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Abstract
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1 Introduction

First we de�ne NC polynomials and set notation for them. Then we

describe a representaion for certain polynomials, then we state our non-

commutative Positivestellenstaz which says which polynomials have this

representation.
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1.1 NC Polynomials and Special Classes

Let Fg denote the free semi-group on the g generators x = fx1; : : : ; xgg;

in common language Fg is a set of words in x1; � � � ; xg. Given a word

w 2 Fg,

w = xj1xj2 � � �xjn; (1) eq:wordw

a real Hilbert space H, and a tuple X = (X1; : : : ; Xg) of operators on H,

let

Xw = Xj1Xj2 � � �Xjn: (2) eq:Xw

Our results apply to several classes of polynomials and we now introduce

these classes.

BILL LOOK UP EXPOSITION IN hmcc.tex ?? [6/10 yeah. seems

like we had it pretty polished there.]

1.1.1 Polynomials in Symmetric Entries, N

Let N denote the polynomials, over the �eld of real numbers R, in the

noncommuting generators x = fx1; � � � ; xgg. N consists of real linear

combinations of words w in x. Also N has an involution T , that is, given

the word w from Fg viewed as an element of N , de�ne

wT = xjn � � �xj2xj1

and if p =
P
pww 2 N , de�ne pT =

P
pww

T . Here we emphasize that

each pw is a real number. We call a polynomial p in N symmetric pro-

vided pT = p.

Often we shall be interested in evaluating a polynomial p in N on

a tuple of matrices or operators that is, if p =
P
pww is in N and

X = (X1; : : : ; Xg) is a tuple of real symmetric operators on a real Hilbert

space de�ne p(X) =
P
pwX

w, where Xw = Xj1Xj2 : : :Xjn as before.

Thus, in the case of N , we only allow substitution by real symmetric

operators. Often the Hilbert space is simply R` , and so the operators Xj

are real symmetric `� ` matrices.
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BILL -EXAMPLES ??

1.1.2 General Polynomials, N�

LetN� denote the polynomials in the 2g non-commutative symbols fx1; : : : ; xg; x
T
1
; : : : ; xTg g.

N� has an involution T de�ned on it on it, which behaves in the conven-

tional way, for example,

if w = xj1xj2 � � �xjn, then wT = xTjnx
T
jn�1

� � �xTj1

if w = xj1x
T
j2
xj3 � � �xjn , then wT = xTjnx

T
jn�1

� � �xj2x
T
j1
:

The involution onN� can be conveniently thought of in another way. The

polynomials in N� as polynomials in the 2g non-commuting variables

fx1; : : : ; xg; xg+1; : : : ; x2gg and identify xg+j with xTj . In this way the

involution on N� is the same as that on N in 2g, rather than g, variables.

Often we shall be interested in evaluating a polynomial p in N on a

tuple of matrices or operators. To de�ne the substitution for N�, given a

word w 2 F2g, and the tuple X consisting of square matrices with entries

from R, substitute Xj for xj and XT
j for xj+g for 1 � j � g and extend

to all of N� by linearity. For instance, if g = 2, for

p = x1x
T
2
x1 + 3xT

2
x1x

T
1
, we have p(X) = X1X

T
2
X1 + 3XT

2
X1X

T
1
.

Here XT
j is the transpose of Xj.

We can also make the analogous substitution if X = (X1; : : : ; Xg) are

operators on a real Hilbert space.

BILL -EXAMPLES ?? Je� says fwd and bkwd shift ops on `2.??

1.1.3 Hereditary Polynomials, N�N

One type of polynomial we consider is a subset ofN� called the hereditary

polynomials, denoted by N�N . A polynomial p 2 N� is hereditary if

the transposes, if any, always appear on the left. Note that the product

of two hereditary polynomials need not be an hereditary polynomial.
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In the hereditary case, given the word w, the de�nition of the word

wT is induced from the de�nition of T on N�. Note hereditary words

have the form

XvTw = (Xv)TXw: (3) eq:hword1

If p =
P
pv;wv

Tw is in N�N , let pT denote pT =
P
pv;w(v

Tw)T , which

the reader notes is also a hereditary polynomial. Also given a Hilbert

space H and a tuple X = (X1; : : : ; Xg) of operators on H, the de�nition

of p(X) is induced from that on N�.

