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Abstract

YAK YAK 7?7

1 Introduction

First we define NC polynomials and set notation for them. Then we
describe a representaion for certain polynomials, then we state our non-
commutative Positivestellenstaz which says which polynomials have this

representation.



1.1 NC Polynomials and Special Classes

Let Fy denote the free semi-group on the g generators z = {z1,...,74};
in common language F, is a set of words in y,---,z,. Given a word
w € Fy,

W= TjLj *** Ljy (1)

a real Hilbert space H, and a tuple X = (X7, ..., X,) of operators on H,
let

XY =X; X, X, (2)
Our results apply to several classes of polynomials and we now introduce

these classes.

BILL LOOK UP EXPOSITION IN hmecc.tex 7?7 [6/10 yeah. seems
like we had it pretty polished there.]

1.1.1 Polynomials in Symmetric Entries, \/

Let A denote the polynomials, over the field of real numbers R, in the
noncommuting generators © = {z,---,z,}. N consists of real linear
combinations of words w in z. Also N has an involution ”, that is, given

the word w from F, viewed as an element of N, define

T _
w = a:jn .. -a:jijl

and if p = Y py,w € N, define p!' = 3 p,w’. Here we emphasize that
each p,, is a real number. We call a polynomial p in N symmetric pro-

vided p? = p.

Often we shall be interested in evaluating a polynomial p in NV on
a tuple of matrices or operators that is, if p = Y. p,w is in N and
X = (Xy,...,X,) is a tuple of real symmetric operators on a real Hilbert
space define p(X) = Y. p,X", where XV = X, X,,...Xj, as before.
Thus, in the case of N/, we only allow substitution by real symmetric
operators. Often the Hilbert space is simply R¢, and so the operators X

are real symmetric £ X ¢ matrices.



BILL -EXAMPLES 77?7

1.1.2  General Polynomials, N,

Let NV, denote the polynomials in the 2¢g non-commutative symbols {z1, . .
N, has an involution 7" defined on it on it, which behaves in the conven-

tional way, for example,

i Y T T _— T T ... T
if w T4, T, L s then w .'L'jnfL'kal l'jl
1 f— - - " e . f— LN -
if w= %1%%3 L s then w' = .'L'jnl'jn71 x]2xj1‘

The involution on N, can be conveniently thought of in another way. The
polynomials in N, as polynomials in the 2g non-commuting variables
{z1,..., 2y, Tg41, ..., 29} and identify z,y; with :UJT In this way the

involution on N, is the same as that on A/ in 2¢, rather than g, variables.

Often we shall be interested in evaluating a polynomial p in A/ on a
tuple of matrices or operators. To define the substitution for A, given a
word w € Fyg, and the tuple X consisting of square matrices with entries
from R, substitute X; for z; and XJ-T for ;4 for 1 < j < g and extend
to all of NV, by linearity. For instance, if g = 2, for

p=xzlx + 3xTx2T, we have p(X) = X1 XT X, +3XT X, XT.

Here X7 is the transpose of Xj.

We can also make the analogous substitution if X = (X;,...,X,) are

operators on a real Hilbert space.

BILL -EXAMPLES ?? Jeff says fwd and bkwd shift ops on ¢2.77?

1.1.3 Hereditary Polynomials, N, N

One type of polynomial we consider is a subset of N, called the hereditary
polynomials, denoted by N,A. A polynomial p € N, is hereditary if
the transposes, if any, always appear on the left. Note that the product

of two hereditary polynomials need not be an hereditary polynomial.

T T
TGy Ty ey Ty b



In the hereditary case, given the word w, the definition of the word
w? is induced from the definition of ' on N,. Note hereditary words
have the form

XV = (X)X (3)
If p = Y pywviw is in NN, let pT denote p” = 3 py (v w)T, which
the reader notes is also a hereditary polynomial. Also given a Hilbert

space H and a tuple X = (X7,...,X,) of operators on H, the definition
of p(X) is induced from that on N,.

EXAMPLE(S) HERE which can be used later to see that in some

cases 7Tmust consider operators and not matrices. SCOTT will fill??

1.1.4 Matrix Valued Polynomials, M;y;(N,) etc

We wish also to consider matrix-valued NC polynomials or, equivalently,
NC polynomials with matrix coefficients. Let M,., denote the a x b

matrices with entries from R.

A M,.p-valued hereditary polynomial is a polynomial of the form
P=2> Pypuw ® vTw, where the sum is finite and each Pow € Maxp. Given

our tuple X, the substitution rule is now

(X)) =3 ppw® XUV

and the involution becomes p” = ¥ p!, ® (v"w)”, where p], is of course
the transpose of the matrix p,,. The definitions for N' and N, are
similar. A matrix-valued NC polynomial p is symmetric provided p” =
p, which is equivalent to the coefficient matrices satisfying p?;,w = Pyl T
These classes of symmetric matrix-valued polynomials are denoted
My (N), My (N), or My (N N). We use Myxoo t0 denote UpsoMix;

it is not a closed set.
BILL PUT IN EXAMPLE ?7?

