Math 286: Fall 2022 Homework 2

Available | Wednesday, October 26 | Due | Sunday, November 13

Turn in the homework by 11:59pm through Gradescope. Late homework will not be accepted.

- 1. Exercise 4.1 on pp. 90-91 in Chung & Williams.
- 2. Exercise 4.2 on p. 91 in Chung & Williams.
- 3. Exercise 5.2 on p. 112 in Chung & Williams.
- 4. Exercise 5.6 on p. 113 in Chung & Williams.
- **5.** Let *M* be a local martingale. Suppose that, for each $t \in \mathbb{R}_+$, the family of random variables

 $\{M_t^{\tau}: \tau \text{ is a stopping time}\}$

is uniformly integrable. Prove that *M* is actually a martingale.

- **6.** Let *M* be a RCLL L^2 -martingale.
- (i) Prove that if $X, Y \in \mathcal{EP}$ and $\mu_M(\{(t, \omega) \in \mathbb{R}_+ \times \Omega : X_t(\omega) \neq Y_t(\omega)\}) = 0$, then the processes $\int_0^{\cdot} X \, dM$ and $\int_0^{\cdot} Y \, dM$ (both defined as in Observation 2 from the Lecture 6 notes on Canvas) are indistinguishable.
- (ii) Let *N* be another RCLL L^2 -martingale. Prove that if *M* is indistinguishable from *N*, then $\mu_M = \mu_N$, $\Lambda^2(\mathcal{P}, M) = \Lambda^2(\mathcal{P}, N)$, and $\int_0^{\cdot} X \, dM = \int_0^{\cdot} X \, dN$ as elements of $\mathbb{M}_2^{\mathrm{rc}}$ whenever $X \in \Lambda^2(\mathcal{P}, M) = \Lambda^2(\mathcal{P}, N)$. Conclude that if *M* and *N* are, more generally, RCLL local L^2 -martingales that are indistinguishable, then $\Lambda(\mathcal{P}, M) = \Lambda(\mathcal{P}, N)$ and $\int_0^{\cdot} X \, dM = \int_0^{\cdot} X \, dN$ as members of $\mathbb{L}^0_{\mathrm{loc}}$ whenever $X \in \Lambda(\mathcal{P}, M) = \Lambda(\mathcal{P}, N)$.
- 7. Let $(\mathscr{F}_t)_{t\geq 0}$ be a filtrations satisfying the usual assumptions, and let $M = (M_t)_{t\geq 0}$ be an adapted, L^2 , right continuous process with $M_0 = 0$, $\mathbb{E}(M_t) = 0$ for all $t \geq 0$, and with *independent increments*: $M_t - M_s$ is independent from \mathscr{F}_s for $0 \leq s < t < \infty$. Prove that M is an L^2 -martingale, that $A_t = \mathbb{E}(M_t^2)$ is a right-continuous increasing (deterministic) process, and that $N_t = M_t^2 - A_t$ is a martingale.
- **8.** Let *B* be a Brownian motion on \mathbb{R} , and suppose that $f : \mathbb{R}_+ \to \mathbb{R}$ is a measurable function such that $\int_0^t f(s)^2 ds < \infty$, for all $t \ge 0$.
- (i) Prove that the (deterministic) process f belongs to $\Lambda^2(\mathcal{P}, B)$.
- (ii) Prove that if $f \in L^2(\mathbb{R}_+)$, then $\lim_{t\to\infty} \int_0^t f(s) dB_s$ exists in L^2 . Does it exist a.s.?

(iii) Prove that

$$X_t \coloneqq \exp\left\{\int_0^t f(s) \, dB_s - \frac{1}{2} \int_0^t f(s)^2 \, ds\right\}$$

is an L^2 -martingale, and compute $\mathbb{E}[X_t^2]$. Prove also that if $f \in L^2(\mathbb{R}_+)$, then X is an L^2 -bounded martingale.