in Gπ is equal to #(γπ).

Proof. Since ei is glued to eπ(i), by the “tail-to-head” rule this means that vi is identified with
vπ(i)+1 (with addition modulo 2m); that is, vi is identified with vγπ(i) for each i ∈ [2m]. Now,
edge eγπ(i) is glued to eπγπ(i), and by the same argument, the vertex vγπ(i) (now the tail of the
edge in question) gets identified with vγπγπ(i). Continuing this way, we see that vi is identifies with
precisely those vj for which j = (γπ)`(i) for some ` ∈ N. Thus, the cycles of γπ count the number
of distinct vertices after the gluing. �

This connection is very fortuitous, because it allows us to neatly describe the exponent #(γπ) −
m − 1. Consider the surface S = Sπ described above. The Euler characteristic χ(S) of S is a
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well-defined even integer, which (miraculously) can be defined as follows: if G is any imbedded
polygonal complex in S, then

χ(S) = V (G)− E(G) + F (G)

where V (G) is the number of vertices in G, E(G) is the number of edges in G, and F (G) is the
number of faces ofG. What’s more, χ(S) is related to another topological invariant of S: its genus.
Any orientable compact surface is homeomorphic to a g-holed torus for some g ≥ 0 (the g = 0
case is the sphere); this g = g(S) is the genus of the surface. It is a theorem (due to Cauchy –
which is why we name it after Euler) (?) that

χ(S) = 2− 2g(S).

Now, consider our imbedded complex Gπ in Sπ. It is a quotient of a 2m-gon, which has only 1
face, therefore F (Gπ) = 1. Since we identify edges in pairs, E(Gπ) = (2m)/2 = m. Thus, by the
above lemma,

2− 2g(Sπ) = χ(Sπ) = #(γπ)−m+ 1.

Thus: #(γπ)−m− 1 = −2g(Sπ). Returning to Equation 13.9, we therefore have
1

n
ETr [Z2m

n ] =
∑

π∈P2(2m)

n−2g(Sπ) =
∑
g≥0

εg(m)
1

n2g
, (13.10)

where

εg(m) = #{genus-g surfaces obtained by gluing pairs of edges in a 2m-gon}.
Since the genus of any surface is ≥ 0, this shows in particular that

1

n
ETr [Z2m

n ] = ε0(m) +O

(
1

n2

)
.

Now, from our general proof of Wigner’s theorem, we know that ε0(m) must be the Catalan number
Cm. To see why this is true from the above beautiful geometric description, we need a little more
notation for pairings.

Definition 13.6. Let π ∈P2(2m). Say that π has a crossing if there are pairs {j, k} and {j′, k′}
in π with j < j′ < k < k′. If π has no crossings, call is a non-crossing pairing. The set of
non-crossing pairings is denoted NC2(2m).

Unlike generic pairings P2(2m), the structure of NC2(2m) depends on the order relation in
the set {1, . . . , 2m}. It is sometimes convenient to write NC2(I) for an ordered set I , allow-
ing for changes of indices; for example, we need to consider non-crossing partitions of the set
{1, 2, . . . , i− 1, i+ 2, . . . , 2m}, which are in natural bijection with NC2(2m− 2).

Exercise 13.6.1. Show that the setNC2(2m) can be defined recursively as follows: π ∈ NC2(2m)
if and only if there is an adjacent pair {i, i+1} in π, and the pairing π \{i, i+1} is a non-crossing
pairing of {1, . . . , i− 1, i+ 2, . . . , 2m}.

Proposition 13.7. The genus of Sπ is 0 if and only if π ∈ NC2(2m).

Proof. First, suppose that π has a crossing. As Figure 4 below demonstrates, this means that the
surface Sπ has an imbedded double-ring that cannot be imbedded in S2. Thus, Sπ must have genus
≥ 1.
On the other hand, suppose that π is non-crossing. Then by Exercise 13.6.1, there is an interval
{a, a+ 1} (addition modulo 2m) in π, and π \ {i, i+ 1} is in NC2({1, . . . , i− 1, i+ 2, . . . , 2m}).
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FIGURE 4. If π has a crossing, then the above surface (with boundary) is imbedded
into Sπ. Since this two-strip surface does not imbed in S2, it follows the genus of
Sπ is ≥ 1.

As Figure 5 below shows, gluing along this interval pairing {i, i + 1} first, we reduce to the case
of π \ {i, i+ 1} gluing a 2(m− 1)-gon within the plane. Since π \ {i, i+ 1} is also non-crossing,

FIGURE 5. Given interval {i, i + 1} ∈ π, the gluing can be done in the plane
reducing the problem to size 2(m− 1).

we proceed inductively until there are only two pairings left. It is easy two check that the two non-
crossing pairings {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}} of a square produce a sphere upon gluing.
Thus, if π is non-crossing, Sπ = S2 which has genus 0. �

Thus, ε0(m) is equal to the number of non-crossing pairings #NC2(2m). It is a standard re-
sult that non-crossing pairings are counted by Catalan numbers: for example, by decomposing
π ∈ NC2(2m) by where 1 pairs, the non-crossing condition breaks π into two independent non-
crossing partitions, producing the Catalan recurrence.

The genus expansion therefore provides yet another proof of Wigner’s theorem (specifically for
the GUEn). Much more interesting are the higher-order terms in the expansion. There are no
known formulas for εg(m) when g ≥ 2. The fact that these compact surfaces are “hiding inside”
a GUEn was (of course) discovered by Physicists, and there is much still to be understood in this
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direction. (For example, many other matrix integrals turn out to count interesting topological /
combinatorial invariants.)
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14. JOINT DISTRIBUTION OF EIGENVALUES OF GOEn AND GUEn

We have now seen that the joint law of entries of a GOEn is given by

P(
√
nXn ∈ B) = 2−n/2π−n(n+1)/4

∫
B

e−
1
2

Tr (X2) dX (14.1)

for all Borel subsetsB of the space of n×n symmetric real matrices. Similarly, for aGUEn matrix
Zn,

P(
√
nZn ∈ B) = 2−n/2π−n

2/2

∫
B

e−
1
2

Tr (Z2) dZ (14.2)

for all Borel subsets B of the space of n× n Hermitian complex matrices.

Let us now diagonalize these matrices, starting with the GOEn. By the spectral theorem, if
Λn is the diagonal matrix with eigenvalues λ1(Xn) through λn(Xn) (in increasing order, to avoid
ambiguity), there is a (random) orthogonal matrix Qn such that Xn = Q>nΛnQn. Now, the matrix
Qn is not unique: each column (i.e. each eigenvector of Xn) can still be scaled by ±1 without
affecting the result. If there are repeated eigenvalues, there is even more degeneracy. However,
notice that the joint distribution of entries of Xn has a smooth density. Since the eigenvalues
are continuous functions of the entries, it follows immediately that the eigenvalues of Xn are
almost surely all distinct. (The event that two eigenvalues coincide has codimension ≥ 1 in the
n-dimensional variety of eigenvalues; the existence of a density thus means this set is null.) So, if
we avoid this null set, the scaling of the eigenvectors is the only undetermined quantity; we could
do away with it by insisting that the first non-zero entry of each column of Qn is strictly positive.
Under this assumption, the map (Q,Λ) → Q>ΛQ is a bijection (which is obviously smooth); so
we can in principle compute the change of variables.

14.1. Change of Variables on Lie Groups. Let G be a Lie group. The Lie algebra g of G is
defined to be the tangent space at the identity. For the most relvant example, takeG = O(n), which
is the set of matrices Q satisfying Q>Q = I . So O(n) is a level set of the function F (Q) = Q>Q,
which is clearly smooth. The tangent space is thus the kernel of dFI , the differential at the identity.
We calculate the differential as a linear map (acting on all matrices)

dFI(T ) = lim
t→0

1

h
[F (I + hT )− F (I)] = lim

h→0

1

h
[(I + hT )>(I + hT )− I] = T + T>.

Thus, the tangent space to O(n) at the identity (which is denoted by o(n)) is equal to the space of
matrices T with T> + T = 0; i.e. the anti-symmetric matrices. We denote this Lie algebra o(n). It
is a Lie algebra since it is closed under the bracket product [T, S] = TS − ST , as one can easily
check; in general, the group operation on G translates into this bracket operation on g.

For smooth manifolds M and N , one defines smoothness of functions S : M → N in the
usual local fashion. The derivative / differential of such a function at a point x ∈ M is a map
dSx : TxM → TS(x)N between the relevant tangent spaces. (In the special case that N = R, dS is
then a 1-form, the usual differential.) This map can be defined in local cordinates (in which case
it is given by the usual derivative matrix). If M = G happens to be a matrix Lie group, there is
an easy global definition. If T ∈ g is in the Lie algebra, then the matrix exponential eT is in G.
This exponential map can be used to describe the derivative based at the identity I ∈ G, as a linear
map: for

dSI(T ) =
d

dt
S(etT )

∣∣∣∣
t=0

.
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At x ∈ G not equal to the identity, we use the group invariance to extend this formula. In particular,
it is an easy exercise that the tangent space TxG is the translate of TIG = g by x: TxG = x · g.
Hence, for T ∈ TxG, x−1T ∈ g and so etx−1T ∈ G. In general, we have

dSx(T ) =
d

dt
S(etx

−1Tx)

∣∣∣∣
t=0

. (14.3)

We now move to the geometry of G. Let us specify an inner product on the Lie algebra g;
in any matrix Lie group, the natural inner product is 〈T1, T2〉 = Tr (T>2 T1). In particular, for
g = o(n) this becomes 〈T1, T2〉 = −Tr (T1T2). We can then use the group structure to parallel
translate this inner product everywhere on the group: that is, for two vectors T1, T2 ∈ TxG for any
x ∈ G, we define 〈T1, T2〉x = 〈x−1T1,x

−1T2〉. Thus, an inner product on g extends to define a
Riemannian metric on the manifold G (a smooth choice of an inner product at each point of G).
This Riemannian metric is, by definition, left-invariant under the action of G.

In general, any Riemannian manifold M possesses a volume measure VolM determined by the
metric. How it is defined is not particularly important to us. What is important is that on a Lie
group G with its left-invariant Riemannian metric, the volume measure VolG is also left-invariant.
That is: for any x ∈ G, and any Borel subset B ⊆ G, VolG(xB) = VolG(B). But this pins down
VolG, since any Lie group possesses a unique (up to scale) left-invariant measure, called the (left)
Haar measure HaarG. If G is compact, the Haar measure is a finite measure, and so it is natural
to choose it to be a probability measure. This does not mean that VolG is a probability measure,
however; all we can say is that VolG = VolG(G) · HaarG.

Now, let M,N be Riemannian manifolds (of the same dimension), and let S : M → N be a
smooth bijection. Then the change of variables (generalized from multivariate calculus) states that
for any function f ∈ L1(N,VolN),∫

S(M)

f(y) VolN(dy) =

∫
M

f(S(x))| det dSx|VolM(dx). (14.4)

To be clear: dSx : TxM → TS(x)N is the linear map described above. Since M and N are Rie-
mannian manifolds, the tangent spaces TxM and TS(x)N have inner-products defined on them, and
so this determinant is well-defined: it is the volume of the image under dSx of the unit box in
TxM .

14.2. Change of Variables for the Diagonalization Map. Let diag(n) denote the linear space
of diagonal n × n matrices, and let diag<(n) ⊂ diag(n) denote the open subset with strictle
increasing diagonal entries λ1 < · · · < λn. As usual let Xn denote the linear space of symmetric
n× n matrices. Now, consider the map

S : O(n)× diag<(n)→Xn

(Q,Λ) 7→ Q>ΛQ.

As noted above, this map is almost a bijection; it is surjective (by the spectral theorem) onto the
open dense subset of symmetric matrices with distinct eigenvalues, but there is still freedom to
choose a sign for each colum of Q without affecting the value of O(n). Another way to say this is
that S descends to the quotient group O+(n) = O(n)/DO(n) where DO(n) is the discrete group
of diagonal orthogonal matrices (diagonal matrices with ±1s on the diagonal). This quotient map
(also denoted S) is a bijection S : O+(n) × diag<(n) → Xn onto the symmetric matrices with
distinct eigenvalues. Quotienting by a discrete group does not change the Lie algebra; the only
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affect on our analysis is that dVolO(n) = 2ndVolO+(n). The map S is clearly smooth, so we may
apply the change of variables formula (Equation 14.5). Note that the measure VolXn is what we
denoted by dX above. Hence, the change of variables formula (Equation 14.5) gives, for any
f ∈ L1(Xn)∫

Xn

f(X) dX = 2n
∫
O+(n)×diag<(n)

f(S(Q,Λ))| det dSQ,Λ| dVolO+(n)×diag<(n)(Q,Λ).