If p is an My ~valued polynomial, ¢ is a My ,-valued polynomial, and

ris an M,y4-valued polynomial, then ¢’ pr is a M, 4-valued polynomial.

eq:hwordl



There are no consistency requirements in the A" and N, cases other than
q and r should be N or N, polynomials respectively. However, in the
hereditary case ¢ and r should both be transpose free. A special case
of particular importance is when p is Myy,-valued, ¢ is Myy,-valued and

r=q’.

1.2 Decomposition as Weighted Sums of Squares

Fix a collection of symmetric matrix-valued polynomials P from either

MOOXOO(N)a MOOXOO(N*)a or Mooxoo(N*N)-

Let C5 denote positive linear combinations of s'ps and rTr where
p € P and the sizes of s and r are such that the products make sense
and result in ¢ X £ matrix-valued polynomials. Hence, elements of Cf, are,

My ;-valued NC polynomials of the form

N M
q= ZSJijSj+Z7"kT7“k, (4)
1 1

for some integers M and N, polynomials p; € P and polynomials s; and
e, where say p; is My, «p,-valued, s; is My, xp-valued and r; is M, p-valued.
We emphasize that, while P may be an infinite set of polynomials, the
decomposition above only requires a finite subset of them. Let Cp» denote

the union of C5 over £. Note that the polynomials in Cp are symmetric.

1.3 Domain of Positivity

The positivity domain of P, denoted Dp , is the collection of tuples
X of operators on a real separable Hilbert space H such that p(X) is
positive (semi-definite) for all p € P. Note that Dp is really a graded
object with the grading given as follows. For each v = 1,2,..., 00, fix a

nest of Hilbert spaces H, of dimension v inside of H, then

Dp DU {X = (Xy,...,X,) : X; € B(H,), p(X) = 0 for every p € P},



where B(H) is the collection of (bounded) operators on H and p(X) > 0
means p(X) is PSD.

A positivity domain Dp is called convex provided that, if X and V
are both operator tuples on the same Hilbert space H and both X and
Y lie in Dp, then convex combinations ¢; X + Y belong to Dp. Here
real numbers ¢y, cy > 0 satisfy ¢; + ¢co = 1. A positivity domain is
bounded provided there is a constant C' > 0 such that if X € Dp, then
| X;]| < C foreach j =1,2,...,9.

We now define a special set of polynomials, and state our first lemma.

Henceforth set b; :== C? — x]ij and let b denote the set of polynomials
b:={by, -, by}

Lemma 1.1 For any j between 1 and g

bj :=C?%— xjxjr belongs to Dy, .

Proof.

1.4 A NC Positivestellensatz

We shall be working only with bounded positivity domains, in which case
we can, with no loss of generality, assume that b is appended to P. More

precisely, we take the convention:
e In the hereditary case and in the N, case , for each j we adjoin the
polynomial C* — zTz; to P and obtain a bigger set P.

e In the NV case, for each j we adjoin the polynomial C? — z% to P

and obtain a bigger set P.



Theorem 1.2 Suppose P is a ?%finite -SCOTT ?? DELETE??  list
of symmetric matriz polynomials in My xso(Ni), or respectively My oo (N), 01
respectively Moox oo (NWN). Suppose Dp is bounded and q is a symmetric
Ms-valued NC polynomial (in either My (N'), My (NL), or My (NN)
depending upon P). If ¢(X) is strictly positive definite on Dp , that is,
if ¢(X) > 0 whenever X € Dp, then q € C;g.

If in addition Dp is convex, we need only verify q(X) = 0 for those
X € Dp which are defined on a Hilbert space of dimension at most

(3°%(2g)". From this test on finite dimensional matrices we obtain q €

ct.

The proof has two parts which dictates the organization of the rest of
the paper. The first is a Hahn-Banach result which separates Cf; from any
polynomial ¢ outside it with a linear functional A\. The second represents
such linear functionals A using a matrix tuple X. That ¢ is outside C5
forces ¢(X) not to be PSD. Before launching into all of this we have a
section which presents properties of convex positivity domains, since it

. . . thm:main

is a pleasent topic, and we prove the last assertion of the Theorem 1.2 in
. . L. thm:finitel

this section, see Proposition 2.3.



1.4.1 Complex Hilbert Spaces - 7?7 FIX LATER

Every Hilbert space over the complex numbers is automatically a real
Hilbert space. Indeed the results we have stated hold for complex co-
efficient symmetric NC polynomials provided we test them on matrices

with complex entries.
Here we replace 7 with the Hermetian adjoint *.
Key defs are : 7?7 FILLIN??

The main theorem for complex coefficient polynomials is

Theorem 1.3 Suppose P is a finite list of self-adjoint matriz polynomi-
als in Myoxoo. Suppose Dp?? is bounded and q is a symmetric My, 27-
valued NC polynomial (in either My (Nc), My (Nc,), or My (Ne.Nc)
depending upon P). If ¢(X) is strictly positive definite on Dp , that is,
if ¢(X) > 0 whenever X € Dp, then g € C5??.

1.4.2 Related Results— NEEDS TUNING

We are aware of several variations of Theorem ﬁmﬁ%h proofs much
like the one given here. In fact, the proof here borrows heavily from
Putinar and Vasilescu [PV077], although the results there are for the
commutative N case, and much of the significance of their work is for

the case of undbounded positivity regions.

