Math 251C: Spring 2019 Homework Available | Sunday, May 19 || Due | Wednesday, June 12

Turn in the homework by 1:00pm to Kemp's mailbox.

- **1.** Let *G* be a simply connected Lie group with Lie algebra \mathfrak{g} , and suppose that $\mathfrak{g} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$ decompose as the direct sum of two Lie subalgebras. Show that there are closed, simply connected subgroups $H_1, H_2 \subseteq G$ such that $\text{Lie}(H_j) = \mathfrak{h}_j$ for j = 1, 2, and *G* is isomorphic to $H_1 \times H_2$ as a Lie group.
- **2.** Let $Q \in SO(3)$. Show that 1 is an eigenvalue of Q. Let v by an eigenvector with eigenvalue 1; show that Q is a rotation in the plane v^{\perp} .
- **3.** Use the spectral theorem to show that the exponential map $\exp: \mathfrak{u}(n) \to U(n)$ is surjective, but not injective.
- **4.** Let *M* be a connected smooth manifold, and suppose (E_1, π_1) and (E_2, π_2) are two simply connected smooth covering spaces for *M*. Show that there is a unique diffeomorphism $\Phi: E_1 \to E_2$ such that $\pi_2 \circ \Phi = \pi_1$.
- 5. Let X, Y, Z be the usual basis for the Heisenberg Lie algebra $\mathfrak{h}(3, \mathbb{R})$, satisfying [X, Y] = Z and [X, Z] = [Y, Z] = 0. Let V be the subspace of $\mathfrak{h}(3, \mathbb{R})$ spanned by $\{X, Y\}$, which is *not* a Lie subalgebra. Let $G = \langle \exp V \rangle$ be the subgroup generated by the exponential image of V. Show that $G = H(3, \mathbb{R})$.
- **6.** Let *G* be a Lie group with $\text{Lie}(G) = \mathfrak{g}$, let $\mathfrak{h} \subseteq \mathfrak{g}$ be a Lie subalgebra, and let $H \subseteq G$ be the unique connected Lie subgroup with $\text{Lie}(H) = \mathfrak{h}$. Suppose there exists a simply connected *compact* Lie group *K* with $\text{Lie}(K) \cong \mathfrak{h}$. Show that *H* is then closed. Is it necessarily true that $H \cong K$?
- 7. Recall that SU(2) is the diffeomorphic image of the 3-sphere $\mathbb{S}^3 = \{(\alpha, \beta) \in \mathbb{C}^2 : |\alpha|^2 + |\beta|^2 = 1\}$ under the map

$$F(\alpha,\beta) = \left[\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array}\right].$$

For each $U \in SU(2)$, let $\mathbf{v}_U = F^{-1}(U)$ denote the corresponding unit vector in \mathbb{C}^2 . Let θ_U be the "polar angle": the angle in $[0, \pi]$ that \mathbf{v}_U makes with the north pole (1, 0).

- (a) Suppose $U \in SU(2)$ has eigenvalues $e^{i\theta}$ and $e^{-i\theta}$, with $\theta \in [0, \pi]$. Show that $\theta_U = \theta$. [*Hint:* take the trace.]
- (b) Conclude that two matrices are conjugate in SU(2) if and only if they have the same polar angle.

8. Show that every Lie group homomorphism $\mathbb{T}^k \to \mathbb{S}^1$ has the form

$$(u_1,\ldots,u_k)\mapsto u_1^{m_1}\cdots u_k^{m_k}$$

for some integers $m_1, \ldots, m_k \in \mathbb{Z}$. [Hint: consider the induced Lie algebra homomorphism.]

- **9.** Consider the compact connected Lie group SO(n) with $n \ge 3$. Let *H* be the abelian subgroup consisting of diagonal matrices in SO(n). Show that *H* is a maximal abelian subgroup, but that *H* is not contained in a maximal torus. [*Hint*: If *A* and *B* are commuting matrices and λ is an eigenvalue of *A* with eigenspace E_{λ} , then $B(E_{\lambda}) \subseteq E_{\lambda}$.]
- **10.** In contrast to the previous exercise: show that any maximal abelian subgroup of SU(n) $(n \ge 2)$ is conjugate to a subgroup of the diagonal subgroup; hence, every maximal abelian subgroup of SU(n) is contained in a maximal torus.
- **11.** Let $\mathfrak{h}(3,\mathbb{C}) = \mathfrak{h}(3,\mathbb{R})_{\mathbb{C}}$ (complex strictly upper-triangular 3×3 matrices).
 - (a) Show that the maximal abelian subalgebras of $\mathfrak{h}(3, \mathbb{C})$ are precisely the 2-dimensional subalgebras that contain the center.
 - (b) Show that h(3, C) does not have any Cartan subalgebras (according to our definition: i.e. no maximal abelian subalgebra h such that ad_H is diagonalizable for all *H* ∈ h).
- **12.** Give an example of a maximal commutative subalgebra of $\mathfrak{sl}(2; \mathbb{C})$ that is not a Cartan subalgebra.
- **13.** Consider the root system D_n ($n \ge 2$) realized as the set of vectors $\{\pm e_j \pm e_k : j < k\}$ in \mathbb{R}^n . Show that the Weyl group of D_n is the group of transformations of \mathbb{R}^n expressible as a composition of a permutation of the entries and an even number of sign changes.
- **14.** Show that the Weyl group of the root system A_n does not contain -I unless n = 1.
- **15.** Let *K* be a compact Lie group, and let (V, Π) be a representation. For each matrix $A \in \text{End}(V)$, define $f_A \colon K \to \mathbb{C}$ by $f_A(x) = \text{Tr}(\Pi(x)A)$.
 - (a) Show that $f_{\Pi,A}$ is a representative function for K, and that the character of Π is of the form f_A for some A.
 - (b) Show that if Π is irreducible then $f_A \equiv 0$ iff A = 0.
 - (c) Show that f_A is $C^{\infty}(K)$. If \mathfrak{k} is the Lie algebra of K and $X \in \mathfrak{k}$, with associated left-invariant vector field \widetilde{X} , then

$$Xf_A = f_{\Pi_*(X)A}.$$