Of course, the volume measure of a product is the product of the volume measures. The volume
measure Voldiag<(n) on the open subset of the linear space diag(n) (with its usual inner-product) is
just the Lebesgue measure dλ1 · · · dλn which we will denote dΛ. The volume measure VolO+(n) is
the Haar measure (up to the scaling factor Vol(O+(n))). So we have (employing Fubini’s theorem)
for positive f∫

Xn

f(X) dX = 2nVol(O+(n))

∫
O+(n)

∫
diag<(n)

f(S(Q,Λ))| det dSQ,Λ| dΛ dHaarO+(n)(Q).

The factor 2nVol(O+(n)) is equal to Vol(O(n)). There is no harm, however, in integrating over the
full group O(n), since S is invariant under the action of DO(n). This will scale the Haar measure
by an additional 2−n, so the result is∫

Xn

f(X) dX = cn

∫
O(n)

∫
diag<(n)

f(S(Q,Λ))| det dSQ,Λ| dΛ dHaarO(n)(Q) (14.5)

where cn = 2−nVol(O(n)) is a constant we will largely ignore.

Let us now calculate the Jacobian determinant in Equation 14.5. Using Equation 14.3 for the Q
direction (and the usual directional derivative for the linear Λ direction), we have for T ∈ TQO(n)
and D ∈ diag(n)

dSQ,Λ(T,D) =
d

dt
S(etQ

>TQ,Λ + tD)

∣∣∣∣
t=0

=
d

dt

(
etQ

>TQ
)>

(Λ + tD)etQ
>TQ

∣∣∣∣
t=0

= Q>
d

dt
et(Q

>T )>(Λ + tD)etQ
>T

∣∣∣∣
t=0

Q.

Now, TQO(n) = Q · o(n); so for any T ∈ TQO(n), Q>T ∈ o(n). Hence, the matrix in the
exponential is anti-symmetric, and we can rewrite the inside derivative as

d

dt
e−tQ

>T (Λ + tD)etQ
>T

∣∣∣∣
t=0

= −Q>TΛ +D + ΛQ>T = [Λ,Q>T ] +D.

Hence, we have
dSQ,Λ(T,D) = Q>

(
[Λ,Q>T ] +D

)
Q. (14.6)

This linear map is defined for T ∈ TQO(n) = Q · o(n). The form suggests that we make the
following transformation: let AQ,Λ : o(n)× diag(n)→Xn be the linear map

AQ,Λ(T,D) = Q · dSQ,Λ(QT,D) ·Q> = [Λ, T ] +D. (14.7)

This transformation is isometric, and so in particular it preserves the determinant.

Lemma 14.1. detAQ,Λ = det dSQ,Λ.
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Proof. We can write the relationship between AQ,Λ and dSQ,Λ as

AQ,Λ = AdQ ◦ dSQ,Λ ◦ (LQ × id)

where AdQX = QXQ> and LQT = QT . The map LQ : o(n) → TQO(n) is an isometry (by
definition – the inner-product on TQO(n) is defined by translating the inner-product on o(n) to
Q). The map AdQ is an isometry of the common range space Xn (since it is equipped with the
norm X 7→

√
Tr (X2)). Hence, the determinant is preserved. �

So, in order to complete the change of variables transformation of Equation 14.5,we need to
calculate detAQ,Λ. It turns out this is not very difficult. Let us fix an orthonormal basis for the
domain o(n)× diag(n). Let Eij denote the matrix unit (with a 1 in the ij-entry and 0s elsewhere).
For 1 ≤ i ≤ n, denote Tii = (0, Eii) ∈ o(n)× diag(n); and for i < j let Tij = 1√

2
(Eij −Eji, 0) ∈

o(n)×diag(n). It is easy to verify that {Tij}1≤i≤j≤n forms an orthonormal basis for o(n)×diag(n).
(The orthogonality between Tii and Tjk for j < k is automatic from the product structure; however,
it is actually true that Eii and Ejk − Ekj are orthogonal in the trace inner-product; this reflects the
fact that we could combine the product o(n)× diag(n) into the set of n× n matrices with lower-
triangular part the negative of the upper-triangular part, but arbitrary diagonal.)

Lemma 14.2. The vectors {AQ,Λ(Tij)}1≤i≤j≤n form an orthogonal basis of Xn.

Proof. Let us begin with diagonal vectors Tii. We have

AQ,Λ(Tii) = [Λ, 0] + Eii = Eii.

Since we have the general product formula EijEk` = δjkEi`, distinct diagonal matrix units Eii and
Ejj actually have product 0, and hence are orthogonal. We also have the length of AQ,Λ(Tii) is the
length of Eii, which is 1.

Now, for i < j, we have

AQ,Λ(Tij) =
1√
2

[Λ, Eij − Eji] + 0.

If we expand the diagonal matrix Λ =
∑n

a=1 λaEaa, we can evaluate this product

[Λ, Eij − Eji] =
n∑
a=1

λa[Eaa, Eij − Eji] =
n∑
a=1

λa[Eaa, Eij]− λa[Eaa, Eji]

=
n∑
a=1

λa(EaaEij − EijEaa)− λa(EaaEji − EjiEaa)

=
n∑
a=1

λa(δaiEaj − δjaEia − δajEai + δiaEja)

= λiEij − λjEij − λjEji + λiEji

= (λi − λj)(Eij + Eji).

Hence, AQ,Λ(Tij) = (λi − λj) 1√
2
(Eij + Eji). It is again easy to calculate that, for distinct pairs

(i, j) with i < j, these matrices are orthogonal in Xn (equipped with the trace inner-product).
Similarly, Tii is orthogonal from both Eij + Eji. This shows that all the vectors {AQ,Λ}1≤i≤j≤n
are orthogonal. Since they number n(n + 1)/2 which is the dimension of Xn, this completes the
proof. �
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Hence, AQ,Λ preserves the right-angles of the unit cube, and so its determinant (the oriented
volume of the image of the unit cube) is just the product of the lengths of the image vectors. As
we saw above,

AQ,Λ(Tij) =

{
Eii, i = j

(λi − λj) 1√
2
(Eij + Eji), i < j

.

The length of the diagonal images are all 1. The vectors 1√
2
(Eij +Eji) (with i 6= j) are normalized

as well, and so the length of AQ,Λ(Tij) is |λi − λj|. (Note: here we see that the map S is not even
locally invertible at any matrix with a repeated eigenvalue; the differential dS has a non-trivial
kernel at such a point.) So, employing Lemma 14.1, we have finally calculated

| det dSQ,Λ| = | detAQ,Λ| =
∏

1≤i<j≤n

|λi − λj|. (14.8)

For a matrix Λ ∈ diag(n) with Λii = λi, denote by ∆(Λ) =
∏

1≤i<j≤n(λj − λi). The quantity
∆(Λ) is called the Vandermonde determinant (for reasons we will highlight later). Equation
14.8 shows that the Jacobian determinant in the change of variables for the map S is |∆(Λ)|. In
particular, the full change of variables formula (cf. Equation 14.5) is∫

Xn

f(X) dX = cn

∫
O(n)

∫
diag<(n)

f(Q>ΛQ)|∆(Λ)| dΛ dHaarO(n)(Q). (14.9)

14.3. Joint Law of Eigenvalues and Eigenvectors for GOEn and GUEn. Now, let B be any
Borel subset of Xn. Consider the positive function fB ∈ L1(Xn) given by

fB(X) = c′n1B(X)e−
1
2

Tr (X2)

where c′n = 2−n/2π−n(n+1)/4. On the one hand, Equation 14.1 asserts that if Xn is a GOEn, then

P(
√
nXn ∈ B) = c′n

∫
B

e−
1
2

Tr (X2) dX =

∫
Xn

fB(X) dX.

Now, applying the change of variables formula just developed, Equation 14.9, we can write∫
Xn

fB(X) dX = cn

∫
O(n)

∫
diag<(n)

fB(Q>ΛQ)|∆(Λ)| dΛ dHaarO(n)(Q).

Since Tr [(Q>ΛQ)2] = Tr (Λ2), we therefore have

P(
√
nXn ∈ B) = cnc

′
n

∫
O(n)

∫
diag<(n)

1{Q>ΛQ ∈ B} e−
1
2

Tr (Λ2)|∆(Λ)| dΛ dHaarO(n)(Q).

Let us combine the two constants cn, c′n into a single constant which we will rename cn. Now, in
particular, consider a Borel set of the following form. Let L ⊆ diag<(n) and R ⊆ O(n) be Borel
sets; setB = R>LR (i.e.B is the set of all symmetric matrices of the formQ>ΛQ for someQ ∈ R
and some Λ ∈ L). Then 1{Q>ΛQ ∈ B} = 1L(Λ)1R(Q), and so the above formula separates

P(
√
nXn ∈ R>LR) = cn

∫
R

∫
L

e−
1
2

Tr (Λ2)|∆(Λ)| dΛ dHaarO(n)(Q). (14.10)

From this product formula, we have the following complete description of the joint law of eigen-
values and eigenvectors of a GOEn.
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Theorem 14.3. Let Xn be a GOEn, with (any) orthogonal diagonalization
√
nXn = Q>nΛnQn

where the entries of Λn increase from top to bottom. Then Qn and Λn are independent. The
distribution of Qn is the Haar measure on the orthogonal group O(n). The eigenvalue matrix Λn,
taking values (a.s.) in diag<(n), has a law with probability density

cne
− 1

2
Tr (Λ2)|∆(Λ)| = cne

− 1
2

(λ21+···+λ2n)
∏

1≤i<j≤n

(λj − λi)

for some constant cn.

We can calculate the constant cn in the theorem: tracking through the construction, we get

2−3n/2π−n(n+1)/4Vol(O(n)),

but we then need to calculate the volume of O(n). A better approach is to note that cn is simply the
normalization coefficient of the density of eigenvalues, and calculate it by evaluating the integral.

The situation for the GUEn is quite similar. An analysis very analogous to the one above yields
the appropriate change of variables formula. In this case, instead of quotienting by the discrete
group DO(n) of ± diagonal matrices, here we must mod out by the maximal torus of all diagonal
matrices with complex diagonal entries of modulus 1. The analysis is the same, however; the only
change (due basically to dimensional considerations) is that the Jacobian determinant becomes
∆(Λ)2. The result follows.

Theorem 14.4. Let Zn be a GUEn, with (any) unitary diagonalization
√
nZn = U∗nΛnUn where

the entries of Λn increase from top to bottom. Then Un and Λn are independent. The distribution
of Un is the Haar measure on the unitary group U(n). The eigenvalue matrix Λn, taking values
(a.s.) in diag<(n), has a law with probability density

cne
− 1

2
Tr (Λ2)∆(Λ)2 = cne

− 1
2

(λ21+···+λ2n)
∏

1≤i<j≤n

(λi − λj)2

for some constant cn.

Note: the constants (both called cn) in Theorems 14.3 and 14.4 are not equal. In fact, it is
the GUEn case that has the much simpler normalization constant. In the next sections, we will
evaluate the constant exactly. For the time being, it is convenient to factor out a

√
2π from each

variable (so the Gaussian part of the density at least is normalized). So, let us define the constant
Cn = (2π)−n/2cn. The full statement is: for any Borel subset L ⊆ diag<(n),

P(Λn ∈ L) = (2π)−n/2Cn

∫
L

e−
1
2

(λ21+···+λ2n)
∏

1≤i<j≤n

(λj − λi)2
1λ1≤···≤λn dλ1 · · · dλn. (14.11)

For many of the calculations that follow, it is convenient to drop the order condition on the
eigenvalues. Let us define the law of unordered eigenvalues of a GUEn: Pn is the probability
measure defined on all of Rn by

Pn(L) =
(2π)−n/2

n!
Cn

∫
L

e−
1
2

(λ21+···+λ2n)∆(λ1, . . . , λn)2 dλ1 · · · dλn. (14.12)

Here we are changing notation slightly and denoting ∆(diag(λ1, . . . , λn)) = ∆(λ1, . . . , λn). Of
course, the order of the entries changes the value of ∆, but only by a sign; since it is squared in the
density of Pn, there is no ambiguity. It is actually for this reason that the normalization constant
of the law of eigenvalues of aGUEn is so much simpler than the constant for aGOEn; in the latter
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case, if one extends to the law of unordered eigenvalues, the absolute-value signs must be added
back onto the Vandermonde determinant term. For the GUEn, on the other hand, the density is a
polynomial times a Gaussian, and that results in much simpler calculations.
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15. THE VANDERMONDE DETERMINANT, AND HERMITE POLYNOMIALS

The function ∆(λ1, . . . , λn) =
∏

1≤i<j≤n(λj−λi) plays a key role in the distribution of eigenval-
ues of Gaussian ensembles. As we mentioned in the previous section, ∆ is called the Vandermonde
determinant. The following proposition makes it clear why.