Agler, in his seminal work on Schur class functions on the polydisc,
begins with the collection P = {1 — zjx; : j = 1,2,...,g} (here * is
the complex transpose, rather than just transpose) and shows that a
matrix-valued analytic function W, on the g-fold polydisc, such that
W(X) is a contraction for each tuple of commuting strict contractions
X = (Xiy,...,X,) can be written as I — W ()W (w)* = Y H;(z)(1 —
z;w;)H;(w)*. Agler and McCarthy ﬁ%prove a generalization involving a

*

finite collection of scalar polynomials in place of 1 — z;

ZUJ'.



Our noncommutative Positivestellensatz result is also related to a re-
sult of Blecher and Paulsen which treats a contractive, rather than pos-
itive, version of (ﬁ%mﬁhich, when translated as best I can, treats a
situation more special than hereditary. For instance, the Blecher and
Paulsen result specialized to the polydisc says, if W is matrix-valued
and analytic in a neighborhood of the polydisc, then W (X) is a con-
traction for each tuple X of commuting strict contractions, if and only
if W can approximated (in a suitable sense) by functions of the form
CoD1C1D5Cs ... D, C,,, where the C; are (constant) contraction matri-
ces, the D; are diagonal matrices whose diagonal entries are contractive

analytic functions on the polydisc.
77
BILL. This could be omitted? Their argument involves rep theorem

for operator algebras which in the end is really a HB separation argument.

However, the actually statement is a bit afield from ours.

When all of the z; commute but they do not necssarily commute with
. thm:main
their transpose x Theorem T.2 should go through too, however we have
not checked it carefully.

Also related to the NC Positivestellensatz is polynomials which are

actaully sums of squares, that is, they have the representation 7?7 77

e For x; which are unitary McCullough proved ?? SCOTT 77 []|??

e A noncommutative polynomial ¢ in N, which is positive ”every-
where”, that is on Cp where P consisists only of the polynomial

. 0
p =1, is a sum of squares. Helton H

10
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2 Convex Positivity Domains

Now we specialize our noncommutative Positivestellenstaz to convex

domains and find that the structure is very rigid. We shall prove the
. . . . . thm:main . .

finite dimensionality assertion of Theorem [I.2. To aid with the proof

we introduce several properties of positivity domains and several natural

notions of convexity.

2.1 Properties of Positivity Domains

Proposition 2.1 Given a set P of polynomials in My (N.), or in My (N),
or in My (N.N). The positivity domain Dp has the properties that it is

closed with respect to the operations:

1. Reducing Suppose X 1is a tuple of operators on Hilbert space H
which lies in Dp and K is a subspace of H which is invariant under
every operator X; and X]T in the tuple X, and suppose V is an
isometry from K into H. Then the tuple of operators VI XV on K
is in Dp. In particular, Dp is closed under conjugation UT XU by

a unitary operator U.

2. Direct Sums Suppose X s a tuple of operators on Hilbert space
H, and suppose Y 1is a tuple of operators on Hilbert space K. If both
X andY are in Dp, then the direct sum X @Y, which is a tuple of
operators on H @ K, is in Dp.

Proof This is an immediate consequence of the fact that
PX DY) =p(X)®p(Y).

11



2.2 Convexity

A positivity domain Dp is closed w.r.t compression means: suppose
X is a tuple of operators on Hilbert space H which lies in Dp and K
is a Hilbert space and suppose V is an isometry from K into H. Then
the tuple of operators VI XV on K is in Dp. In particular, Dp is closed

under conjugation U7 XU by a unitary operator.

Compression is a stronger property than reducing, in that K need not
be an invariant subspace and probably it is not enjoyed by all positivity
domains. However, we now see that convex positivity domains are closed

w.r.t compression.

Lemma 2.2 Every convex reducing domain is closed w.r.t compression.

In particular, every convex positivity domain is closed w.r.t compression.

Conversely, a domain D which is closed w.r.t. direct sums and com-

Pression 1S Conver.

Proof

Suppose X is a tuple form B(H) suppose K is subspace of H;. Cal-

A B
culate partition X w.r.t K to obtain X = . . We want to show
B* D

that the projection V := (I 0) produces A = V' XY in Dp.

A0 1({A B

+110 A B 1 0
0 D 2\ BT D 210 -1 BT D 0 —1

1 0
which belongs to Dp, because it’s convex and because is uni-

0 —1

A0
tary. Since K reduces we get that A € Dp.
0 D

Proof of the converse. Given real numbers ay, ay satisfying a? +a3 = 1

construct an isometry V : H® H — H by
Vi (af af ).

12



If X,Y € D, then their direct sum X &Y is in D, so
a?X +a3Y =al Xai+a3Ya, =V (X DY)V

isin D. ee

2.3 Proof of Finite Dimensionality

. . thm:main
For a convex positivity domain D the Theorem 1.2 gives a bound on the
dimension of Hilbert space H needed in the Positivestellensatz. Now we

prove this fact which we state again in a form suited to our proof.