EXAMPLE(S) HERE which can be used later to see that in some

cases ?must consider operators and not matrices. SCOTT will �ll??

1.1.4 Matrix Valued Polynomials, Ml�l(N�) etc

We wish also to consider matrix-valued NC polynomials or, equivalently,

NC polynomials with matrix coeÆcients. Let Ma�b denote the a � b

matrices with entries from R.

A Ma�b-valued hereditary polynomial is a polynomial of the form

p =
P
pv;w 
 vTw, where the sum is �nite and each pv;w 2 Ma�b. Given

our tuple X, the substitution rule is now

p(X) =
X

pv;w 
XvTw

and the involution becomes pT =
P
pTv;w
(vTw)T , where pTv;w is of course

the transpose of the matrix pv;w. The de�nitions for N and N� are

similar. A matrix-valued NC polynomial p is symmetric provided pT =

p, which is equivalent to the coeÆcient matrices satisfying pTv;w = pwT ;vT .

These classes of symmetric matrix-valued polynomials are denoted

Ml�l(N ), Ml�l(N�), or Ml�l(N�N ): We use M1�1 to denote [`>0Ml�l;

it is not a closed set.

BILL PUT IN EXAMPLE ??

If p is anMb�c-valued polynomial, q is aMb�a-valued polynomial, and

r is an Mc�d-valued polynomial, then qTpr is a Ma�d-valued polynomial.
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There are no consistency requirements in the N and N� cases other than

q and r should be N or N� polynomials respectively. However, in the

hereditary case q and r should both be transpose free. A special case

of particular importance is when p is Mb�b-valued, q is Mb�a-valued and

r = qT .

1.2 Decomposition as Weighted Sums of Squares

Fix a collection of symmetric matrix-valued polynomials P from either

M1�1(N ), M1�1(N�), or M1�1(N�N ).

Let C`
P
denote positive linear combinations of sTps and rTr where

p 2 P and the sizes of s and r are such that the products make sense

and result in `�` matrix-valued polynomials. Hence, elements of C`
P
are,

Ml�l-valued NC polynomials of the form

q =
NX
1

sTj pjsj +
MX
1

rTk rk; (4) eq:decomp

for some integers M and N , polynomials pj 2 P and polynomials sj and

rk, where say pj isM`j�`j -valued, sj isM`j�`-valued and rj isM1;`-valued.

We emphasize that, while P may be an in�nite set of polynomials, the

decomposition above only requires a �nite subset of them. Let CP denote

the union of C`
P
over `. Note that the polynomials in CP are symmetric.

1.3 Domain of Positivity

The positivity domain of P, denoted DP , is the collection of tuples

X of operators on a real separable Hilbert space H such that p(X) is

positive (semi-de�nite) for all p 2 P. Note that DP is really a graded

object with the grading given as follows. For each � = 1; 2; : : : ;1, �x a

nest of Hilbert spaces H� of dimension � inside of H, then

DP � [�fX = (X1; : : : ; Xg) : Xj 2 B(H�); p(X) � 0 for every p 2 Pg;
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where B(H) is the collection of (bounded) operators on H and p(X) � 0

means p(X) is PSD.

A positivity domain DP is called convex provided that, if X and Y

are both operator tuples on the same Hilbert space H and both X and

Y lie in DP , then convex combinations c1X + c2Y belong to DP . Here

real numbers c1; c2 � 0 satisfy c1 + c2 = 1. A positivity domain is

bounded provided there is a constant C > 0 such that if X 2 DP , then

kXjk � C for each j = 1; 2; : : : ; g.

We now de�ne a special set of polynomials, and state our �rst lemma.