Proposition 15.1. For any λ1, . . . , λn ∈ R,

∆(λ1, . . . , λn) =
∏

1≤i<j≤n

(λj − λi) = det


1 1 · · · 1
λ1 λ2 · · · λn
λ2

1 λ2
2 · · · λ2

n
...

... . . . ...
λn−1

1 λn−1
2 · · · λn−1

n

 .
Proof. Denote the matrix on the right-hand-side as V , with columns V = [V1, . . . , Vn]. The jth
column is a vector-valued polynomial of λj , Vj = p(λj), where p is the same polynomial for each
column: p(λ) = [1, λ, . . . , λn−1]>. Since the determinant of a matrix is a polynomial in its entries,
it follows that detV is a polynomial in λ1, . . . , λn. Since the same polynomial p is used for each
column, we see that if any λi = λj , V has a repeated column, and so its determinant vanishes.
Hence, we can factor λj − λi out of detV for each distinct pair i, j. It follows that ∆ divides
detV .

Now, the degree of any term in the jth row is j − 1. Using the expansion for the determinant

detV =
∑
σ∈Sn

(−1)|σ|
n∏
i=1

Viσ(i), (15.1)

the determinant is a sum of terms each of which is a product of n terms, one from each row of V ;
this shows that detV has degree 0 + 1 + 2 + · · · + n − 1 = n(n − 1)/2. Since this is also the
degree of ∆, we conclude that detV = c∆ for some constant c.

To evaluate the constant c, we take the diagonal term in the determinant expansion (the term
corresponding to σ = id): this term is 1 · λ2 · λ2

3 · · ·λn−1
n . It is easy to check that the coefficient of

this monomial in ∆ is 1. Indeed, to get λn−1
n one must choose the λn term from every (λn − λj)

with j < n. This uses the λn− λn−1 term; the remaining terms involving λn−1 are (λn−1− λj) for
j < n − 1, and to ge tthe λn−2

n−1 we must select the λn−1 from each of these. Continuing this way,
we see that, since each new factor of λi is chosen with a + sign, and is uniquely acocunted for, the
single term λ2λ

2
3 · · ·λn−1

n has coefficient +1 in ∆. Hence c = 1. �

The Vandermonde matrix is used in numerical analysis, for polynomial approximation; this is
why it has the precise form given there. Reviewing the above proof, it is clear that this exact form
is unnecessary; in order to follow the proof word-for-word, all that is requires is that there is a
vector-valued polynomial p = [p0, . . . , pn−1]> with pj(λ) = λj + O(λj−1) such that the columns
of V are given by Vi = p(λi). This fact is so important we record it as a separate corollary.

Corollary 15.2. Let p0, . . . , pn−1 be monic polynomials, with pj of degree j. Set p = [p0, . . . , pn−1]>.
Then for any λ1, . . . , λn ∈ R,

det
[
p(λ1) p(λ2) · · · p(λn)

]
= ∆(λ1, . . . , λn) =

∏
1≤i<j≤n

(λj − λi).
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In light of this incredible freedom to choose which polynomials to use in the determinantal
interpretation of the quantity ∆ that appears in the law of eigenvluaes 14.12, it will be convenient
to use polynomials that are orthogonal with respect to the Gaussian measure that also appears in
this law. These are the Hermite polynomials.

15.1. Hermite polynomials. For integers n ≥ 0, we define

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2. (15.2)

The functions Hn are, in fact, polynomials (easy to check by induction). They are called the
Hermite polynomials (of unit variance), and they play a central role in Gaussian analysis. Here
are the first few of them.

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

Many of the important properties of the Hermite polynomials are evident from this list. By the
definition of Equation 15.2, we have the following differential recursion:

Hn+1(x) = (−1)n+1ex
2/2

(
dn+1

dxn+1
e−x

2/2

)
= −ex2/2 d

dx

(
(−1)n

dn

dxn
e−x

2/2

)
= −ex2/2 d

dx

(
e−x

2/2Hn(x)
)

= −ex2/2
(
−xe−x2/2Hn(x) + e−x

2/2H ′n(x)
)
.

That is to say:
Hn+1(x) = xHn(x)−H ′n(x). (15.3)

Proposition 15.3. The Hermite polynomials Hn satisfy the following properties.

(a) Hn(x) is a monic polynomial of degree n; it is an even function if n is even and an odd
function if n is odd.

(b) Hn are orthogonal with respect to the Gaussian measure γ(dx) = (2π)−1/2e−x
2/2 dx:∫

R
Hn(x)Hm(x) γ(dx) = δnm n!

Proof. Part (a) follows from induction and Equation 15.3: knowing that Hn(x) = xn + O(xn−1),
we have H ′n(x) = O(xn−1), and so Hn+1(x) = x(xn + O(xn−1)) + O(xn−1) = xn+1 + O(xn).
Moreover, since xHn and H ′n each have opposite parity to Hn, the even/odd behavior follows
similarly.
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To prove (b), we integrate by parts in the definition of Hn (Equation 15.2):

(2π)−1/2

∫
R
Hn(x)Hm(x)e−x

2/2 dx = (2π)−1/2

∫
R
Hn(x)(−1)m

dm

dxm
e−x

2/2 dx

= (2π)−1/2

∫
R

(
dm

dxm
Hn(x)

)
e−x

2/2 dx.

If m > n, since Hn is a degree n polynomial, the mth derivative inside is 0. If m = n, by part (a)
we have dn

dxn
Hn(x) = n!, and since γ is a probability measure, the integral is n!. By repeating the

argument reversing the roles of n and m, we see the integral is 0 when n > m as well. �

Proposition 15.3(b) is the real reason the Hermite polynomials are import in Gaussian analysis:
they are orthogonal polynomials for the measure γ. In fact, parts (a) and (b) together show
that if one starts with the vectors {1, x, x2, x3, . . .}, all in L2(γ), and performs Gram-Schmidt
orthogonalization, the resulting orthogonal vectors are the Hermite polynomials Hn(x). This is
summarized in the second statement of the following corollary.

Corollary 15.4. Let 〈f, g〉γ denote
∫
fg dγ. Then 〈x,Hn(x)2〉γ = 0. Also, if f is a polynomial of

degree < n, then 〈f,Hn〉γ = 0.

Proof. Since Hn is either an odd function or an even function, H2
n is an even function. Thus

Hn(x)2e−x
2/2 is an even function. Since x is odd, it follows that

∫
xHn(x)2e−x

2/2 dx = 0, proving
the first claim. For the second, Proposition 15.3(a) shows that Hn(x) = xn + an,n−1x

n−1 + · · · +
an,1x+ an,0 for some coefficients an,k with k < n. (In fact, we know that an,n−1 = an,n−3 = · · · =
0.) We can express this together in the linear equation

H0

H1

H2
...
Hn

 =


1 0 0 0 · · · 0
a1,0 1 0 0 · · · 0
a2,0 a2,1 1 0 · · · 0

...
...

...
... . . . ...

an,0 an,1 an,2 an,3 · · · 1




1
x
x2

...
xn

 .
The matrix above is lower-triangular with 1s on the diagonal, so it is invertible (in fact, it is easily
invertible by iterated back substitution; it is an order n operation to invert it, rather than the usual
order n3). Since the inverse of a lower-triangular matrix is lower-triangular, this means that we
can express xk as a linear combination of H0, H1, . . . , Hk for each k. Hence, any polynomial f
of degree < n is a linear combination of H0, H1, . . . , Hn−1, and so by Proposition 15.3(b) f is
orthogonal to Hn, as claimed. �

Taking this Gram-Schmidt approach, let us consider the polynomial xHn(x). By Equation 15.3,
we have xHn(x) = Hn+1(x) + H ′n(x). However, since it is a polynomial of degree n + 1, we
know it can be expressed as a linear combination of the polynomials H0, H1, . . . , Hn+1 (without
any explicit differentiation). In fact, the requisite linear combination is quite elegant.

Proposition 15.5. For any n ≥ 1,

xHn(x) = Hn+1(x) + nHn−1(x). (15.4)

Proof. From the proof of Corollary 15.4, we see that {H0, . . . , Hn} is a basis for the space of
polynomials of degree≤ n; what’s more, it is an orthogonal basis with respect to the inner-product
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〈 · , · 〉γ on that space. Taking the usual expansion, then, we have

xHn(x) =
n+1∑
k=0

〈xHn, Ĥk〉γĤk

where Ĥk is the normalized Hermite polynomial Ĥk = Hk/〈Hk, Hk〉1/2γ . Well, note that 〈xHn, Hk〉γ =
〈Hn, xHk〉γ . If k < n − 1, then xHk is a polynomial of degree < n, and by Corollary 15.4 it is
orthogonal to Hn. So we immediately have the reduction

xHn(x) = 〈xHn, Ĥn−1〉Ĥn−1 + 〈xHn, Ĥn〉Ĥn + 〈xHn, Ĥn+1〉Ĥn+1.

The middle term is the same as 〈x,H2
n〉γ which is equal to 0 by Corollary 15.4. Since we know the

normalizing constants from Proposition 15.3(b), we therefore have

xHn(x) =
1

(n− 1)!
〈xHn, Hn−1〉γHn−1(x) +

1

(n+ 1)!
〈xHn, Hn+1〉γHn+1(x).

For the final term, note that since Hn(x) = xn +O(xn−1), we have xHn(x) = xn+1 +O(xn), and
hence 〈xHn, Hn+1〉γ = 〈xn+1, Hn+1〉γ as all lower-order terms are orthogonal to Hn+1. The same
argument shows that 〈Hn+1, Hn+1〉γ = 〈xn+1, Hn+1〉γ = (n + 1)!; so the coefficient of Hn+1 is 1.
By a similar argument, we have

〈xHn, Hn−1〉γ = 〈Hn, xHn−1〉γ = 〈Hn, x
n〉γ = 〈Hn, Hn〉γ = n!

and so the coefficient of Hn−1 is n!/(n− 1)! = n, proving the claim. �

Corollary 15.6. For n ≥ 1, H ′n(x) = nHn−1(x). Furthermore, −H ′′n(x) + xH ′n(x) = nHn(x).

Proof. Equation 15.3 asserts that Hn+1(x) = xHn(x)−H ′n(x), so H ′n(x) = xHn(x)−Hn+1(x).
Using Proposition 15.5 yields the first result. For the second, differentiate Equation 15.3:

H ′′n(x) =
d

dx
H ′n(x) =

d

dx
(xHn(x)−Hn+1(x)) = Hn(x) + xH ′n(x)−H ′n+1(x).

Using the first identity H ′n+1(x) = (n+ 1)Hn(x) and simplifying yields the result. �

Remark 15.7. Recall the operator L = d2

dx2
−x d

dx
, which comes from Gaussian integration by parts

of the energy form ∫
f ′(x)g′(x) γ(dx) =

∫
Lf(x) g(x) γ(dx).

Corollary 15.6 asserts that LHn = −nHn – that is, Hn is an eigenvector for L with eigenvalue−n.
Viewing the statement this way affords an alternate proof: for any n,m

〈LHn, Hm〉γ = −〈H ′n, H ′m〉γ = −〈nHn−1,mHm−1〉γ = −nmδnm(n− 1)!.

We can therefore rewrite this as

〈LHn, Hm〉γ = −nδnmn! = −n〈Hn, Hm〉γ.

This is enough to conclude that LHn = −nHn (at least in L2-sense), so long as we know that the
orthogonal vectors {Hm}m≥0 form a basis for L2(γ). This is our next result.