Proposition 2.3 Let P be a collection of symmetric polynomials from
My (N)), respectively My (N)), respectively My (N N) and suppose
Dy is a bounded conver positivity domain. If q is a symmetric X £
matriz-valued My« (N.)) polynomial of degree d and if ¢ ¢ Cp, then there
exists a Hilbert space H of dimension at most ZZS(?Q)”, a Non-zero
vector v € H, and a tuple X = (X1,...,X,) of operators on H such that
X € Dp, but < q(X)y,y> <0.

From the Positivestellensatz, there exists a tuple Z = (Z3,...,7Z,)
acting on a Hilbert space H and a non-zero vector v = ®7; € ®{H such

that < ¢(Z)7y,y > < 0. Here ¢ € M;;(N,) and has degree d. Let
Ky =span{Z"y; : w is a word of length at most d, j =1,---,(} C H.

Then K has dimension at most equal to the total number of words
w of length at most d times ¢. Since there are 2g generators for the

words in N, we get K, has dimension at most £ >¢(2g)".

If P is the projection of H onto K, then < ¢(PZP)y,y >=< q(Z)~,v >
< 0. On the other hand, convexity implies PZP € Dp, since by Lemma
hm:compress
35 the domain Dy is closed under compression. This proves the theorem
by taking X := PZP. ee

A tighter bound on dimension is immediate for N* and N, N, since

there are fewer words. The bound is ¢ X ¢(g)". CHECK?? Jeff??

13



END NEW

ORIGINAL PROOF - DELETE 7?7

From the Positivestellensatz, there exists a tuple Z = (Z,..., X,)
acting on a Hilbert space H and a non-zero vector v = &7; € @&{H such

that < ¢(X)v,v >. Here ¢ € M;(N.) and has degree d. Let
M = span{X"“y; : w is a word of length at most di, j =1,---,¢(} C H.

Then M has dimension at most £ ¥2(2¢)" and if P is the projection of H
onto M, then < ¢(PXP)~y,v >=< p(X)7y,v >< 0. On the other hand,
PXP € Dp by the heavy convex hypothesis.

14



3 Separating Cp from Outsiders with a Linear Func-

tional

This section gives a Hahn-Banach result for sets of the type C5. It is
based on a general theorem called the Krein extension theorem, which
applies to linear functionals which are non-negative on cones meeting
certain properties. In this section we first show that the cone Cf; has the

needed properties. Then we build our separating linear functional.

3.1 Properties of Cp

We shall be working with bounded sets Dp and we first focus on the

structure related to boundedness. Recall b; = C* — x;rxj and b denotes
the set of polynomials b = {by,---,b,}; likewise b corresponds to Ej =
C? — zjx].

Lemma 3.1 If w € F, is a word of length n,

1. in N, then C?" —wTw € Cfb,l;}'
2. in N, then C*" —wTw € C}.

8. in NoN, then C* — wTw € Cf.

Proof. First consider the case of hereditary words w. We use (C? —
x]Tx]) C Cf and argue by induction. Accordingly suppose the result is

true for the word v of length n and consider w = z;,v. We have,

(€ —wTw) = C*HC*™ — vTv) + 0" (C? — x5, )v. (5)

This implies
(C?+2 —w"w) c C*HO*™ —vTv) + Cf

which yields the induction step for going from hereditary word v to hered-

itary word w.

15



When w is a word in z;,zf which is not necessarily hereditary we

proceed as before but also consider w = x%v, and obtain

(C? 2 —wlw) = C*(C?" —vTv) + 0T (C? - xjox%)v. (6)

q:CbdHerdeq ; CbdHerdT
Combine (IE)) and (b ) to obtain the induction step for going from words

v in N, to words w in N,.

For words in symmetric variables, that is in N the same argument

prevails. ee

16
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Lemma 3.2 Suppose \ : My (N,) — R is linear.

1. If X is non — negative on Ci, and if N(I) = 0, then X = 0 on
My (NN).

2. If the variables x; are all symmetric and if X is non — negative on
Ct, together with AX(I) = 0, then A =0 on M (N).

3. If \ is non — negative on Cfb by and if N(I) = 0, then A = 0 on
A4}Xl(jvl)-

Proof.

em:incalC
Using Lemma 213. [ anal the definition of Cf, for a word w € F, of length
n?

1@ (C*" —whw) =" e, (C*" — ww)ef € C;.
k

Here ey, ..., e, is the standard basis for R® and el is viewed as the 1 x ¢
matrix-valued constant polynomial. Since A is non-negativeon Cj, we
have A(I @ (C?" — wTw)) = 0. As A(I) = 0, we have —\(I ® w"w) > 0,
which since wTw € C} implies that A(I ® wTw) = 0.

Given a unit vector h; € R’ by choosing an orthonormal basis {h1, ha, . . ., h}

for R, writing I = Zh,jhf, and considering these as constant polyno-

mials, it is evident that A(hih{) = 0, since h;jh!? € Cj for each j. By
scaling, the unit vector hypothesis on h; may be dropped.

If h € R, then considering hel as the M, -valued constant polyno-

mial (here e; is first standard basis vector in R?) shows
hhT @ (C*" — whw) = hel (I @ (C* — w"w))e,h"

is in Cf. Hence, as before, A\(hh! @ w'w) = 0.