Henceforth set bj := C2 � xTj xj and let b denote the set of polynomials

b := fb1; � � � ; bgg.

thm:bd2 Lemma 1.1 For any j between 1 and g

~bj := C2 � xjx
T
j belongs to Dbj .

Proof. �
1 �x

�0B@ 1 x

xT 1

1
CA
0
B@ 1

�xT

1
CA = 1� xxT :

��

1.4 A NC Positivestellensatz

We shall be working only with bounded positivity domains, in which case

we can, with no loss of generality, assume that b is appended to P. More

precisely, we take the convention:

� In the hereditary case and in the N� case , for each j we adjoin the

polynomial C2 � xTj xj to P and obtain a bigger set ~P.

� In the N case, for each j we adjoin the polynomial C2 � x2j to P

and obtain a bigger set ~P.
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thm:main Theorem 1.2 Suppose P is a ??�nite -SCOTT ?? DELETE?? list

of symmetric matrix polynomials inM1�1(N�), or respectivelyM1�1(N ),or

respectively M1�1(N�N ). Suppose DP is bounded and q is a symmetric

Ml�l-valued NC polynomial (in eitherMl�l(N ),Ml�l(N�), orMl�l(N�N )

depending upon P). If q(X) is strictly positive de�nite on DP , that is,

if q(X) � 0 whenever X 2 DP, then q 2 C`~P .

If in addition DP is convex, we need only verify q(X) � 0 for those

X 2 DP which are de�ned on a Hilbert space of dimension at most

`
Pd

0
(2g)n. From this test on �nite dimensional matrices we obtain q 2

C`~P .

The proof has two parts which dictates the organization of the rest of

the paper. The �rst is a Hahn-Banach result which separates C`
P
from any

polynomial q outside it with a linear functional �. The second represents

such linear functionals � using a matrix tuple X. That q is outside C`
P

forces q(X) not to be PSD. Before launching into all of this we have a

section which presents properties of convex positivity domains, since it

is a pleasent topic, and we prove the last assertion of the Theorem
thm:main

1.2 in

this section, see Proposition
thm:finiteI

2.3.
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1.4.1 Complex Hilbert Spaces - ?? FIX LATER

Every Hilbert space over the complex numbers is automatically a real

Hilbert space. Indeed the results we have stated hold for complex co-

eÆcient symmetric NC polynomials provided we test them on matrices

with complex entries.

Here we replace T with the Hermetian adjoint �.

Key defs are : ?? FILLIN??

The main theorem for complex coeÆcient polynomials is

thm:mainComp Theorem 1.3 Suppose P is a �nite list of self-adjoint matrix polynomi-

als in M1�1. Suppose DP?? is bounded and q is a symmetric Ml�l ??-

valued NC polynomial (in either Ml�l(N c), Ml�l(N c�), or Ml�l(N c�N c)

depending upon P). If q(X) is strictly positive de�nite on DP , that is,

if q(X) � 0 whenever X 2 DP, then q 2 C ~P
??.

1.4.2 Related Results| NEEDS TUNING

We are aware of several variations of Theorem
thm:main

1.2 with proofs much

like the one given here. In fact, the proof here borrows heavily from

Putinar and Vasilescu [PV0??], although the results there are for the

commutative N case, and much of the signi�cance of their work is for

the case of undbounded positivity regions.

Agler, in his seminal work on Schur class functions on the polydisc,

begins with the collection P = f1 � x�jxj : j = 1; 2; : : : ; gg (here � is

the complex transpose, rather than just transpose) and shows that a

matrix-valued analytic function W , on the g-fold polydisc, such that

W (X) is a contraction for each tuple of commuting strict contractions

X = (X1; : : : ; Xg) can be written as I � W (z)W (w)� =
P
Hj(z)(1 �

zjwj)Hj(w)
�. Agler and McCarthy

AM01

[?] prove a generalization involving a

�nite collection of scalar polynomials in place of 1� x�jxj.
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Our noncommutative Positivestellensatz result is also related to a re-

sult of Blecher and Paulsen which treats a contractive, rather than pos-

itive, version of (
thm:main

1.2) which, when translated as best I can, treats a

situation more special than hereditary. For instance, the Blecher and

Paulsen result specialized to the polydisc says, if W is matrix-valued

and analytic in a neighborhood of the polydisc, then W (X) is a con-

traction for each tuple X of commuting strict contractions, if and only

if W can approximated (in a suitable sense) by functions of the form

C0D1C1D2C2 : : :DnCn, where the Cj are (constant) contraction matri-

ces, the Dj are diagonal matrices whose diagonal entries are contractive

analytic functions on the polydisc.

