Math 251C: Spring 2019

Homework

Available	Sunday, May 19	Due	Wednesday, June 12

Turn in the homework by 1:00pm to Kemp's mailbox.

1. Let G be a simply connected Lie group with Lie algebra \mathfrak{g}, and suppose that $\mathfrak{g}=\mathfrak{h}_{1} \oplus$ \mathfrak{h}_{2} decompose as the direct sum of two Lie subalgebras. Show that there are closed, simply connected subgroups $H_{1}, H_{2} \subseteq G$ such that $\operatorname{Lie}\left(H_{j}\right)=\mathfrak{h}_{j}$ for $j=1,2$, and G is isomorphic to $H_{1} \times H_{2}$ as a Lie group.
2. Let $Q \in \mathrm{SO}(3)$. Show that 1 is an eigenvalue of Q. Let v by an eigenvector with eigenvalue 1 ; show that Q is a rotation in the plane v^{\perp}.
3. Use the spectral theorem to show that the exponential map exp: $\mathfrak{u}(n) \rightarrow \mathrm{U}(n)$ is surjective, but not injective.
4. Let M be a connected smooth manifold, and suppose $\left(E_{1}, \pi_{1}\right)$ and $\left(E_{2}, \pi_{2}\right)$ are two simply connected smooth covering spaces for M. Show that there is a unique diffeomorphism $\Phi: E_{1} \rightarrow E_{2}$ such that $\pi_{2} \circ \Phi=\pi_{1}$.
5. Let X, Y, Z be the usual basis for the Heisenberg Lie algebra $\mathfrak{h}(3, \mathbb{R})$, satisfying $[X, Y]=$ Z and $[X, Z]=[Y, Z]=0$. Let V be the subspace of $\mathfrak{h}(3, \mathbb{R})$ spanned by $\{X, Y\}$, which is not a Lie subalgebra. Let $G=\langle\exp V\rangle$ be the subgroup generated by the exponential image of V. Show that $G=\mathrm{H}(3, \mathbb{R})$.
6. Let G be a Lie group with $\operatorname{Lie}(G)=\mathfrak{g}$, let $\mathfrak{h} \subseteq \mathfrak{g}$ be a Lie subalgebra, and let $H \subseteq G$ be the unique connected Lie subgroup with $\operatorname{Lie}(H)=\mathfrak{h}$. Suppose there exists a simply connected compact Lie group K with $\operatorname{Lie}(K) \cong \mathfrak{h}$. Show that H is then closed. Is it necessarily true that $H \cong K$?
7. Recall that $\mathrm{SU}(2)$ is the diffeomorphic image of the 3-sphere $\mathbb{S}^{3}=\left\{(\alpha, \beta) \in \mathbb{C}^{2}:|\alpha|^{2}+\right.$ $\left.|\beta|^{2}=1\right\}$ under the map

$$
F(\alpha, \beta)=\left[\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right]
$$

For each $U \in \mathbb{S U}(2)$, let $\mathbf{v}_{U}=F^{-1}(U)$ denote the corresponding unit vector in \mathbb{C}^{2}. Let θ_{U} be the "polar angle": the angle in $[0, \pi]$ that \mathbf{v}_{U} makes with the north pole $(1,0)$.
(a) Suppose $U \in \mathrm{SU}(2)$ has eigenvalues $e^{i \theta}$ and $e^{-i \theta}$, with $\theta \in[0, \pi]$. Show that $\theta_{U}=\theta$. [Hint: take the trace.]
(b) Conclude that two matrices are conjugate in $\mathrm{SU}(2)$ if and only if they have the same polar angle.
8. Show that every Lie group homomorphism $\mathbb{T}^{k} \rightarrow \mathbb{S}^{1}$ has the form

$$
\left(u_{1}, \ldots, u_{k}\right) \mapsto u_{1}^{m_{1}} \cdots u_{k}^{m_{k}}
$$

for some integers $m_{1}, \ldots, m_{k} \in \mathbb{Z}$. [Hint: consider the induced Lie algebra homomorphism.]
9. Consider the compact connected Lie group $\mathrm{SO}(n)$ with $n \geq 3$. Let H be the abelian subgroup consisting of diagonal matrices in $\mathrm{SO}(n)$. Show that H is a maximal abelian subgroup, but that H is not contained in a maximal torus. [Hint: If A and B are commuting matrices and λ is an eigenvalue of A with eigenspace E_{λ}, then $B\left(E_{\lambda}\right) \subseteq E_{\lambda}$.]
10. In contrast to the previous exercise: show that any maximal abelian subgroup of $\mathrm{SU}(n)$ ($n \geq 2$) is conjugate to a subgroup of the diagonal subgroup; hence, every maximal abelian subgroup of $\mathrm{SU}(n)$ is contained in a maximal torus.
11. Let $\mathfrak{h}(3, \mathbb{C})=\mathfrak{h}(3, \mathbb{R})_{\mathbb{C}}$ (complex strictly upper-triangular 3×3 matrices).
(a) Show that the maximal abelian subalgebras of $\mathfrak{h}(3, \mathbb{C})$ are precisely the 2-dimensional subalgebras that contain the center.
(b) Show that $\mathfrak{h}(3, \mathbb{C})$ does not have any Cartan subalgebras (according to our definition: i.e. no maximal abelian subalgebra \mathfrak{h} such that ad_{H} is diagonalizable for all $H \in \mathfrak{h})$.
12. Give an example of a maximal commutative subalgebra of $\mathfrak{s l}(2 ; \mathbb{C})$ that is not a Cartan subalgebra.
13. Consider the root system $D_{n}(n \geq 2)$ realized as the set of vectors $\left\{ \pm e_{j} \pm e_{k}: j<k\right\}$ in \mathbb{R}^{n}. Show that the Weyl group of D_{n} is the group of transformations of \mathbb{R}^{n} expressible as a composition of a permutation of the entries and an even number of sign changes.
14. Show that the Weyl group of the root system A_{n} does not contain $-I$ unless $n=1$.
15. Let K be a compact Lie group, and let (V, Π) be a representation. For each matrix $A \in \operatorname{End}(V)$, define $f_{A}: K \rightarrow \mathbb{C}$ by $f_{A}(x)=\operatorname{Tr}(\Pi(x) A)$.
(a) Show that $f_{\Pi, A}$ is a representative function for K, and that the character of Π is of the form f_{A} for some A.
(b) Show that if Π is irreducible then $f_{A} \equiv 0$ iff $A=0$.
(c) Show that f_{A} is $C^{\infty}(K)$. If \mathfrak{k} is the Lie algebra of K and $X \in \mathfrak{k}$, with associated left-invariant vector field \widetilde{X}, then

$$
\widetilde{X} f_{A}=f_{\Pi_{*}(X) A}
$$