17



Now we do a critical calculation. First we do it for hereditary words
vTw, since this calculation specializes easily to the other cases. Suppose

g,h € R® and v"w is an hereditary word. For ¢ real, let

r= (hT®v) +t(gT®w),

T

so that r is a Mj,-valued polynomial. Since ' r is in C,f,

0 < A(rTr) = AMhhT @vTv) +tA(hg” @vT w+gh” @wv) +t*A(gg" @w’w)
for all real ¢. Thus,
AMhg" @ v"w + gh" @ wv) = 0. (7)

The proof of our lemma for the hereditary case is complete, since every
symmetric M;,;-valued hereditary polynomial is a linear combination of

polynomials of the form h¢? @ vTw+gh’ @w'v. So A = 0 on My (NN).

The proof that A = 0 on My, (N,), follows from Lemma Ilfmlzi;gai;ell
eq:lamdal
as from (7 by taking w to be a word in M;y,;(N,) and v to be the empty

lem:incalC,

word??. Use that Lemma tS.I implies rlr € C{byl;}ﬁ. With v the empty

eq:lamda0

word the equation becomes ( ecomes A(hg?l @ w + gh? @ wT) = 0.

The symmetric case follows ?? immediately, from the A, case by

restricting to symmetric variables.?TRUE??

SCOTT?? define tensor product of words with matrices 7?7 empty
word and its marelous properties. We used it above. LOOK AT OTHER
NOTES??

18
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The collection My (N,) of all symmetric M;,,-valued NC polynomials
is a real vector space. The collection Cff, consisting of those M, valued
elements of Cp is a cone in M;,;(N.); i.e., C5 is closed under sums and
multiplication by non-negative scalars and the relation s > ¢ if and only
if s —t € Cp on My (N,) makes M (N,) an ordered vector space. One

. lem:interior .
proof of this for bounded Dp can be gotten from Lemma t3.3 below which

treats a more refined situation.

DELETE 7?7 OK??

If M is a (real) subspace of M,y (N.) and if A : M > R is linear, then
)\ is positive provided A(s) > 0 for each s € C5 N M. Let I denote the

My ;-valued polynomial constantly equal to I, the ¢ x ¢ identity matrix.

7?7 BILL LOOk AT positive NOT A CONSISTENT DEF because
positive depends on which M. tune it ?? [6/10. The M could be
moved to later SCOTT? WHERE LATER M causes expository problems
. Needed to define A positive for the lemma immediately below only on

the whole space, but later needed for the subspace.]

END DELETE??

Let |w| denote the length of the word w € F,. An hereditary M-
valued polynomial s has degree at most d if s = 37| ju)<d Syl w. The
degree of s is d if it has degree at most d, but not degree at most d — 1.
The definitions of the degree of NC polynomials in the classes A/ and
N, is similar. For instance, s in N or in A, has degree at most d if
$ = Y jw|<d Sww. The only difference being that, in the first case w € F,

and in the second w € Fy,.

Let Cf;‘d denote those elements of C% of degree at most d and let
Mlxl(./\/*)|d denote the symmetric M;,;-valued polynomials of degree at
most d. Note that M1xz(N*)|d is a finite dimensional vector space and as

such is a Banach space.

19



Lemma 3.3 The set Cy, — I is absorbing in My (N.),, and

My(N2),, = Cija — Chja

BILL WONDERS: M1xz(/\/*)\d = Sos -SoS. which can be proved by
taking the LT DL decomposition of the Gramm matrix. Why the com-

plication with b7

Proof. We do the hereditary case first, since the calculations involved
include the calculations for the other cases. For the hereditary case, let
g,h € R and v,w € F, with |w|, |v| < d be given and assume that C' > 1
so that C%¢ > C?lvl and C?%¢ > €', Observe, an arbitrary hereditary
polynomial (in M;y,(N.N) ) is a linear combination of terms which can

be expanded as
gh" @ wTv + hg' @ vTw
= (" ow+h"@v) (¢" @w+h" @v) — g¢" @ vIv — hh! @ wlw
and note that
C*(gTg+hTR)I — g¢" @ vTv — hhT @ wTw
=gg9" ® (C*" — v"v) + hh" @ (C*" — w"w) + C*(g" gI — g¢") + C*!(K" b1 — hi")
is in Cp),. Since also
(" ow+h" @v) (¢" @w+hT @) (8)

is in Cé‘d, it follows that

C* (g g+ h"h)I — (gh" @ w'v + hg" @ v w) € Céu.
Thus
gh" @w" v+hg" @v"w = C*(g" g+h"h)I—( a poly in Cf;‘d) C Cf;‘d—Cf;‘d
which proves one assertion of the theorem. Further, (ﬁaﬁes

t(—gh” @ w'v — hg” @ vTw) € Cf;‘d -1,
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where t = (C**(g"g-+h"h))~" > 0. Thus, as every member of M. (N.),,
is a finite linear combination of terms of the form —gh! ® w'v — hg" ®

viw e Mlxz(/\/*)|d, the set Cff,‘d — I is absorbing. ee

SCOTT ?? DO N and N.. These are easier??
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We shall be working with bounded sets Dp and instead of writing P
to indicate that we have included polynomials b, l~), we shall henceforth

use the convention P = P, that is P includes P = P.