??

BILL. This could be omitted? Their argument involves rep theorem

for operator algebras which in the end is really a HB separation argument.

However, the actually statement is a bit a�eld from ours.

|||||||-

When all of the xj commute but they do not necssarily commute with

their transpose xk Theorem
thm:main

1.2 should go through too, however we have

not checked it carefully.

Also related to the NC Positivestellensatz is polynomials which are

actaully sums of squares, that is, they have the representation ?? ??

� For xj which are unitary McCullough proved ?? SCOTT ?? []??

� A noncommutative polynomial q in N� which is positive "every-

where", that is on CP where P consisists only of the polynomial

p = 1, is a sum of squares. Helton
H02

[?]

��
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NEW jun 28

2 Convex Positivity Domains

Now we specialize our noncommutative Positivestellenstaz to convex

domains and �nd that the structure is very rigid. We shall prove the

�nite dimensionality assertion of Theorem
thm:main

1.2. To aid with the proof

we introduce several properties of positivity domains and several natural

notions of convexity.

2.1 Properties of Positivity Domains

Proposition 2.1 Given a set P of polynomials inMl�l(N�), or inMl�l(N ),

or in Ml�l(N�N ). The positivity domain DP has the properties that it is

closed with respect to the operations:

1. Reducing Suppose X is a tuple of operators on Hilbert space H

which lies in DP and K is a subspace of H which is invariant under

every operator Xj and XT
j in the tuple X, and suppose V is an

isometry from K into H. Then the tuple of operators V TXV on K

is in DP . In particular, DP is closed under conjugation UTXU by

a unitary operator U .

2. Direct Sums Suppose X is a tuple of operators on Hilbert space

H, and suppose Y is a tuple of operators on Hilbert space K. If both

X and Y are in DP , then the direct sum X � Y , which is a tuple of

operators on H �K, is in DP.

Proof This is an immediate consequence of the fact that

p(X � Y ) = p(X)
 p(Y ):

��
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2.2 Convexity

A positivity domain DP is closed w.r.t compression means: suppose

X is a tuple of operators on Hilbert space H which lies in DP and K

is a Hilbert space and suppose V is an isometry from K into H. Then

the tuple of operators V TXV on K is in DP . In particular, DP is closed

under conjugation UTXU by a unitary operator.

Compression is a stronger property than reducing, in that K need not

be an invariant subspace and probably it is not enjoyed by all positivity

domains. However, we now see that convex positivity domains are closed

w.r.t compression.

thm:compress Lemma 2.2 Every convex reducing domain is closed w.r.t compression.

In particular, every convex positivity domain is closed w.r.t compression.

Conversely, a domain D which is closed w.r.t. direct sums and com-

pression is convex.

Proof

Suppose X is a tuple form B(H) suppose K is subspace of H1. Cal-

culate partition X w.r.t K to obtain X =

0
B@A B

BT D

1
CA. We want to show

that the projection V := (I 0) produces A = V TXY in DP .0
B@A 0

0 D

1
CA =

1

2

0
B@A B

BT D

1
CA+

1

2

0
B@ 1 0

0 �1

1
CA
0
B@A B

BT D

1
CA
0
B@ 1 0

0 �1

1
CA

which belongs to DP , because it's convex and because

0
B@ 1 0

0 �1

1
CA is uni-

tary. Since K reduces

0
B@A 0

0 D

1
CA we get that A 2 DP .

Proof of the converse. Given real numbers a1; a2 satisfying a
2

1
+a2

2
= 1

construct an isometry V : H �H ! H by

V :=

�
aT
1
aT
2

�
:

12



If X; Y 2 D, then their direct sum X � Y is in D, so

a2
1
X + a2

2
Y = aT

1
Xa1 + aT

2
Y a2 = V T (X � Y )V

is in D. ��

2.3 Proof of Finite Dimensionality

For a convex positivity domain D the Theorem
thm:main

1.2 gives a bound on the

dimension of Hilbert space H needed in the Positivestellensatz. Now we

prove this fact which we state again in a form suited to our proof.

thm:finiteI Proposition 2.3 Let P be a collection of symmetric polynomials from

Ml�l(N�)), respectively Ml�l(N )), respectively Ml�l(N�N ) and suppose

DP is a bounded convex positivity domain. If q is a symmetric ` � `

matrix-valued Ml�l(N�)) polynomial of degree d and if q =2 CP , then there

exists a Hilbert space H of dimension at most `
Pd

0
(2g)n, a non-zero

vector 
 2 H, and a tuple X = (X1; : : : ; Xg) of operators on H such that

X 2 DP , but < q(X)
; 
 > � 0.

From the Positivestellensatz, there exists a tuple Z = (Z1; : : : ; Zg)

acting on a Hilbert space H and a non-zero vector 
 = �
j 2 �
`
1
H such

that < q(Z)
; 
 > � 0. Here q 2Ml�l(N�) and has degree d. Let

Kd = spanfZw
j : w is a word of length at most d; j = 1; � � � ; `g � H:

Then K has dimension at most equal to the total number of words

w of length at most d times `. Since there are 2g generators for the

words in N�, we get Kd has dimension at most `
Pd

0
(2g)n.

If P is the projection ofH ontoK, then < q(PZP )
; 
 >=< q(Z)
; 
 >

� 0. On the other hand, convexity implies PZP 2 DP , since by Lemma
thm:compress

2.2 the domain DP is closed under compression. This proves the theorem

by taking X := PZP . ��

A tighter bound on dimension is immediate for N and N�N , since

there are fewer words. The bound is `
Pd

0
(g)n. CHECK?? Je�??
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END NEW

|||||||||||{

|||||||||||-

ORIGINAL PROOF - DELETE ??

From the Positivestellensatz, there exists a tuple Z = (Z1; : : : ; Xg)

acting on a Hilbert space H and a non-zero vector 
 = �
j 2 �
`
1
H such

that < q(X)
; 
 >. Here q 2Ml�l(N�) and has degree d. Let

M = spanfXw
j : w is a word of length at most di; j = 1; � � � ; `g � H:

ThenM has dimension at most `
Pd

0
(2g)n and if P is the projection of H

onto M, then < q(PXP )
; 
 >=< p(X)
; 
 >� 0. On the other hand,

PXP 2 DP by the heavy convex hypothesis.

|||||||||||{
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3 Separating CP from Outsiders with a Linear Func-

tional
sec:sepCP

This section gives a Hahn-Banach result for sets of the type C`
P
. It is

based on a general theorem called the Krein extension theorem, which

applies to linear functionals which are non-negative on cones meeting

certain properties. In this section we �rst show that the cone C`
P
has the

needed properties. Then we build our separating linear functional.

3.1 Properties of CP

We shall be working with bounded sets DP and we �rst focus on the

structure related to boundedness. Recall bj = C2 � xTj xj and b denotes

the set of polynomials b = fb1; � � � ; bgg; likewise ~b corresponds to ~bj =

C2 � xjx
T
j .

lem:incalC Lemma 3.1 If w 2 Fg is a word of length n,

1. in N�, then C2n � wTw 2 C`
fb;~bg

.

2. in N , then C2n � wTw 2 C`b .

3. in N�N , then C2n � wTw 2 C`b .