Proposition 15.8. The normalized vectors {Ĥn}n≥0 form an orthonormal basis for L2(R, γ).
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Proof. As we have established, {Ĥn}0≤n≤m form a basis for the space of polynomials of degree
≤ m; hence, as a vector space, the space P of all polynomials is spanned by {Ĥn}n≥0. Since these
vectors are orthonormal, to conclude the proof we need only show that P ⊂ L2(R, γ) is dense. So,
suppose that f ∈ L2(R, γ) is orthogonal to P . This means in particular that 〈f, xn〉γ = 0 for all
n ≥ 0. Well, consider the Fourier transform of the function fe−x2/2:

φ(ξ) =

∫
f(x)e−x

2/2eixξ dx.

Expanding eixξ as a power-series, we would like to use Fubini’s theorem to exchange integrals;
then we would have

φ(ξ) =

∫
f(x)e−x

2/2

∞∑
n=0

(iξ)n

n!
xn dx =

∞∑
n=0

(iξ)n

n!

∫
xnf(x)e−x

2/2 dx.

This last integral is
√

2π〈f, xn〉γ = 0 by assumption, and so we have φ(ξ) = 0 for all ξ; it follows
that the original function fe−x2/2 is 0 in L2(R), meaning that f is 0 in L2(γ) as claimed.

It remains to justify the application of Fubini’s theorem. We need to show that for each ξ the
function F (x, n) = (iξ)n

n!
xnf(x)e−x

2/2 is in L1(R × N) (where the measure on N is counting
measure). To prove this, note that∫

R

∑
n

|F (x, n)| dx =

∫
R

∑
n

|xξ|n

n!
|f(x)|e−x2/2 dx =

∫
R
|f(x)|e−

1
2
x2+|ξ||x| dx.

Write the integrand as
|f(x)|e−

1
4
x2 · e−

1
4
x2+|ξ||x|.

By the Cauchy-Schwartz inequality, then, we have∫
R

∑
n

|F (x, n)| dx ≤
(∫

(|f(x)|e−
1
4
x2)2 dx

)1/2(∫
R
(e−

1
4
x2+|ξ||x|)2 dx

)1/2

.

The first factor is
∫
f(x)2e−x

2/2 dx =
√

2π‖f‖2
γ < ∞ by assumption. The second factor is also

finite (by an elementary change of variables, it can be calculated exactly). This concludes the
proof. �

15.2. The Vandermonde determinant and the Hermite kernel. Since the Hermite polynomial
Hn is monic and has degree n, we can use Corollary 15.2 to express the Vandermonde determinant
as

∆(λ1, . . . , λn) = det


H0(λ1) H0(λ2) · · · H0(λn)
H1(λ1) H1(λ2) · · · H1(λn)

...
... . . . ...

Hn−1(λ1) Hn−1(λ2) · · · Hn−1(λn)

 = det[Hi−1(λj)]
n
i,j=1.

Why would we want to do so? Well, following Equation 14.12, we can then write the law Pn of
unordered eigenvalues of a(n unscaled) GUEn as

Pn(L) =
(2π)−n/2

n!
Cn

∫
L

e−
1
2

(λ21+···+λ2n)(det[Hi−1(λj)]
n
i,j=1)2 dλ1 · · · dλn. (15.5)
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Since the polynomials Hi−1(λj) are orthogonal with respect to the density e−
1
2
λ2j , we will find

many cancellations to simplify the form of this law. First, let us reinterpret a little further.

Definition 15.9. The Hermite functions (also known as harmonic oscillator wave functions) Ψn

are defined by

Ψn(λ) = (2π)−1/4e−
1
4
λ2Ĥn(λ) = (2π)−1/4(n!)−1/2e−

1
4
λ2Hn(λ).

The orthogonality relations for the Hermite polynomials with respect to the Gaussian measure γ
(Proposition 15.3(b)) translate into orthogonality relations for the Hermite functions with respect
to Lebesgue measure. Indeed:∫

Ψn(λ)Ψm(λ) dλ = (2π)−1/2 1√
n!m!

∫
e−

1
2
λ2Hn(λ)Hm(λ) dλ =

1√
n!m!

∫
Hn(λ)Hm(λ) γ(dλ)

and by the aforementioned proposition this equals δnm.

Regarding Equation 15.5, by bringing terms inside the square of the determinant, we can express
the density succinctly in terms of the Hermite functions Ψn. Indeed, consider the determinant

det[Ψi−1(λj)]
n
i,j=1 = det

[
(2π)−1/4((i− 1)!)−1/2e−

1
4
λ2jHi−1(λj)

]n
i,j=1

.

If we (Laplace) expand this determinant (cf. Equation 15.1), each term in the sum over the sym-
metric group contains exactly one element from each row and column; hence we can factor out a
common factor as follows:

det[Ψi−1(λj)]
n
i,j=1 = (2π)−n/4

n∏
i=1

((i− 1)!)−1/2e−
1
4

(λ21+···+λ2n) det[Hi−1(λj)]
n
i,j=1.

Squaring, we see that the density of the law Pn can be written as

(2π)−n/2

n!
e−

1
2

(λ21+···+λ2n)(det[Hi−1(λj)]
n
i,j=1)2

=
1!2! · · · (n− 1)!

n!

(
det[Ψi−1(λj)]

n
i,j=1

)2

Thus, the the law of unordered eigenvalues is

Pn(L) =
1!2! · · · (n− 1)!

n!
Cn

∫
L

(
det[Ψi−1(λj)]

n
i,j=1

)2
dλ1 · · · dλn.

Now, for this squared determinant, let Vij = Ψi−1(λj). Then we have

(detV )2 = detV > detV = det(V >V )

and the entries of V >V are

[V >V ]ij =
n∑
k=1

VkiVjk =
n∑
k=1

Ψk−1(λj)Ψk−1(λj).

Definition 15.10. The nth Hermite kernel is the function Kn : R2 → R

Kn(x, y) =
n−1∑
k=0

Ψk(x)Ψk(y).
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So, the density of the law Pn is (up to the constant cn the determinant of the Hermite kernel:

Pn(L) =
1!2! · · · (n− 1)!

n!
Cn

∫
L

det[Kn(λi, λj)]
n
i,j=1 dλ1 · · · dλn. (15.6)

15.3. Determinants of reproducing kernels. Equation 15.6 is extremely useful, becuase of the
following property of the Hermite kernels Kn.

Lemma 15.11. For any n, the kernel Kn is L2 in each variable, and it is a reproducing kernel∫
Kn(x, u)Kn(u, y) du = Kn(x, y).

Proof. By definition Kn(x, y) is a polynomial in (x, y) times e−
1
4

(x2+y2), which is easily seen to be
in Lp of each variable for all p. For the reproducing kernel identity,∫

Kn(x, u)Kn(u, y) du =

∫ n−1∑
k=0

Ψk(x)Ψk(u) ·
n−1∑
`=0

Ψ`(u)Ψ`(y) du

=
∑

1≤k,`<n

Ψk(x)Ψ`(y)

∫
Ψk(u)Ψ`(u) du

=
∑

1≤k,`<n

Ψk(x)Ψ`(y)δk` =
n−1∑
k=0

Ψk(x)Ψk(y) = Kn(x, y),

where the third equality is the orthogonality relation for the Hermite functions. �

This reproducing property has many wonderful consequences. For our purposes, the following
lemma is the most interesting one.

Lemma 15.12. Let K : R2 → R be a reproducing kernel, where the diagonal x 7→ K(x, x) is
integrable, and let d =

∫
K(x, x) dx. Then∫

det[K(λi, λj)]
n
i,j=1 dλn = (d− n+ 1) det[K(λi, λj)]

n−1
i,j=1.

Proof. We use the Laplace expansion of the determinant.

det[K(λi, λj)]
n
i,j=1 =

∑
σ∈Sn

(−1)|σ|K(λ1, λσ(1)) · · ·K(λn, λσ(n)).

Integrating against λn, let us reorder the sum according to where σ maps n:∫
det[K(λi, λj)]

n
i,j=1 dλn =

n∑
k=1

∑
σ∈Sn
σ(n)=k

(−1)|σ|
∫
K(λ1, λσ(1)) · · ·K(λn, λσ(n)) dλn.

When k = n, then the variable λn only appears (twice) in the final K, and we have∑
σ∈Sn
σ(n)=n

(−1)|σ|K(λ1, λσ(1)) · · ·K(λn−1, λσ(n−1))

∫
K(λn, λn) dλn.

The integral is, by definition, d; the remaining sum can be reindexed by permutations in Sn−1

since any permutation in Sn that fixes n is just a permutation in Sn−1 together with this fixed point;
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moreover, removing the fixed point does not affect |σ|, and so we have (from the Laplace expansion
again)∑

σ∈Sn
σ(n)=n

(−1)|σ|K(λ1, λσ(1)) · · ·K(λn−1, λσ(n−1))

∫
K(λn, λn) dλn = d · det[K(λi, λj)]

n−1
i,j=1.

For the remaining terms, if σ(n) = k < n, then we also have for some j < n that σ(j) = n. Hence
there are two terms inside the integral:∑

σ∈Sn
σ(n)=k

(−1)|σ|K(λ1, λσ(1)) · · ·K(λj−1, λσ(j−1))K(λj+1, λσ(j+1)) · · ·K(λn−1, λσ(n−1))

×
∫
K(λj, λn)K(λn, λk) dλn.

By the reproducing kernel property, the integral is simply K(λj, λk). The remaining terms are
then indexed by a permutation which sends j to k (rather than n), and fixed n; that is, setting
σ̂ = (n, k) · σ, ∑

σ∈Sn
σ(n)=n

(−1)|σ̂|K(λ1, λσ̂(1)) · · ·K(λn−1, λσ̂(n−1)).

Clearly (−1)|σ̂| = −(−1)|σ|, and so reversing the Laplace expansion again, each one of these
terms (as k ranges from 1 to n− 1) is equal to − det[K(λi, λj)]

n−1
i,j=1. Adding up yields the desired

statement. �

By induction on the lemma, we then have the L1 norm of the nth determinant is∫
det[K(λi, λj)]

n
i,j=1 dλ1 · · · dλn = (d− n+ 1)(d− n+ 2) · · · d.

Now, taking K = Kn to be the nth Hermite kernel, since the Hermite functions Ψk are normalized
in L2, we have

d =

∫
Kn(x, x) dx =

∫ n−1∑
k=0

Ψk(x)2 dx = n.

Hence, we have ∫
det[Kn(λi, λj)]

n
i,j=1 dλ1 · · · dλn = n!

Thus, taking L = Rn in Equation 15.6 for the law Pn, we can finally evaluate the constant: we
have

1 = Pn(Rn) =
1!2! · · · (n− 1)!

n!
Cn

∫
det[Kn(λi, λj)]

n
i,j=1 dλ1 · · · dλn =

1!2! · · · (n− 1)!

n!
Cn · n!

and so we conclude that Cn = 1
1!2!···(n−1)!

. In other words, the full and final form of the law of
unordered eigenvalues of a GUEn is

Pn(L) =
1

n!

∫
L

det[Kn(λi, λj)]
n
i,j=1 dλ1 · · · dλn. (15.7)
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15.4. The averaged empirical eigenvalue distribution. The determinantal structure and repro-
ducing kernels of the last section give us a lot more than just an elegant way to evaluate the normal-
ization coefficient for the joint law of eigenvalues. In fact, we can use Equation 15.7, together with
Lemma 15.12 to explicitly evaluate the averaged empirical eigenvalue distribution of a GUEn.
Let µn denote the empirical eigenvalue distribution, and let µ̄n denote its average: that is, for test
functions f on R: ∫

f dµ̄n = E
(∫

f dµn

)
=

1

n

n∑
j=1

E(f(λ̃j))

where λ̃j are the (random) eigenvalues of the GUEn. The law Pn (or more precisely its j-
marginal) allows us to calculate this expectation. To save notation, let us consider the case j = 1.
Then we have

E(f(λ̃1)) =

∫
Rn
f(λ1) dPn(λ1, . . . , λn)

=
1

n!

∫
Rn
f(λ1) det[Kn(λi, λj)]

n
i,j=1 dλ1 · · · dλn.

Integrating in turn over each of the variables from λn down to λ2, induction on Lemma 15.12
(noting that d = n for the kernel K = Kn) yields

1

n!

∫
Rn
f(λ1) det[Kn(λi, λj)]

n
i,j=1 dλ1 · · · dλn =

(n− 1)!

n!

∫
R
f(λ1) det[Kn(λi, λj)]

1
i,j=1 dλ1.

This determinant is, of course, just the single entry Kn(λ1, λ1). Thus, we have

E(f(λ1)) =
1

n

∫
R
f(λ)Kn(λ, λ) dλ.