Lemma 3.4 Suppose the set P of polynomials containsb. If A : Mlxl(./\/*)|d >
R is a linear functional which is non-negative on C%Id’ and not identically
zero, then there exists a linear functional \ : My (N,) — R extending A

which is non-negative on Ch.

Proof. 7?7 JEFF owns this proof 7?7

We first take up the hereditary case. The real vector space My, (N,)
with the relation s > ¢ provided s —t € C5 is an ordered vector space, in
the sense found in Conway’s text on functional analysis. 77 WHATS

THAT SENSE??  Given gh” ® v"w + hg" ® w'v we have
(¢"@v—hT@w)T (¢* @v—hT @w)+(gh @vTw+hg" @w™v) = g¢" @vT v+hhT @uwT.
Hence,
(gh” @ vTw + hg" @ wv) < gg" @ v'v + hhT @ ww.
From Lemma %efli:_ilnt%l(c)w follows that
(ghT @ vTw + hgT @ wTv) < C?ggT 4+ CAWIpAT,

where |v| and |w| are the lengths of the words v and w and C' > 0 is our

constant such that C? — mjrncj € P for each j. Since every element of

My (N,) is a finite linear combination of those of the form (gh” @ vTw +
hg' @ wlv), for each p € My (N,) there exists a number ¢ > 0 such that

p < tl.

7?7 JEFF - will lookup Krein Ext

Hence I is an ??order unit?? in M, (N.) and M (N),, is ?7cofinal??

|
in M (N,). The result now follows by a version of the Hahn-Banach
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Theorem, often called the Krein Extension Theorem, see for instance

Conway’s text on functional analysis page 87 item 9.8.

Now do other cases. Similar? ee
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3.2 Separating a Polynomial from Cp

: CP
Now we give the main result of Section tsfc =

Proposition 3.5 If q is in M« (N,), My (N), My (NN) but not in
the corresponding Cs, then there is a non-zero linear functional A
A My (N = R, respectively X : My (Ny) — R,
respectively X\ : My (N,) — R

which is non-negative on C5 and non-positive elsewhere.

Proof. We focus on the M;,;(N,) case since the others are very similar.
??SCOTT - im bluffing OK?? Do you believe THIS ??  Suppose ¢ ¢ C5
and has degree d. Let B = {tq:t > 0}. Both Cf;‘d and B are convex, the
intersection is empty, and C%Li — I is absorbing by Lemma %%ilﬁ%e,
by a result in Rudin’s Functional Analysis (Exercise 3 Chapter 3), there
exists a non-zero (real) linear functional A : Mlxl(./\/*)|d — R such that
A(Cff,‘d) N A(B) contains at most one point. Observe that A(Cff,‘d) +
{0} as otherwise Lemma %%Tﬁi%s Misq(N5),, is contained in a closed
hyperplane in Mlxl(/\/'*)|d. Because 0 is in Cf;u and in the closure of B, the
sets A(B) and A(Céu) each have 0 in their closure (here we have used that
A(B) and A(Céu) are finite dimensional so that we can unambiguously
speak of closures). The sets are also convex. Hence A(Céu) NA(B) is
either {0} or empty. In the first case, A(¢) = 0 and, without loss of
generality, A(C%Li) > 0. In the second case, it again may be assumed
that A(Cff,‘d) > 0 and A(g) < 0. Thus, there exists a linear functional
At My(Ny)), = R which is non-negative on Cff,|d such that A(g) < 0.
By Lemma E’)%unctional A extends to a non-zero linear functional

A @ My (N,) = R which is non-negative on Ck.
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lem:Hilbertspace‘

4 Representing Linear Functionals

This section is devoted to a representation which will soon be applied to

A of the previous section.

Proposition 4.1 If A : My, (N,) — R (resp A : My (N.N) = R, resp.
At My (N) — R ) is positive and not identically zero, then there exists
a real Hilbert space H, a tuple X = (Xi,...,X,) of operators (resp.
operators, resp. symmetric operators) on H, and a non-zero vector y €
@ H, the { fold direct sum of H, such that p(X) = 0 for allp € P and for
any symmetric s € Myyo(N,)-valued polynomial (resp s € Mygo(NN),
resp s € My y(N)),
< s(X)y, vy >= A(s).

Proof for M;,,(N,) Case. Given 1 x ¢ matrix-valued polynomials s, t

with entries in A, define
<st>= (1/2)A(t"s +5t) (9)

and verify that < s,¢ > is indeed bilinear. It is positive semi-definite
as s's € Cp and \ is positive. Let H be the Hilbert space formed by
moding out < -,- >-null vectors and forming the completion. Note H

may be infinite dimensional.
Recall our constant C' > 0 such that C? — 2] z; € Cp and C? —z;2] €
Cp. Since

C? < 5,8 > — <xjs,mjs >= s (C* — x] x;)5) (10)

and since s"(C? — x]x;)s €77C??, it follows that multiplication by z; on
1 x ¢ matrix-valued N, polynomials defines a bounded operator X; on

H. Likewise

C?<s,8>—< :UJTS,:UJTS >= \(sT(C? — xjxf)s)

implies multiplication by :cJT on 1 x ¢ matrix-valued is bounded on H.

