Introduction to Free Probability
* Office hours Tues Jam (check this works for most people)
* Pall the class about background
- Probability: Undergrad Grad
- Real Analysis: Undergrad Grad
- Complex Analysis Undergrad Grad
- Functional Analysis
- Cambinatorics
Lecture 1: March 28, 2011
Free Probability is a beautiful new subject that incorporate ideas and tools from a wide range of mathematical aveas. Here is a sampling
* measure theory/probability
* free products of groups / group algebras * operator algebras — notably von Neumann algebras
* Complex analysis - notably analytic functions G C+ C_ (from the upper-half-plane to the lower) satisfying lime = G(z) = 1
(from the upper-half-plane to the lower) satisfying lime 2 G(Z)=1. * enumerative combinatorics
- generating functions
- the lattices NC(n) of non-crossing partitions on [n]={1, n} - Mobius inversion on these lattices
There are also significant connections/applications to
* vandom matrix theory

* representation theory of symmetric groups

* structure theory of son Neumann algebras

* other Combinatorial structures (e.g. parking functions)

Basic Constructs of Classical Probability

*fundamental objects are events subsets of a "universe" J2

*the set F of admissible events is closed under countable U and "

*there is a probability" function P F > [0,1] with nice properties

P(AUB) = P(A) + P(B)

P is "entinuous" if An A then P(An) > P(A)

*from this and basics of U, n get properties like

P(AUB)=P(A)+P(B)-P(A-B).

* Events A,B are called independent if P(AnB)=P/A)P/B).

(Standard example: $D = [0,1]^2$ with P = Lebesgue measure do $then if <math>A = A_0 \times [0,1]$ & $B = [0,1] \times B_0$, then $P(A \cap B) = P(A)P(B)$

Can equally formulate everything interms of functions

X: D->R (or C)

Such functions are known as random variables. The set of such functions forms an algebra over IR or C. Moreover it has a natural involution or star operation

$$X^* \equiv X$$
(complex conjugation)

The set F of admissible subsets F of Ω is easily encoded in the algebra of random variables

$$A \in \mathcal{F} \iff \mathbb{I}_{A} : \mathcal{D} \to \mathbb{R}$$

$$\mathbb{I}_{A}(\omega) = \begin{cases} 0, & \omega \notin A \\ 1, & \omega \in A \end{cases}$$

These indicator functions are characterized (algebraically) as the Idempotent elements in the algebra 12 = 1/4. The operations, U and or can easily be identified on the level of vv's as well

$$1_{A \cap B} = 1_A 1_B$$

$$1_{A^c} = 1 - 1_A$$

$$1_{A \cup B} = 1_{(A' \cap B')^c} = 1_{A} + 1_{B} - 1_{A} 1_{B}$$

The probability measure also boosts to the level of random var's by integration This gives rise to the Expectation functional.

This recovers
$$P$$
 since
$$E(A) = \int_{A} dP = P(A).$$

think of this in terms of dP=dx on $\Omega = [0,1]^k$, nothing is lost in this restriction

This brings up a technical issue not every function can be integrated. The set of integrable functions is denoted L'(RP). The trouble is this vector space is not closed under product — it is not an algebra.

One way to fix this is to restrict to the subset Lo (D,P) < L'(D,P)
of bounded random variables. This algebra has a natural norm
topology on it IXI = Sup(XW)

The E linear functional has nice properties on $L^{\infty}(\Omega, P)$ actually contine K E(1)=1 (state) in a stronger K $E(|X|^2)=E(XX)\geq 0$ and K and K K is continuous with the topology of $L^{\infty}(\Omega, P)$

Independence of random variables We know what it means for events A,B to be independent, for random variables X,Y the usual definition is
random variables XX the usual definition is
XY are independent if X'(U), Y'(V) are independent events for any subsets U, V of (a class of measurable sets in) IR or I
It is a standard exercise in a first graduate course in probability to show that this is equivalent to the following
Y bounded, continuous functions f,g IR->IR
$(X) \qquad \mathbb{E}(f(X)g(Y)) - \mathbb{E}(f(X)) \mathbb{E}(g(Y)).$
If X,YEL are bounded to start with then the Weierstrass approx theorem shows we can take f, g to be restricted to polynomials in (X) Then the linearity of E shows that
X,Y \in Lare independent iff \mathbb{H}(x^m) = \mathbb{E}(x^n)\mathbb{E}(Y^m) \text{Think N}
The moral is all of the constructs of probability theory can be encoded (in algebraic language) in terms of a pair
(nice) algebra (nice) linear functional
particularly important are moments:
{E(Xh): nEN) - moments of X
{H(XhYh), n, mEN} < joint moments of (X,Y)
Independence, in this format, is a (very simple) algorithm for computing the joint moments of (X,Y) from the individual moments of X and Y separately.

.

So, broadly speaking, a probability space can be identified as a pair

where Olis a (complete normed) *- algebra, and 9 Dl > C is a positive faithful continuous state on Ol

Moreover, an independence rule is an algorithm for determining the joint moments of elements $x,y \in OL$ from their individual moments $cp(x^n)$, $cp(y^n)$, n=1,2,3,

The setup of classical probability uses a commutative algebra DL Next time we will explore what happens when we look at the same structure built on a non-commutative algebra DL — the group algebra CFE over a free group Fx (K>2)