We have thus identified the marginal distribution of the lowest eigenvalue! Almost. This is the
marginal of the law of unordered eigenvalues, so what we have here is just the average of all
eigenvalues. This is born out by doing the calculation again for each λ̃j , and doing the induction
over all variables other than j. Thus, on averaging, we have∫

f dµ̄n =
1

n

∫
R
f(λ)Kn(λ, λ) dλ. (15.8)

This shows that µ̄n has a density: the diagonal of the kernel 1
n
Kn. Actually, it pays to return to the

Hermite polynomials rather than the Hermite functions here. Note that Kn(λ, λ) =
∑n−1

k=0 Ψk(λ)2,
and we have

Ψk(λ) = (2π)−1/4e−
1
4
λ2Ĥk(λ).

Thus, we can rewrite Equation 15.8 as∫
f dµ̄n =

1

n

∫
R
f(λ)(2π)−1/2

n−1∑
k=0

Ĥk(λ)2e−λ
2/2 dλ

and so µ̄n has a density with respect to the Gaussian measure. We state this as a theorem.

Theorem 15.13. Let Zn be a GUEn, and let µn be the empirical eigenvalue distribution of
√
nZn.

Then its average µ̄n has the density

dµ̄n =
1

n

n−1∑
k=0

Ĥk(λ)2 γ(dλ)
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with respect to the Gaussian measure γ(dλ) = (2π)−1/2e−
1
2
λ2 dλ. Here Ĥk are theL2(γ)-normalized

Hermite polynomials.

FIGURE 6. The averaged empirical eigenvalue distributions µ̄9 and µ̄25.

These measures have full support, but it is clear from the pictures that they are essentially 0
outside an interval very close to [−2

√
n, 2
√
n]. The empirical law of eigenvalues of Zn (scaled) is,

of course, the rescaling.

Exercise 15.13.1. The density of µ̄n is 1
n
Kn(λ, λ). Show that if νn is the empirical eigenvalue

distribution of Zn (scaled), then ν̄n has density n−1/2Kn(n1/2λ, n1/2λ).



94 TODD KEMP

16. FLUCTUATIONS OF THE LARGEST EIGENVALUE OF GUEn, AND HYPERCONTRACTIVITY

We now have a completely explicit formula for the density of the averaged empirical eigenvalue
distribution of a GUEn (cf. Theorem 15.13). We will now use it to greatly improve our knowledge
of the fluctuations of the largest eigenvalue in the GUEn case. Recall we have shown that, in
general (at least for finite-moment Wigner matrices), we know that the fluctiations of the largest
eigenvalue around its mean 2 are at most O(n−1/6) (cf. Theorem 6.2). The actual fluctuations are
much smaller – they are O(n−2/3). We will prove this for the GUEn in two ways (one slightly
sharper than the other).

16.1. Lp-norms of Hermite polynomials. The law µ̄n from Theorem 15.13 gives the explicit
density of eigenvalues for the unnormalized GUEn

√
nZn. We are, of course, interested in the

normalized Zn. One can write down the explicit density of eigenvalues of Zn (cf. Exercise 15.13.1);
this just amounts to the fact that, if we denote νn and ν̄n as the empirical eigenvalue distribution
for Zn (and its average), then for any test function f∫

R
f dν̄n =

∫
R
f

(
x√
n

)
µ̄(dx) =

∫
R
f

(
x√
n

)
1

n

n−1∑
k=0

Ĥk(x)2 γ(dx). (16.1)

We are interested in the fluctuations of the largest eigenvalue λn(Zn) around 2; that is:

P(λn(Zn) ≥ 2 + δ) = E
[
1[2+,.∞)(λn(Zn))

]
We can make the following fairly blunt estimate: of course

1[2+,.∞)(λn(Zn)) ≤
n∑
j=1

1[2+,.∞)(λj(Zn))

and so

E
[
1[2+,.∞)(λn(Zn))

]
≤

n∑
j=1

E
[
1[2+,.∞)(λj(Zn))

]
= E

[∫
1[2+,.∞)(x)

n∑
j=1

δλj(Zn)(dx)

]

= E
[
n

∫
1[2+,.∞) dνn

]
= n

∫
1[2+,.∞) dν̄n.

Hence, using Equation 16.1, we can estimate

P(λn(Zn) ≥ 2 + δ) ≤ n

∫
1[2+,.∞)

(
x√
n

)
1

n

n−1∑
k=0

Ĥk(x)2 γ(dx)

=

∫ ∞
(2+δ)

√
n

n−1∑
k=0

Ĥk(x)2 γ(dx).

Exchanging the (finite) sum and the integral, our estimate is

P(λn(Zn) ≥ 2 + δ) ≤
n−1∑
k=0

∫ ∞
(2+δ)

√
n

Ĥ2
k dγ. (16.2)
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Remark 16.1. In fact, the blunt estimate we used above means that what we’re really estimating
here is the sum of the probabilities of all the eigenvalues being greater than 2 + δ. Heuristically,
we should expect this to be about n times as large as the desired probability; as we will see, this
estimate does result in a slightly non-optimal bound (though a much better one than we proved in
Theorem 6.2).

We must estimate the cut-off L2-norm of the Hermite polynomials, therefore. One approach is
to use Hölder’s inequality: for any p ≥ 1, with 1

p
+ 1

p′
= 1, we have∫ ∞

(2+δ)
√
n

Ĥ2
k dγ =

∫
1[(2+δ)

√
n,∞)Ĥ

2
k dγ ≤

(∫
(1[(2+δ)

√
n,∞))

p′ dγ

)1/p′ (∫
(Ĥ2

k)p dγ

)1/p

.

Since 1p
′

B = 1B for any set B, the first integral is just∫
(1[(2+δ)

√
n,∞))

p′ dγ = γ
(

[(2 + δ)
√
n,∞)

)
which we can estimate by the Gaussian density itself. Note, for x ≥ 1, e−x2/2 ≤ xe−x

2/2, and so
for a ≥ 1 ∫ ∞

a

e−x
2/2 dx ≤

∫ ∞
a

xe−x
2/2 dx = −e−x2/2

∣∣∣∞
a

= e−a
2/2.

As such, since a = (2 + δ)
√
n > 1 for all n, we have

γ
(

[(2 + δ)
√
n,∞)

)
= (2π)−1/2

∫ ∞
(2+δ)

√
n

e−x
2/2 dx ≤ (2π)−1/2e−

1
2

(2+δ)2n.

We will drop the factor of (2π)−1/2 ≈ 0.399 and make the equivalent upper-estimate of e−
1
2

(2+δ)2n;
hence, Hölder’s inequality gives us∫ ∞

(2+δ)
√
n

Ĥ2
k dγ ≤ e−

1
2

(1− 1
p

)(2+δ)2n

(∫
|Ĥk|2p dγ

)1/p

. (16.3)

This leaves us with the decidedly harder task of estimating the L2p(γ) norm of the (normalized)
Hermite polynomials Ĥk. If we take p to be an integer, we could conceivably expand the integral
and evaluate it exactly as a sum and product of moments of the Gaussian. However, there is a
powerful, important tool which we can use instead to give very sharp estimates with no work: this
tool is called hypercontractivity.

16.2. Hypercontractivity. To begin this section, we remember a few constructs we have seen
in Section 10. The Ornstein-Uhlenbeck operator L = d2

dx2
− x d

dx
arises naturally in Gaussian

integration by parts: for sufficiently smooth and integrable f, g,∫
f ′g′ dγ = −

∫
Lf · g dγ.

The Ornstein-Uhlenbeck heat equation is the PDE ∂tu = Lu. The unique solution with given
initial condition u0 = f for some f ∈ L2(γ) is given by the Mehler kernel Ptf (cf. Equation 10.3).
In fact, the action of Pt on the Hermite polynomials is clear just from the equation: by Corollary
15.6, LHk = −kHk. Thus, if we define u(t, x) = e−ktHk(x), we have

∂

∂t
u(t, x) = −ke−ktHk(x); Lu(t, x) = e−ktLHk(x) = −ke−ktHk(t, x).
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These are equal, since since this u(t, x) is continuous in t and u(0, x) = Hk(x), we see that

PtHk = e−ktHk. (16.4)

The semigroup Pt was introduced to aid in the proof of the logarithmic Sobolev inequality, which
states that for f sufficiently smooth and non-negative in L2(γ),∫

f 2 log f 2 dγ −
∫
f 2 dγ · log

∫
f 2 dγ ≤ 2

∫
(f ′)2 dγ.

Before we proceed, let us state and prove an immediate corollary: the Lq-log-Sobolev inequality.
We state it here in terms of a function that need not be ≥ 0.

Lemma 16.2. Let q > 2, and let u ∈ Lq(γ) be at least C2. Then∫
|u|q log |u|q dγ −

∫
|u|q dγ · log

∫
|u|q dγ ≤ − q2

2(q − 1)

∫
(sgn u)|u|q−1Ludγ

where (sgn u) = +1 if u ≥ 0 and = −1 if u < 0.

Proof. Let f = |u|q/2. Then f sufficiently smooth (since q/2 > 1), non-negative, and in L2. Thus,
by the Gaussian log-Sobolev inequality, we have∫

|u|q log |u|q dγ −
∫
|u|q dγ · log

∫
|u|q dγ =

∫
f 2 log f 2 dγ −

∫
f 2 dγ · log

∫
f 2 dγ

≤ 2

∫
(f ′)2 dγ.

Since u ∈ C2 ⊂ C1, |u| is Lipschiptz and therefore is differentiable almost everywhere. On the
set where it is differentiable, we have f ′ = (|u|q/2)′ = q

2
|u|q/2−1|u|′. Hence∫

|u|q log |u|q dγ −
∫
|u|q dγ · log

∫
|u|q dγ ≤ 2

∫ (q
2

)2

|u|q−2 · (|u|′)2 dγ.

Rewriting |u|q−2|u|′ = 1
q−1

(|u|q−1)′, the right-hand-side is

q2

2(q − 1)

∫
(|u|q−1)′|u|′ dγ = − q2

2(q − 1)

∫
|u|q−1L|u| dγ

where the euality follows from the definition of L (Gaussian integration by parts). Finally, on the
set where u ≥ 0 we have |u| = u so L|u| = Lu; on the set where u < 0, |u| = −u so L|u| = −Lu
there. All told, on the full-measure set where |u|′ is differentiable, L|u| = (sgn u)Lu, completing
the proof. �

In fact, the log-Sobolev inequality and its Lq-generalization are the “infinitesimal form” of a
family of norm-estimates known as hypercontractivity. We already showed (in Section 10) that Pt
is a contraction lf L2(γ) for all t ≥ 0. In fact, Pt is very smoothing: it is actually a contraction
from L2 → Lq for sufficiently large t. We will prove a weak version of this theorem here that will
suit our needs.

Theorem 16.3 (Hypercontractivity). Let f be polynomial on R, and let q ≥ 2. Then

‖Ptf‖Lq(γ) ≤ ‖f‖L2(γ) for t ≥ 1

2
log(q − 1).



MATH 247A: INTRODUCTION TO RANDOM MATRIX THEORY 97

Remark 16.4. The full theorem has two parameters 1 ≤ p ≤ q < ∞; the statement is that
‖Ptf‖Lq(γ) ≤ ‖f‖Lp(γ) for all f ∈ Lp(γ), whenever t ≥ 1

2
log q−1

p−1
. This theorem is due to E.

Nelson, proved in this form in 1973. Nelson’s proof did not involve the log-Sobolev inequality.
Indeed, L. Gross discovered the log-Sobolev inequality as an equivalent form of hypercontractiv-
ity. The LSI has been discovered by at least two others around the same time (or slightly before);
the reason Gross is (rightly) given much of the credit is his realization that it is equivalent to
hypercontractivity, which is the source of much of its use in analysis and probability.

Proof. Let tc(q) = 1
2

log(q − 1) be the contraction time. It is enough to prove the theorem for
t = tc(q), rather than for all t ≥ tc(q). The reason is that Pt is a semigroup: that is Pt+s = PtPs,
which follows directly from uniqueness of the solution of the OU-heat equation with a given initial
condition. Thus, provided the theorem holds at t = tc(q), we have for any t > tc(q)

‖Ptf‖Lq(γ) = ‖Ptc(q)Pt−tc(q)f‖Lq(γ) ≤ ‖Pt−tc(q)f‖L2(γ).

By Corollary 10.8, this last quantity is ≤ ‖f‖L2(γ) since t − tc(q) > 0 and thus Pt−tc(q) is an
L2(γ)-contraction.

