Homework 2

Available	Wednesday, October 26	Due	Sunday, November 13

Turn in the homework by $11: 59 \mathrm{pm}$ through Gradescope. Late homework will not be accepted.

1. Exercise 4.1 on pp. 90-91 in Chung \& Williams.
2. Exercise 4.2 on p. 91 in Chung \& Williams.
3. Exercise 5.2 on p. 112 in Chung \& Williams.
4. Exercise 5.6 on p. 113 in Chung \& Williams.
5. Let M be a local martingale. Suppose that, for each $t \in \mathbb{R}_{+}$, the family of random variables

$$
\left\{M_{t}^{\tau}: \tau \text { is a stopping time }\right\}
$$

is uniformly integrable. Prove that M is actually a martingale.
6. Let M be a RCLL L^{2}-martingale.
(i) Prove that if $X, Y \in \mathcal{E P}$ and $\mu_{M}\left(\left\{(t, \omega) \in \mathbb{R}_{+} \times \Omega: X_{t}(\omega) \neq Y_{t}(\omega)\right\}\right)=0$, then the processes $\int_{0} X d M$ and $\int_{0} Y d M$ (both defined as in Observation 2 from the Lecture 6 notes on Canvas) are indistinguishable.
(ii) Let N be another RCLL L^{2}-martingale. Prove that if M is indistinguishable from N, then $\mu_{M}=\mu_{N}, \Lambda^{2}(\mathcal{P}, M)=\Lambda^{2}(\mathcal{P}, N)$, and $\int_{0}^{\cdot} X d M=\int_{0}^{\cdot} X d N$ as elements of $\mathbb{M}_{2}^{\mathrm{rc}}$ whenever $X \in \Lambda^{2}(\mathcal{P}, M)=\Lambda^{2}(\mathcal{P}, N)$. Conclude that if M and N are, more generally, RCLL local L^{2}-martingales that are indistinguishable, then $\Lambda(\mathcal{P}, M)=\Lambda(\mathcal{P}, N)$ and $\int_{0} X d M=\int_{0} X d N$ as members of $\mathbb{L}_{\text {loc }}^{0}$ whenever $X \in \Lambda(\mathcal{P}, M)=\Lambda(\mathcal{P}, N)$.
7. Let $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ be a filtrations satisfying the usual assumptions, and let $M=\left(M_{t}\right)_{t \geq 0}$ be an adapted, L^{2}, right continuous process with $M_{0}=0, \mathbb{E}\left(M_{t}\right)=0$ for all $t \geq 0$, and with independent increments: $M_{t}-M_{s}$ is independent from \mathscr{F}_{s} for $0 \leq s<t<\infty$. Prove that M is an L^{2}-martingale, that $A_{t}=\mathbb{E}\left(M_{t}^{2}\right)$ is a right-continuous increasing (deterministic) process, and that $N_{t}=M_{t}^{2}-A_{t}$ is a martingale.
8. Let B be a Brownian motion on \mathbb{R}, and suppose that $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a measurable function such that $\int_{0}^{t} f(s)^{2} d s<\infty$, for all $t \geq 0$.
(i) Prove that the (deterministic) process f belongs to $\Lambda^{2}(\mathcal{P}, B)$.
(ii) Prove that if $f \in L^{2}\left(\mathbb{R}_{+}\right)$, then $\lim _{t \rightarrow \infty} \int_{0}^{t} f(s) d B_{s}$ exists in L^{2}. Does it exist a.s.?
(iii) Prove that

$$
X_{t}:=\exp \left\{\int_{0}^{t} f(s) d B_{s}-\frac{1}{2} \int_{0}^{t} f(s)^{2} d s\right\}
$$

is an L^{2}-martingale, and compute $\mathbb{E}\left[X_{t}^{2}\right]$. Prove also that if $f \in L^{2}\left(\mathbb{R}_{+}\right)$, then X is an L^{2}-bounded martingale.

