Introduction to Free Probability

* Office hours: Tues 9 am (check this works for most people)
* Poll the class about background.
- Probability Undergrad \qquad Grad \qquad
- Real Analysis: Undergrad \qquad Grad \qquad
- Complex Analysis: Undergrad \qquad Grad \qquad
- Functional Analysis \qquad
- Combinatorics \qquad

Lecture 1: March 28, 2011
Free Probability is a beautiful new subject that incorporate ideas and tools from a wide range of mathematical a veas Here is a sampling

* measure theory/probability
* freeproducts of groups/ group algebras
* operator algebras - notably ven Neumann al gebras
* Complex andysis - notably analytic functions $G \mathbb{C} \mathbb{C}_{+} \rightarrow \mathbb{C}$
(from the upper-half-plane to the lower) satisfying $\lim _{\mid z \rightarrow \infty} z G(z)=1$
* enumerative combinatorics:
- generating functions \leftarrow
- the lattices NC(n) of non-crossing partitions on $[n]=\{1, \ldots, n\}$
- Möbius inversion on these lattices

There are also significant connections/applications to

* vandem matrix theory
* representation theory of symmetric groups
* structure theory of Lon Neumann algebras
* other Combinatorial structures (e.g. parking functions)

Basic Constructs of Classical Probability

* fundamental objects are events: subsets of a "universe" Ω
* the set F F of admissible eventsis closed under countable U and ${ }^{\circ}$
* there is a"probability" function $\mathbb{P} \cdot \mathcal{F} \rightarrow[0,1]$ with nice properties
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$
- \mathbb{P} is "continuous' if $A_{n} \uparrow A$ then $\mathbb{P}\left(A_{n}\right) \uparrow \mathbb{P}(A)$
* from this and basics of U, \cap get properties like

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

* Events A, B are called independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$. (standard example: $\Omega=[0,1]^{2}$ with $\mathbb{P}=$ Lebesgue measure $d x$ then if $A=A_{0} \times[0,1] \& B=[0,1] \times B_{n}$, ten $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$

Can equally formulate everything in terms of functions

$$
X: \Omega \rightarrow \mathbb{R}(\text { or } \mathbb{C})
$$

such functions are known as vandem variables The set of such functions forms an algebra over \mathbb{R} or \mathbb{C}. Moreover, it has a natural involution or star operation:

$$
X^{*} \equiv \underset{(\text { complex conjugation) }}{\bar{X}}
$$

The set \mathcal{F} of admissible subsets \mathcal{F} of Ω is easily encoded in the algebra of random variables:

$$
\begin{aligned}
A \in \mathcal{F} & \mathbb{I}_{A} \Omega \rightarrow \mathbb{R} \\
I_{A}(\omega) & =\left\{\begin{array}{l}
0, \omega \notin A \\
1, \\
\omega \in A
\end{array}\right.
\end{aligned}
$$

These indicator functions are characterized (algebraically) as the idempotent elements in the algebra $1_{A}^{2}=1_{A}$. The operations ${ }^{c}$, U and \cap can easily be identified on the level of rv's as well:

$$
\begin{aligned}
& 1_{A \cap B}=\mathbb{1}_{A} \mathbb{1}_{B} \\
& 1_{A^{c}}=1-\mathbb{1}_{A} \\
& \mathbb{1}_{A \cup B}=\mathbb{1}_{\left(A^{\prime} \cap B^{c}\right)^{c}}=\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A} \mathbb{1}_{B}
\end{aligned}
$$

The probability measure also boosts to the level of random var's: by integration. This gives rise to the Expectation functional.

$$
\mathbb{E}(X)=\int_{\Omega} X d \mathbb{P}
$$

This recover $1 P$ since

$$
\mathbb{E}\left(\mathbb{U}_{A}\right)=\int_{A} d \mathbb{P}=\mathbb{P}(A)
$$

think of this in terms of $d \mathbb{P}=d x$ on $\Omega=[0,1]^{k}$, nothing is lost in this restriction.
This brings up a technical is sue not every, function can be integrated The set of integrable functions is den ted $L^{1}(\Omega, \mathbb{P})$. The trouble B : this vector space is not closed under product - it is not an algebra.
One way to fix this is to restrict to the subset $L^{\infty}(\Omega, \mathbb{P}) \subset L^{\prime}(\Omega, \mathbb{P})$ of bounded random variables. This algebra has a natural norm. topology on it: $\|\left. X\right|_{\infty}=\sup _{\omega}|X(\omega)|$.
The \mathbb{E} linear functional has nice properties on $L^{\infty}(\Omega, \mathbb{P})$:
actually coating. $\quad * \mathbb{E}(1)=1$ (state)
in a stronger * $\mathbb{E}\left(|X|^{2}\right)=\mathbb{E}(X \bar{X}) \geqslant 0$ and $=0$ iff $X=0$ (positive, faithful)
sense-w* $\quad \mathbb{\mathbb { E }}$ is continuous w.r. the topology of $L \infty(\Omega, \mathbb{P})$

Independence of random variables
we knew what it means for events A, B to be independent; for random variables X, Y the usual definition B :
$X Y$ are independent if $X^{-1}(U), Y^{-1}(V)$ are independent events for any subsets U, V of (a class of meas ur able sets in) \mathbb{R} or \mathbb{C}
It is a standard exercise in a first graduate course in probability to show that this is equivalent to the following:
\forall bounded, continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$
$(*) \quad \mathbb{E}(f(X) g(Y))=\mathbb{E}(f(X)) \mathbb{E}(g(Y))$
If $X, Y \in L^{\infty}$ are bounded te start with, then the weierstrass apps on theorem shows we can take f, g to be restricted to polynomials in (*) Then the linearity of 正 shows that:
$X, Y \in L^{\infty}$ are independent inf $\mathbb{E}\left(X^{n} Y^{m}\right)=\mathbb{E}\left(X^{n}\right) \mathbb{E}\left(Y^{m}\right) \forall n, m \in \mathbb{N}$
The moral is all of the constructs of probability theory can be encoded (in algebraic language) in terms of a pair

$$
\left(L^{\infty}, \mathbb{E}\right)
$$

(nice) algebra
(nice) linear functional
particularly important are moments

$$
\begin{aligned}
& \left\{\mathbb{E}\left(X^{n}\right): n \in \mathbb{N}\right\} \leftarrow \text { moments of } X \\
& \left\{\mathbb{E}\left(X^{n} Y^{m}\right), n m \in \mathbb{N}\right\} \longleftarrow \text { joint moments of }(X, Y)
\end{aligned}
$$

Independence, in this format, is a (very simple) algorithm for computing the joint moments $\delta(X, Y)$ from the individual moments of X and Y separately.

Se, broadly speaking, a probability space can be identified as a pair

$$
(0, \varphi)
$$

Where O is a (complete normed) $*$-algebra, and $\varphi: \Omega \rightarrow \mathbb{C}$ is a positive faithful continuous state on Ω^{\prime}
Moreover, an independence rule is an algorithm far determining the joint moments of elements $x, y \in \Omega$ from their individual moments $\varphi\left(x^{n}\right), \varphi\left(y^{n}\right), n=1,2,3, \ldots$
The setup of classical probability uses a commutative algebra $0 C$. Next time we will explore what happens when we look at the same structure built on a non-commutative algebra $\sqrt{a} O$ - the gs sup algebra $\mathbb{C} \mathbb{F}_{k}$ over a free group $\mathbb{F}_{k}(k \geq 2)$