So, we must show that, for any polynomial f , ‖Ptc(q)f‖Lq(γ) ≤ ‖f‖L2(γ) for all q ≥ 2. It is
beneficial express this relationship in terms of varying t instead of varying q. So set qc(t) = 1+e2t,
so that qc(tc(q)) = q. Now set

α(t) = ‖Ptf‖Lqc(t)(γ). (16.5)

Since tc(0) = 2, and therefore α(0) = ‖P0f‖L2(γ) = ‖f‖L2(γ), what we need to prove is that
α(t) ≤ α(0) for t ≥ 0. In fact, we will show that α is a non-increasing function of t ≥ 0. We do
so by finding its derivative. By definition

α(t)qc(t) =

∫
|Ptf(x)|qc(t) γ(dx).

We would like to differentiate under the integral; to do so requires the use of the dominated con-
vergence theorem (uniformly in t). First note that Ptf is C∞ since Pt has a smooth kernel; thus,
since qc(t) ≥ 2, the integrand |Ptf |qc(t) is at least C2. Moreover, the following bound is useful: for
any polynomial f of degree n, and for any t0 > 0, there are constants A,B, α > 0 such that for
0 ≤ t ≤ t0

∂

∂t
|Ptf(x)|qc(t) ≤ A|x|αn +B. (16.6)

(The proof of Equation 16.6 is reserved to a lemma following this proof.) Since polynomials are
in L1(γ), we have a uniform dominating function for the derivative on (0, t0), and hence it follows
that

d

dt
α(t)qc(t) =

∫
∂

∂t
|Ptf(x)|qc(t) γ(dx) (16.7)

for t < t0; since t0 was chosen arbitrarily, this formula holds for all t > 0. We now calculate
this partial derivative. For brevity, denote ut = Ptf ; note that ∂tut = Lut. By logarithmic



98 TODD KEMP

differentiation
∂

∂t
|ut|qc(t) = u

qc(t)
t

(
q′c(t) log |ut|+ qc(t)

∂

∂t
log |ut|

)
= q′c(t)|ut|q(t) log |ut|+ qc(t)|ut|qc(t) ·

1

ut

∂

∂t
ut

= q′c(t)|ut|qc(t) log |ut|+ qc(t)
|ut|qc(t)

ut
Lut.

Combining this with Equation 16.7, we have

d

dt
α(t)qc(t) = q′c(t)

∫
|ut|qc(t) log |ut| dγ + qc(t)

∫
(sgn ut)|ut|qc(t)−1Lut dγ (16.8)

where (sgn ut) = 1 if ut ≥ 0 and = −1 if ut < 0. Now, we can calculate α′(t) using logarithmic
differentiation on the outside: let β(t) = α(t)qc(t). We have shown that β is differentiable (and
strictly positive); since 2 ≤ qc(t) < ∞, the function α(t) = β(t)1/qc(t) is also differentiable, and
we have

α′(t) =
d

dt
e

1
qc(t)

log β(t) = α(t)

[
− q′c(t)

qc(t)2
log β(t) +

1

qc(t)

β′(t)

β(t)

]
.

Noting that α(t) = β(t)1/qc(t), multiplying both sides by α(t)qc(t)−1 yields

(α(t)qc(t)−1) · α′(t) = − q′c(t)

qc(t)2
β(t) log β(t) +

1

qc(t)
β′(t). (16.9)

By definition, β(t) = α(t)qc(t) =
∫
|ut|qc(t) dγ. Thus, combining Equations 16.8 and 16.9, we find

that (α(t)qc(t)−1) · α′(t) is equal to

− q′c(t)

qc(t)2

∫
|ut|qc(t) dγ·log

∫
|ut|qc(t) dγ+

q′c(t)

qc(t)

∫
|ut|qc(t) log |ut| dγ+

∫
(sgn ut)|ut|qc(t)−1Lut dγ.

Writing the second term in terms of log |ut|qc(t) (and so factoring out an additional 1
qc(t)

), we can
thence rewrite this to say that (α(t)qc(t)−1) · α′(t) is equal to

q′c(t)

qc(t)2

[∫
|ut|qc(t) log |ut|qc(t) dγ −

∫
|ut|qc(t) dγ · log

∫
|ut|qc(t) dγ

]
+

∫
(sgn ut)|ut|qc(t)−1Lut dγ.

Finally, note that q′c(t) = d
dt

(1 + e2t) = 2e2t = 2(qc(t) − 1). The Lq-log-Sobolev inequality (cf.
Lemma 16.2) asserts that this is≤ 0. Since α(t)qc(t)−1 > 0, this proves that α′(t) ≤ 0 for all t > 0,
as desired. �

Lemma 16.5. Let f be a polynomial of degree n, and let t0 > 0. There are constants A,B, α > 0
such that for 0 ≤ t ≤ t0

∂

∂t
|Ptf(x)|qc(t) ≤ A|x|αn +B. (16.10)

Proof. Since f is a polynomial of degree n, we can expand it as a linear combination of Hermite
polynomials f =

∑n
k=0 akHk. From Equation 16.4, therefore

Ptf(x) =
n∑
k=0

ake
−ktHk(x).
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Therefore, we have

β(t, x) ≡ (Pt|f |(x))qc(t) =

∣∣∣∣∣
n∑
k=0

ake
−ktHk(x)

∣∣∣∣∣
qc(t)

.

It is convenient to write this as

β(t, x) =

( n∑
k=0

ake
−ktHk(x)

)2
qc(t)/2 = p(e−t, x)qc(t)/2.

The function p(t, x) is a positive polynomial in both variables. Since the exponent qc(t)/2 =
(1+e2t)/2 > 1 for t > 0, this functon is differentiable for t > 0, and by logarithmic differentiation

∂

∂t
β(t, x) = p(e−t, x)qc(t)/2

[
q′c(t)

2
log p(e−t, x) +

qc(t)

2

∂tp(e
−t, x)

p(e−t, x)

]
(16.11)

=
q′c(t)

2
p(e−t, x)qc(t)/2 log p(e−t, x)− e−t qc(t)

2
p(e−t, x)qc(t)/2−1p,1(e−t, x), (16.12)

where p,1 denotes the partial derivative of p( · , x) in the first slot. Now, there are constants at and
bt so that p(e−t, x) ≤ atx

n + bt, where the constants are continuous in t (indeed they can be taken
as polynomials in e−t). Let us consider the two terms in Equation 16.12 separately.

• The function g1(t, x) = p(e−t, x)qc(t)/2 log p(e−t, x) = ϕt(p(e
−t, x)) whereϕt(x) = xqc(t)/2 log x.

Elementary calculus shows that |ϕt(x)| ≤ max{1, xqc(t)/2+1} for x ≥ 0 (indeed, the cut-off
can be taken as height 1

eq
rather than the overestimate 1), and so

|g1(t, x)| ≤ max
{

1, p(e−t, x)qc(t)/2
}
≤ max

{
1, (atx

n + bt)
qc(t)/2+1

}
.

• The derivative p,1(e−t, x) satisfies a similar polynomial growth bound |p,1(e−t, x)| ≤ ctx
n+

dt for constants ct and dt that are continuous in t. Hence

g2(t, x) = p(e−t, x)qc(t)/2−1p,1(e−t, x) ≤ (atx
n + bt)

qc(t)/2−1(ctx
n + dt).

Combining these with the terms in Equation 16.12, and noting that the coefficients q′c(t)/2 and
e−tqc(t)/2 are continuous in t, it follows that there are constants At and Bt, continuous in t, such
that ∣∣∣∣ ∂∂tβ(t, x)

∣∣∣∣ ≤ Atx
(qc(t)/2+1)n +Bt.

Now, fix t0 > 0. Because At and Bt are continuous in t, A = supt≤t0 At and B = supt≤t0 Bt are
finite. Since qc(t) = 1 + e2t is an increasing function of t, taking α = (qc(t0)/2 + 1) yields the
desired inequality. �

Remark 16.6. The only place where the assumption that f is a polynomial came into play in the
proof the the Hypercontractivity theorem is through Lemma 16.5 – we need it only to justify the
differentiation inside the integral. One can avoid this by making appropriate approximations: first
one can assume f ≥ 0 since, in general, |Ptf | ≤ Pt|f |; in fact, by taking |f | + ε instead and
letting ε ↓ 0 at the very end of the proof, it is sufficient to assume that f ≥ ε. In this case,
the partial derivative computed above Equation 16.8 can be seen to be integrable for each t; then
very careful limiting arguments (not using the dominated convergence theorem directly but instead
using properties of the semigroup Pt to prove uniform integrability) show that one can differentiate
inside the integral. The rest of the proof follows precisely as above (with no need to deal with the
sgn term since all functions involved are strictly positive).
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Alternatively, as we showed in Proposition 15.8, polynomials are dense in L2(γ); but this is not
enough to extend the theorem as we proved. It is also necessary to show that one can choose a
sequence of polynomials fn converging to f in L2(γ) in such a way that Ptfn → Ptf in Lq(γ).
This is true, but also requires quite a delicate argument.

16.3. (Almost) optimal non-asymptotic bounds on the largest eigenvalue. Returning now to
Equations 16.2 and 16.3, we saw that the largest eigenvalue λn(Zn) of a GUEn satisfies the tail
bound

P(λn(Zn) ≥ 2 + δ) ≤
n−1∑
k=0

e−
1
2

(1− 1
p

)(2+δ)2n

(∫
|Ĥk|2p dγ

)1/p

for any p ≥ 1. We will now use hypercontractivity to estimate this L2p-norm. From Equation 16.4,
PtĤk = e−ktĤk for any t ≥ 0. Thus∫

|Ĥk|2p dγ =

∫
|ektPtĤk|2p dγ = e2pkt‖PtĤk‖2p

L2p(γ).

By the hypercontractivity theorem

‖PtĤk‖L2p(γ) ≤ ‖Ĥk‖L2(γ) = 1

provided that t ≥ tc(2p) = 1
2

log(2p− 1). Hence, we have

P(λn(Zn) ≥ 2 + δ) ≤ e−
1
2

(1− 1
p

)(2+δ)2n
n−1∑
k=0

e2kt for t ≥ tc(2p).

We now optimize over t and p. For fixed p, the right-hand-side increases (exponentially) with t, so
we should take t = tc(2p) (the smallest t for which the estimate holds). So we have

P(λn(Zn) ≥ 2 + δ) ≤ e−
1
2

(1− 1
p

)(2+δ)2n
n−1∑
k=0

e2ktc(2p) = e−
1
2

(1− 1
p

)(2+δ)2n
n−1∑
k=0

(2p− 1)k.

The geometric sum is (2p−1)n−1
2(p−1)

≤ 1
2(p−1)

(2p− 1)n. Hence, we have the estimate

P(λn(Zn) ≥ 2 + δ) ≤ 1

2(p− 1)
e−

1
2

(1− 1
p

)(2+δ)2n+log(2p−1)n =
1

2(p− 1)
eFδ(p)·n (16.13)

where
Fδ(p) = −1

2

(
1− 1

p

)
(2 + δ)2 + log(2p− 1).

We will optimize Fδ; this may not produce the optimal estimate for Equation 16.13, but it will
give is a very tight bound as we will shortly see. Since Fδ(1) = 0 while limp→∞ Fδ(p) = ∞, the
minimum value of the smooth function Fδ on [1,∞) is either 0 or a negative value achieved at a
critical point. Critical points occur when

0 = F ′δ(p) = − 1

2p2
(2 + δ)2 +

2

2p− 1

which is a quadratic equation with solutions

p±(δ) =
1

4
(2 + δ)

[
2 + δ ±

√
δ2 + 4δ

]
.
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One can easily check that p−(δ) < 1 for ¿.0, and so we must choose p+(δ). That is: we will use the
estimate

P(λn(Zn) ≥ 2 + δ) ≤ 1

2(p+(δ)− 1)
eFδ(p+(δ))·n. (16.14)

Lemma 16.7. For all ¿. 0,
1

2(p+(δ)− 1)
≤ 1

2
δ−1/2.

Proof. Take =. ε2, and do the Taylor expansion of the function p+. The (Maple assisted) result is

p+(ε2) = 1 + ε+ ε2 +O(ε3).

Hence 2(p+(δ) − 1) ≥ 2δ1/2 for all sufficiently small δ; the statement for all δ is proven by
calculating the derivative of ε 7→ ε−1(p+(ε2)− 1) and showing that it is always positive. (This is a
laborious, but elementary, task.) �

Lemma 16.8. For all ¿. 0,

Fδ(p+(δ)) ≤ −4

3
δ3/2.