Denote this multiplication operator by X; and denote multiplication by
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x]T by X]-T. They are both bounded and they are adjoints of each other,
since

< TS, 5 >= )\(sTxJTs) = )\(sTx;Fs) =< s, a:JTs > .

Now suppose p € Cp is mxm and symmetric. We shall be substituting
X for z; in p(x) and this forces the substitution X for 27 in p(x), since
XjT is the adjoint of XjT. If r is an m vector where each entry isa 1 x /
matrix-valued polynomial, then

<p(X)r,r >=3" < pap(X)r, 70 >= A 70 pasprs) = A(r"pr) >0,

a,b a,b
where r is also canonically identified with the m x ¢ matrix-valued polyno-
mial and where the inequality results from r"pr €??C??. Hence p(X) =
0.

Let -y, denote the ( equivalence class of the) constant (basis) polyno-

. . . lem:strict
mial ;R and note that Y fyjfij = [. Thus, in view of Lemma 8.1, which
says that A(I) # 0, there is a jo such that < 7y, 7j, >= A(v;,75,) > 0.
Hence the vector v = @v; is non-zero. Finally, if s is a symmetric M-

valued polynomial, then

< s(X)7, 7 >= A Ve S ) = As)

where the last equality takes into account that s is symmetric and that
YL s 18 the £ x £ matrix with s, in the (a,b) entry. This completes

the proof for My ;(N,) polynomials. ee

Proof for M;,,(N) Case .

The construction for the M;,;(N') case is very similar to that for the

M (N) case. Given 1 x ¢ matrix-valued polynomials s, ¢ with entries
in NV, define

< s,t >= \sTt) (??2USET = transpose??) (11)

and verify that < s, > is indeed bilinear. It is positive semi-definite as

s?2 € Cp and ) is positive on Cp. Let H be the Hilbert space formed by
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moding out < -,- >-null vectors and forming the completion. Note it is

infinite dimensional.

Recall our constant C' > 0 such that C? — x? € Cp. Since
C? < 8,58 > — < x;8,1;8 >= \(5(C? — z;1;)5)

and since s(C* — 23)s € C, it follows that multiplication by z; on 1 x ¢
matrix-valued polynomials defines a bounded operator on the Hilbert
space H. Denote this multiplication operator by X, and note it is sym-

metric, since

< xj8,8 >= A(sxjs) = A(sx;s) =< s,xj5 > .

From this point on the proof is exactly the same as it was in the

My (N) case. ee

Proof for Hereditary M;,;(N.N) Case .

Now we turn to the hereditary case. Given 1 x /¢ matrix-valued polyno-
mials s, ¢ with entries in A/ (so s, ¢ contain no transposes and consequently

sr and r”s are hereditary), define
1
< st >= 5A(th + sTt) (12)

and verify that < s,¢ > is indeed bilinear. It is positive semi-definite
as s's € Cp and A is positive. Let H be the Hilbert space formed by
moding out < -,- >-null vectors and forming the completion. Note H

may be infinite dimensional.

‘ eq:innerproduct

eq:repBd
Recall our constant C' > 0 such that C? — xij € Cp. Estimate (Iii)

gives us that that multiplication by x; on 1 x ¢ matrix-valued polyno-
mials defines a bounded operator on the Hilbert space H. Denote this

multiplication operator by Xj;.

T

In this case it is not true that X7 is multiplication by z;,

as :Ust is

not in A/. However, if P is an hereditary polynomial, P = ¥ P, ,v" w,
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X = (Xy,...,X,) is a tuple, and v = @v; and § = @0, are vectors, then
<P(X)y,6>=> Py < XYy, X" >

so that it is not actually necessary to have an explicit representation for
X7

Now suppose p € Cp is m x m and symmetric. If f is an m vector
where each entry is a 1 x ¢ matrix-valued polynomial, then

<p(X)r,r >=3" < pap(X)r, 70 >= A 70 paprs) = A(r"pr) >0,

a,b avb

where r is also canonically identified with the m x ¢ matrix-valued polyno-
mial and where the inequality results from r”pr € Cp. Hence p(X) = 0.
We emphasize that in the calculations above r7pr as well as all other

polynomials occuring are hereditary.

From this point the proof is exactly as it was for the M. (N,) case.

thm:main
5 Proof of Theorem 1.2

hm:se
Suppose is in My (N,) and ¢ ¢ Cp. By Proposition %.5 there is a non-
zero positive linear functional A : My (N,) — R which makes A(¢) < 0.

lem:Hilbertspace

By Proposition h L, there exists a Hilbert space H, a non-zero vector
v in ®YH and a tuple of operators X = (Xi,...,X,) on H such that
p(X) = 0 for all p € P and for each symmetric M;,;-valued polynomial
s, we have < s(X)v,y >= A(s). In particular, substituting ¢ for s gives,
< q(X)v,7 >= Agq) = A(g) < 0. Since v is non-zero, it follows that
there is an X € Dp such that ¢(X) is not strictly positive definite and

. L. thm:main
this proves the contrapositive of Theorem [I.2.
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Bill SoS operator paper??
SCOTT SoS operator paper 77