Proof. Again, do the Taylor expansion in the variable =. ε2. We have

Fε2(p+(ε2)) = −4

3
ε3 − 1

10
ε5 +O(ε7).

This proves the result for all sufficiently small ε and thus sufficiently small δ; the statement for all
δ can be proven by calculating the derivative of ε 7→ ε−3Fε2(p+(ε2)) and showing that it is always
negative. (Again, this is laborious but elementary.) �

Combining Lemmas 16.7 and 16.8 with Equation 16.14, we finally arrive at the main theorem.

Theorem 16.9 (Ledoux’s estimate). Let Zn be a GUEn, with largest eigenvalue λn(Zn). Let ¿. 0.
Then

P(λn(Zn) ≥ 2 + δ) ≤ 1

2
δ−1/2e−

4
3
δ3/2n. (16.15)

Theorem 16.9 shows that the order of fluctuations of the largest eigenvalue above its limit 2 is
at most about n−2/3. Indeed, fix α > 0, and compute from Equation 16.15 that

P(n2/3−α(λn(Zn)− 2) ≥ t) = P(λn ≥ 2 + n−2/3+αt)

≤ 1

2
(n−2/3+αt)−1/2e−

4
3

(n−2/3+αt)3/2n

=
1

2
n2/3−α/2t−1/2e−

4
3

(nαt)3/2

and this tends to 0 as n → ∞. With α = 0, though, the right hands side is 1
2
n2/3t−1/2e−

4
3
t3/2 ,

which blows up at a polynomial rate. (Note this is only an upper-bound.)

Theorem 16.9 thus dramatically improves the bound on the fluctuations of the largest eigenvalue
above its mean from Theorem 6.2, where we showed the order of fluctuations is at most n−1/6.
Mind you: this result held for arbitrary Wigner matrices (with finite moments), and the present
result is only for the GUEn. It is widely conjectured that the n−2/3 rate is universal as well; to
date, this is only known for Wigner matrices whose entries have symmetric distributions (cf. the
incredibly clever work of Soshnikov).



102 TODD KEMP

Exercise 16.9.1. With the above estimates, show that in fact the fluctuations of λn(Zn) above 2 are
less than order n−2/3 log(n)2/3+α for any α > 0.

16.4. The Harer-Zagier recursion, and optimal tail bounds. Aside from the polynomial factor
δ−1/2 in Equation 16.15, Theorem 16.9 provides the optimal rate of fluctuations of the largest
eigenvalue of a GUEn. To get rid of this polynomial factor, the best known technique is to use
the moment method we used in Section 6. In this case, using the explicit density for µ̄n, we can
calculate the moments exactly. Indeed, they satisfy a recursion relation which was discovered by
Harer and Zagier in 1986. It is best stated in terms of moments renormalized by Catalan numbers
(as one might expect from the limiting distribution). To derive this recursion, we first develop an
explicit formula for the (exponential) moment generating function of the density of eigenvalues.

Proposition 16.10. Let ν̄n be the averaged empirical eigenvalue distribution of a (normalized)
GUEN . Then for any z ∈ C,∫

R
ezt ν̄n(dt) = ez

2/2n

n−1∑
k=0

Ck
(2k)!

(n− 1) · · · (n− k)

nk
z2k

where Ck = 1
k+1

(
2k
k

)
is the Catalan number.

Remark 16.11. Note that this proposition gives yet one more proof of Wigner’s semicircle law
for the GUEn. As n → ∞, the above function clearly converges (uniformly) to the power series∑∞

k=0
Ck

(2k)!
z2k, which is the (exponential) moment generating function of Wigner’s law.

Proof. From Equation 15.8, we have∫
R
ezt ν̄n(dt) =

∫
R
ezt/

√
n µ̄n(dt) =

1

n

∫
R
ezt/

√
nKn(t, t) dt (16.16)

where Kn(t, t) =
∑n−1

k=0 Ψk(t)
2 with Ψk(t) = (2π)−1/4e−

1
4
t2Ĥk(t) the Hermite functions. In fact,

one can write this sum only in terms of Ψn and Ψn−1 and their derivatives, because of the following
lemma.

Lemma 16.12. For any n ≥ 1, and any x 6= y,
n−1∑
k=0

Ĥk(x)Ĥk(y) =
√
n
Ĥn(x)Ĥn−1(y)− Ĥn−1(x)Ĥn(y)

x− y
. (16.17)

The proof of the lemma can bee seen by integrating either side of the desired equality against the
density (x − y)e−x

2/2−y2/2; using the orthogonality relations of the Hermite polynomials, the two
integrals can be easily shown to be equal for any n. It then follows that the functions themselves
are equal, since Ĥk form a basis for polynomials (so one can recover the polynomial functions
from their inner-products with Gaussians; the corresponding integrals are sums of products of
such inner-products).

Multiplying both sides of Equation 16.17 by (2π)−1/2e−
1
4

(x2+y2), we see that the same relation
holds with Ψk in place of Ĥk. Hence, taking the limit as y → x, one then has the following formula
for the diagonal:

1√
n
Kn(x, x) = lim

y→x

Ψn(x)Ψn−1(y)−Ψn−1(x)Ψn(y)

x− y
= Ψ′n(x)Ψn−1(x)−Ψ′n−1(x)Ψn(x).

(16.18)
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Differentiating, this gives
d

dx

1√
n
Kn(x, x) = Ψ′′n(x)Ψn−1(x)−Ψ′′n−1(x)Ψn(x) (16.19)

(because the cross-terms cancel). Now, the relation LĤn = −nĤn (where L = d2

dx2
− x d

dx
)

translates to a related second-order differential equation satisfied by Ψn; the reader can check that

Ψ′′n(x) =

(
−n− 1

2
+
x2

4

)
Ψn(x).

Combining with Equation 16.19, we see that the cross terms again cancel and all we are left with
is

d

dx

1√
n
Kn(x, x) = −Ψn(x)Ψn−1(x). (16.20)

Returning now to Equation 16.16, integrating by parts we then have∫
R
eztν̄n(dt) =

1

n

∫
R
ezt/

√
nKn(t, t) dt =

1

z

∫
R
ezt/

√
nΨn(t)Ψn−1(t) dt. (16.21)

To evaluate this integral, we use the handy relation H ′n = (n − 1)Hn−1. As a result, the Taylor
expansion of Hn(t+ ξ) (in ξ) is the usual Binomial expansion:

Hn(t+ ξ) =
n∑
k=0

(
n

k

)
Hn−k(t)ξ

k =
n∑
k=0

(
n

k

)
Hk(t)ξ

n−k. (16.22)

We use this in the moment generating function of the density ΨnΨn−1 as follows: taking ξ =
z/
√
n, ∫

R
eξtΨn(t)Ψn−1(t) dt = (2π)−1/2

∫
R
eξte−

1
2
t2Ĥn(t)Ĥn−1(t) dt

= (2π)−1/2eξ
2/2

∫
R
e−

1
2

(t−ξ)2Ĥn(t)Ĥn−1(t) dt

= (2π)−1/2eξ
2/2

∫
R
e−

1
2
t2Ĥn(t+ ξ)Ĥn−1(t+ ξ) dt

=
1√

n!(n− 1)!
eξ

2/2

∫
R
Hn(t+ ξ)Hn−1(t+ ξ) γ(dt)

where, in making the substitution in the above integral, we assume that ξ ∈ R (the result for com-
plex z =

√
nξ then follows by a standard analytic continuation argument). This has now become

an integral against Gaussian measure γ(dt) = (2π)−1/2e−t
2/2 dt. Substituting in the binomial

expansion of Equation 16.22, and using the orthogonality relations of the Hk, we have

√
n

n!
eξ

2/2

∫
R

n∑
k=0

(
n

k

)
Hk(t)ξ

n−k ·
n−1∑
`=0

(
n− 1

`

)
H`(t)ξ

n−1−` γ(dt)

=

√
n

n!
eξ

2/2

n∑
k=0

n−1∑
`=0

(
n

k

)(
n− 1

`

)
ξ2n−k−`−1

∫
R
Hk(t)H`(t) γ(dt)

=

√
n

n!
eξ

2/2

n−1∑
k=0

k!

(
n

k

)(
n− 1

k

)
ξ2(n−k)−1.
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Combining with Equation 16.21, substituting back ξ = z/
√
n, this gives∫

R
eztν̄n(dt) =

1

z
· ez2/2n

n−1∑
k=0

√
n
k!

n!

(
n

k

)(
n− 1

k

)(
z√
n

)2(n−k)−1

= ez
2/2n

n−1∑
k=0

k!

n!

(
n

k

)(
n− 1

k

)(
z2

n

)n−k−1

.

Reindexing the sum k 7→ n− k − 1 and simplifying yields

ez
2/2n

n−1∑
k=0

1

(k + 1)!

(
n− 1

k

)(
z2

n

)k
.

Since Ck
(2k)!

= 1
k!(k+1)!

and
(
n−1
k

)
= (n−1)···(n−k)

k!
, this proves the result.

�

Theorem 16.13 (Harer-Zagier recursion). The moment-generating function of the averaged em-
pirical eigenvalue distribution ν̄n of a (normalized) GUEn takes the form∫

R
ezt ν̄n(dt) =

∞∑
k=0

Ck
(2k)!

bnk z
2k

where Ck = 1
k+1

(
2k
k

)
is the Catalan number, and the coefficients bnk satisfy the recursion

bnk+1 = bnk +
k(k + 1)

4n2
bnk−1.

The proof of Theorem 16.13 is a matter of expanding the Taylor series of ez2/2n in Proposition
16.10 and comparing coefficients; the details are left to the generating-function-inclined reader.
The relevant data we need from the recursion is the following.

Corollary 16.14. The coefficients bnk in the Harer-Zagier recursion satisfy bnk ≤ ek
3/2n2

.

Proof. It is easy to check directly (from Proposition 16.10 and the definition of bnk in Theorem
16.13) that bn1 = 1 while bn1 = 1

n
[
(
n−1

2

)
+ 1] > 0. It follows from the recursion (which has positive

coefficients) that bn1 > 0 for all n. As such, the recursion again shows that bnk+1 ≥ bnk , and so we
may estimate from the recursion that

bnk+1 = bnk +
k(k + 1)

4n2
bnk−1 ≤

(
1 +

k(k + 1)

4n2

)
bnk ≤

(
1 +

k2

2n2

)
bnk .

That is, if we define ank by the recursion ank+1 = (1 + k2

2n2 )ank with an0 = bn0 = 1, then bnk ≤ ank for
all k, n. By induction, we have

ank =

(
1 +

12

2n2

)(
1 +

22

2n2

)
· · ·
(

1 +
(k − 1)2

2n2

)
≤
(

1 +
k2

2n2

)k
≤
(
e
k2

2n2

)k
= ek

3/2n2

.

�

Now, the definition of bnk in the exponential moment-generating function of ν̄n yields that the
even moments mn

2k =
∫
t2k dν̄n are given by mn

2k = Ckb
n
k . Hence, by Corollary 16.14, the even

moments are bounded by
mn

2k ≤ Cke
k3/2n2

.
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It is useful to have precise asymptotics for the Catalan numbers. Using Stirling’s formula, one can
check that

Ck ≤
4k

k3/2
√
π

where the ratio of the two sides tends to 1 as k →∞. Dropping the factor of π−1/2 < 1, we have

mn
2k ≤ 4kk−3/2ek

3/2n2

. (16.23)

We can thence proceed with the same method of moments we used in Section 6. That is: for any
positive integer k,

P(λmax ≥ 2 + ε) = P(λ2k
max ≥ (2 + ε)2k) ≤ P

(
n∑
j=1

λ2k
j ≥ (2 + ε)2k

)
≤ 1

(2 + ε)2k
E

(
n∑
j=1

λ2k
j

)
.

The expectation is precisely equal to (n times) the 2kth moment of the averaged empirical eigen-
value distribution ν̄n. Hence, utilizing Equation 16.23,

P(λmax ≥ 2 + ε) ≤ 1

(2 + ε)2k
n ·mn

2k ≤
n · 4kek3/2n2

k3/2(2 + ε)2k
=

n

k3/2
(1 + ε/2)−2kek

3/2n2

.