Lotsa guys in Remark [6/10. Think all are accounted for excepting
Agler and Mcarthy. But I just recall John saying something about a
theorem like Jim’s on the polydisc starting with a finite collection of

scalar polynomials, rather than 1 — xeJT]
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7 DUMP DUMP

7.1 ORIGINAL VERSION of Proof of Representation

Now we turn to the hereditary case. Given 1 x ¢ matrix-valued N poly-
nomials s, (so s,t contain no adjoints here 7?7 SCOTT appropriate here

?? and so that s”r and r”'s are hereditary), define
1
< st >= 5()\(th + sTt) +iA(—itTs +isTt)) (13)

and verify that < s,¢ > is indeed sesquilinear. It is positive semi-definite
as s's € Cp and ) is positive. Let H be the Hilbert space formed by
moding out < -, >-null vectors and forming the completion. Note it is

infinite dimensional.
Recall our constant C' > 0 such that C* — 27 z; € Cp.

Since

C? < 5,8 > — < x;8,158 >= \sT (C? — x?xj)s)

and since s7(C? — x] x;)s €??C??, it follows that multiplication by ;

on 1 x ¢ matrix-valued polynomials defines a bounded operator on the
Hilbert space H. Denote this multiplication operator by X; and denote
multiplication by «] by XT. They are both bounded and they are ad-

joints of each other, since

< ;5,5 >= )\(ST:UJTS) = )\(sTx;Fs) =< s, :UJTS > .
SCOTT bill added detail above and below. OK?? [6/10. Bill, In the

N and N, cases X]T is multiplication by xf (and of course in the N case

this is just the same as x;). However, in the hereditary case, x]Ts is not an
analytic (adjoint free) polynomial so that < s,]s > is not defined. The
difficulty is with say the definition of < x7's, 2]t > which would involve
non-hereditary polynomials like sTxgx;Ft. As a side note, this really gives
non-self adjoint operator algebra as X ]T is the compression of mu All else

looks fine.|
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Now suppose p € Cp is m xm and symmetric. We shall be substituting
X for x; in p(x) and this forces the substitution X for 27 in p(x), since
X} is the adjoint of X. If r is an m vector where each entry is a 1 x ¢
matrix-valued polynomial, then

<p(X)r,r >=3" < pap(X)rp, 10 >= A _ 12 paprs) = A pr) >0,
a,b avb

where r is also canonically identified with the m x ¢ matrix-valued polyno-
mial and where the inequality results from rTpr €??C??. Hence p(X) =
0.

Let 7; denote the (class of) the constant polynomial x; and note that
lem:strict

>;7j = I. Thus, in view of Lemma 8.1, there is a jo such that <

Yior Vio >= MVjoj,) > 0. Hence the vector v = @v; is non-zero. Finally,

if s is a symmetric M;,;-valued polynomial, then

< s(X)7,7 >= A 1a sapm) = Als)

where the last equality takes into account that s is symmetric and that
YL 5447 is the £ x ¢ matrix with s, in the (a,b) entry. This completes

the proof for hereditary polynomials. ee

8 DUMP — Proof of a Lemma ORIGINAL VER-
SION -DELETE??

Lemma 8.1 Suppose \ : My (N,) — R is linear. If X is positive, and
if A\(I) =0, then A = 0.

lem:stric
The proof of Lemma E.I Eltepénds upon the boundedness hypothesis
on P.

Proof. First consider the case of hereditary polynomials, N,N. Using
lem:incalC L.
Lemma b.l and the definition of Cp, for a word w € F, of length n,

I® (C*" —whw) =" e, (C*" — ww)ef € Cp.
k
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Here e1, ..., e, is the standard basis for R® and el is viewed as the 1 x ¢
matrix-valued constant polynomial. Since \ is positive, (I ® (C** —
wrw)) > 0. As A(I) = 0, we have —\(I ® w"w) > 0, which since
wTw € C5 implies that A(I @ wlw) = 0.

Given a unit vector h; € R by choosing an orthonormal basis {h1,ha, ...

for RY, writing I = Zh,jh;ﬁ, and considering these as constant polyno-

mials, it is evident that A(hyh]) = 0, since h;jhl € C} for each j. By
scaling, the unit vector hypothesis on h; may be dropped.

If h € R, then considering hef as the M, ,-valued constant polyno-

mial (here e, is first standard basis vector in R?) shows
hh" ® (C*™ — w'w) = hel (I @ (C* — w'w))e;h"
is in ??C??. Hence, as before, A(hh! @ wTw) = 0.
Suppose g, h € R and v"w is an hereditary word. For ¢ real, let

r=(h"®v)+tlg" ®w),

so that r is a M, ,-valued polynomial. Since rr is in Cf;,

0 < A(rTr) = AM(hhT @vTv) +tA(hg” @vT w+gh” @wv) +t*A(gg" @w’w)

for all real t. Thus, A(hg? ® vTw + ghT ® wTv) = 0 and the proof
for the hereditary case is complete since every symmetric M;,.;-valued
hereditary polynomial is a linear combination of polynomials of the form
hg' @ vTw + gh” @ wlv.

7?’NOW DO THE OTHER CASES. Very similar.?”? eeEND ORIG
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