Let us now restrict ε to be in [0, 1]. Then we may make the estimate 1 + ε/2 ≥ eε/3, and hence
(1 + ε/2)−2k ≤ e−

2
3
kε. This gives us the estimate

P(λmax ≥ 2 + ε) ≤ n

k3/2
exp

{
k3

2n2
− 2

3
kε

}
. (16.24)

We are free to choose k (to depend on n and ε). For a later-to-be-determined parameter α > 0, set
k = bα

√
εnc. Then α

√
εn− 1 ≤ k ≤ α

√
εn, and so

k3

2n2
≤ α3ε3/2n3

2n2
=
α3

2
ε3/2n

while
−2

3
kε ≤ −2

3
(α
√
εn− 1)ε = −2

3
αε3/2n+

2

3
ε

and
n

k3/2
≤ n

(α
√
εn− 1)3/2

= (α
√
εn1/3 − n−2/3)−3/2

where the last estimate only holds true if α
√
εn > 1 (i.e. for sufficiently large n). For smaller n,

we simply have the bone-headed estimate P(λmax ≥ 2 + ε) ≤ 1. Altogether, then, Equation 16.24
becomes

P(λmax ≥ 2 + ε) ≤ (α
√
εn1/3 − n−2/3)−3/2 exp

{
α3

2
ε3/2n− 2

3
αε3/2n+

2

3
ε

}
≤ 2(α

√
εn1/3 − n−2/3)−3/2 exp

{(
1

2
α3 − 2

3
α

)
ε3/2n

}
.

In the final inequality, we used e
2
3
ε ≤ e

2
3 < 2 since ε ≤ 1. The pre-exponential factor is bounded

for sufficiently large n, and so we simply want to choose α > 0 so that the exponential rate is
negative. The minimum occurs at α = 2

3
; but for cleaner formulas we may simply pick α = 1.

Hence, we have proved that (for 0 < ε ≤ 1 and all sufficiently large n)

P(λmax ≥ 2 + ε) ≤ 2(
√
εn1/3 − n−2/3)−3/2e−

1
6
ε3/2n. (16.25)
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From here, we see that the fluctuations of λmax above 2 are at most O(n−2/3). Indeed, for any
t > 0, letting ε = n−2/3t (so take t ≤ n2/3)

P(n2/3(λmax − 2) ≥ t) = P(λmax ≥ 2 + n−2/3t)

≤ 2(n−1/3
√
tn1/3 − n−2/3)−3/2e−

1
6
n−1t3/2n

= 2(
√
t− n−2/3)−3/2e−

1
6
t3/2 (16.26)

Recall that the estimate 16.25 held for
√
εn > 1; thus estimate 16.26 holds valid whenever√

n−2/3tn > 1: i.e. when t > n−4/3 (as expected from the form of the inequality). For t of
this order, the pre-exponential factor may be useless; in this case, we simply have the vacuous
bound P ≤ 1. But as long as t ≥ 4, we have

√
t − n−2/3 ≥

√
t − 1 ≥ 1

2

√
t. Thus, for t ≥ 4,

(
√
t− n−2/3)−3/2 ≤ 23/2t−3/4 ≤ 3t−3/4, and so we have the bound

P(n2/3(λmax − 2) ≥ t) ≤ 6t−3/4e−
1
6
t3/2 , 4 ≤ t ≤ n2/3. (16.27)

It follows that if φ(n) is any function that tends to 0 as n→∞, then n2/3φ(n)(λmax−2) converges
to 0 in probability; so we have a sharp bound for the rate of fluctuations. It turns out that inequality
16.27 not only describes the sharp rate of fluctuations of λmax, but also the precise tail bound. As
the next (final) section outlines, the random variable n2/3(λn(Zn) − 2) has a limit distribution as
n→∞, and this distribution has tail of order t−ae−ct3/2 for some a, c > 0, as t→∞.
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17. THE TRACY-WIDOM LAW AND LEVEL SPACING OF ZEROES

Let Zn be a (normalized) GUEn. For the remainder of this section, let λn denote the largest
eigenvalue λn = λn(Zn). We have now seen (over and over) that λn → 2 in probability as
n→∞; moreover, the rate of fluctuations above 2 is O(n−2/3). We now wish to study the random
variable n2/3(λn − 2) as n→∞. Inequality 16.26 suggests that, if this random variable possesses
a limiting distribution, it satisfies tail bounds of order x−ae−cx3/2 for some a, c > 0. This is indeed
the case. We state the complete theorem below in two parts. First, we need to introduce a new
function.

Definition 17.1. The Airy function Ai: R→ R is a solution u = Ai to the Airy ODE

u′′(x) = xu(x)

determined by the following asymptotics as x→∞:

Ai(x) ∼ 1

2
π−1/2x−1/4e−

2
3
x3/2 .

One can represent the Airy function a little more concretely as a certain contour integral:

Ai(x) =
1

2πi

∫
C

e
1
3
ζ3−xζdζ

where C is the contour given by the two rays [0,∞) 3 t 7→ te±i
π
3 in the plane. The Airy kernel is

then defined to be

A(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
(17.1)

for x 6= y and defined by continuity on the diagonal: A(x, x) = Ai(x)Ai′′(x)− Ai′(x)2.

Theorem 17.2. The random variable n2/3(λn − 2) has a limit distribution as n→∞: its limiting
cumulative distribution function is

F2(t) ≡ lim
n→∞

P(n2/3(λn − 2) ≤ t) = 1 +
∞∑
k=1

(−1)k

k!

∫ ∞
t

· · ·
∫ ∞
t

det[A(xi, xj)]
n
i,j=1 dx1 · · · dxk.

The alternating sum of determinants of Airy kernels is an example of a Fredholm determinant.
Remarkable though this theorem is, it does not say a lot of computational worth about the cumula-
tive distribution function F2. The main theorem describing F2 is as follows.

Theorem 17.3 (Tracy-Widom 1994). The cumulative distribution function F2 from Theorem 17.2
satisfies

F2(t) = exp

{
−
∫ ∞
t

(x− t)q(x)2 dx

}
where q is a solution of the Painlevé II equation q′′(x) = xq(x) + 2q(x)3, and q(x) ∼ Ai(x) as
x→∞.

The proofs of Theorems 17.2 and 17.3 (and technology needed for them) would take roughly
another full quarter to develop, so we cannot say much about them in the microscopic space re-
maining. Here we just give a glimpse of where the objects in Theorem 17.2 come from. Recall the
Hermite kernel of Definition 15.10

Kn(x, y) =
n−1∑
k=0

Ψk(x)Ψk(y)
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where Ψk are the Hermite functions. The Hermite kernel arose in a concise formulation of the joint
law of eigenvalues of a non-normalized GUEn; indeed, this (unordered) law Pn has as its density
1
n!

det[Kn(xi, xj)]
n
i,j=1. Now, we have established that the right scale for structure in the largest

eigenvalue of the normalized GUEn is n2/3; without the
√
n-rescaling, then, the fluctuations occur

at order n2/3n−1/2 = n1/6, and the largest eigenvalue is of order 2
√
n.

Proposition 17.4. Let An : R2 → R denote the kernel

An(x, y) = n−1/6Kn

(
2
√
n+ n−1/6x, 2

√
n+ n−1/6y

)
.

Then An → A (the Airy kernel) as n→∞. The convergence is very strong: An and A both extend
to analytic functions C2 → C, and the convergence An → A is uniform on compact subsets of C2;
hence, all derivatives of An converge to the corresponding derivatives of A.

The proof of convergence in Proposition 17.4 is a very delicate piece of technical analysis. It is
remarkable that the Airy kernel is “hiding inside” the Hermite kernel. Even more remarkable,
however, is that other important kernels are also present at other scales.

Proposition 17.5. Let Sn(x, y) = n−1/2Kn(n−1/2x, n−1/2y). Then Sn → S uniformly on bounded
subsets of R2, where

S(x, y) =
1

π

sin(x− y)

x− y
is the sine kernel.

Again, the proof of Proposition 17.5 is a very delicate technical proof. Structure at this scaling,
however, tells us something not about the edge of the spectrum, but rather about the spacing of
eigenvalues in “the bulk” (i.e. in a neighborhood of 0). The relevant theorem is:

Theorem 17.6 (Gaudin-Mehta 1960). Let λ1, . . . , λn be the eigenvalues of a (normalized) GUEn,
and let V be a compact subset of R. Then

lim
n→∞

P(nλ1, . . . , nλn /∈ A) = 1 +
∞∑
k=1

(−1)k

k!

∫
V

· · ·
∫
V

det[S(xi, xj)]
n
i,j=1 dx1 · · · dxk.

The proof of Theorem 17.6 is not that difficult. Using the density 1
n!

det[Kn(xi, xj)]
n
i,j=1 of the

joint law Pn of eigenvalues, one can compute all the marginals, which are similarly given by de-
terminants of Kn. Then (taking into account the

√
n-normalization) the probability we are asking

about is Pn(Ac/
√
n× · · · ×Ac/

√
n); appropriate determinantal expansion give a result for finite

n mirroring the statement of Theorem 17.6, but involving the kernels n−1/2Kn(n−1/2x, n−1/2y).
The dominated convergence theorem and Proposition 17.5 then yield the result.

Remark 17.7. Theorem 17.6 gives the spacing distribution of eigenvalues near 0: we see structure
at the macroscopic scale n times the bulk scale (where the semicircle law appears). One can then
ask for the spacing distribution near other points in the bulk: that is, suppose we blow up the
eigenvalues near a point t0 ∈ (−2, 2). The answer is of the same form, but involves the expected
density of eigenvalues (i.e. the semiciricle law). It boils down to the following statement: if we
define the shifted kernel St0n to be

St0n (x, y) = n−1/2Kn(t0
√
n+ n−1/2x, t0

√
n+ n−1/2y)

then the counterpart limit theorem to Proposition 17.5 is

lim
n→∞

St0n (x, y) =
1

π

sin(s(t0)(x− y))

x− y
≡ St0(x, y)
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where s(t0) = 1
2

√
4− t20 is π times the semicircular density. Then the exact same proof outlines

above shows that

lim
n→∞

P(nλ1, . . . , nλn /∈ t0
√
n+ V ) = 1 +

∞∑
k=1

(−1)k

k!

∫
V

· · ·
∫
V

det[St0(xi, xj)]
n
i,j=1 dx1 · · · dxk.

This holds for any |t0| < 2. When |t0| = 2 the kernel St0(x, y) = 0, which is to be expected: as
we saw in Theorem 17.2, the fluctuations of the eigenvalues at the edge are of order n−2/3, much
smaller than the n−1/2 in the bulk.

As with Theorem 17.2, Theorem 17.6 is a terrific theoretical tool, but it is lousy for trying to
actually compute the limit spacing distribution. The relevant result (analogous to Theorem 17.3)
in the bulk is as follows.

Theorem 17.8 (Jimbo-Miwa-Môri-Sato 1980). For fixed t > 0,

lim
n→∞

P(nλ1, . . . , nλn /∈ (−t/2, t/2)) = 1− F (t)

where F is a cumulative probability distribution supported on [0,∞). It is given by

1− F (t) = exp

{∫ t

0

σ(x)

x
dx

}
where σ is a solution of the Painlevé V ODE

(xσ′′(x))2 + 4(xσ′(x)− σ(x))(xσ′(x)− σ(x) + σ′(x)2) = 0

and σ has the expansion

σ(x) = −x
π
− x2

π2
− x3

π3
+O(x4) as x ↓ 0.

Remark 17.9. The ODEs Painlevé II and Painlevé V are named after the late 19th / early 20th
century mathematican and politician Paul Painlevé, who twice served as Prime Minster of (the
Third Republic of) France (the first time in 1917 for 2 months, the second time in 1925 for 6
months). Earlier, around the turn of the century, he studied non-linear ODEs with the properties
that the only movable singularities (singularities in solutions whose positions may depend on initial
conditions) are poles (i.e. behave like 1

(x−x0)n
for some natural number n in a neighborhood of the

singularity x0). All linear ODEs have this property, but non-linear equations can have essential
movable singularities. In 1900, Painlevé painstakingly showed that all second order non-linear
ODEs with this property (now called the Painlevé property) can be put into one of fifty canonical
forms. In 1902, he went on to show that 44 of these equations could be transformed into other
well-known differential equations. The 6 that remained after this enumeration are referred to as
Painlevé I through VI.

The question of why two (unrelated) among the 6 unsolved Painlevé equations characterize
behavior of GUE eigenvalues in the bulk and at the edge remains one of the deepest mysteries of
this subject.
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