Proof. First consider the case of hereditary words w. We use (C2 �

xTj xj) � C`b and argue by induction. Accordingly suppose the result is

true for the word v of length n and consider w = xj0v. We have,

(C2n+2 � wTw) = C2(C2n � vTv) + vT (C2 � xTj0xj0)v: (5) eq:CbdHerd

This implies

(C2n+2 � wTw) � C2(C2n � vTv) + C`b

which yields the induction step for going from hereditary word v to hered-

itary word w.

15



When w is a word in xj; x
T
k which is not necessarily hereditary we

proceed as before but also consider w = xTj0v, and obtain

(C2n+2 � wTw) = C2(C2n � vTv) + vT (C2 � xj0x
T
j0
)v: (6) eq:CbdHerdT

Combine (
eq:CbdHerd

5) and (
eq:CbdHerdT

6 ) to obtain the induction step for going from words

v in N� to words w in N�.

For words in symmetric variables, that is in N the same argument

prevails. ��

16
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NEW jun 25

lem:strict Lemma 3.2 Suppose � : Ml�l(N�) 7! R is linear.

1. If � is non� negative on C`b , and if �(I) = 0, then � = 0 on

Ml�l(N�N ).

2. If the variables xj are all symmetric and if � is non� negative on

C`b , together with �(I) = 0, then � = 0 on Ml�l(N ).

3. If � is non� negative on C`
fb;~bg

, and if �(I) = 0, then � = 0 on

Ml�l(N�).

Proof.

Using Lemma
lem:incalC

3.1 and the de�nition of C`b , for a word w 2 Fg of length

n,

I 
 (C2n � wTw) =
X
k

ek(C
2n � wTw)eTk 2 C

`
b :

Here e1; : : : ; e` is the standard basis for R` and eTk is viewed as the 1� `

matrix-valued constant polynomial. Since � is non-negativeon C`b , we

have �(I 
 (C2n � wTw)) � 0. As �(I) = 0, we have ��(I 
 wTw) � 0,

which since wTw 2 C`b implies that �(I 
 wTw) = 0.

Given a unit vector h1 2 R
` by choosing an orthonormal basis fh1; h2; : : : ; h`g

for R` , writing I =
P
hjh

T
j ; and considering these as constant polyno-

mials, it is evident that �(h1h
T
1
) = 0, since hjh

T
j 2 C`b for each j. By

scaling, the unit vector hypothesis on h1 may be dropped.

If h 2 R
` , then considering heT

1
as the Ml�l-valued constant polyno-

mial (here e1 is �rst standard basis vector in R`) shows

hhT 
 (C2n � wTw) = heT
1
(I 
 (C2n � wTw))e1h

T

is in C`b . Hence, as before, �(hh
T 
 wTw) = 0.

17



Now we do a critical calculation. First we do it for hereditary words

vTw, since this calculation specializes easily to the other cases. Suppose

g; h 2 R
` and vTw is an hereditary word. For t real, let

r = (hT 
 v) + t(gT 
 w);

so that r is a M1�`-valued polynomial. Since rT r is in C`b ,

0 � �(rT r) = �(hhT
vT v)+t�(hgT
vTw+ghT
wTv)+t2�(ggT
wTw)

for all real t. Thus,

�(hgT 
 vTw + ghT 
 wTv) = 0: (7) eq:lamda0

The proof of our lemma for the hereditary case is complete, since every

symmetric Ml�l-valued hereditary polynomial is a linear combination of

polynomials of the form hgT
vTw+ghT
wTv. So � = 0 onMl�l(N�N ).

The proof that � = 0 on Ml�l(N�), follows from Lemma
lem:incalC

3.1 as well

as from (
eq:lamda0

7 by taking w to be a word in Ml�l(N�) and v to be the empty

word??. Use that Lemma
lem:incalC

3.1 implies rtr 2 C
fb;~bg`. With v the empty

word the equation becomes (
eq:lamda0

7) becomes �(hgT 
 w + ghT 
 wT ) = 0:

The symmetric case follows ?? immediately, from the N� case by

restricting to symmetric variables.?TRUE??

SCOTT?? de�ne tensor product of words with matrices ?? empty

word and its marelous properties. We used it above. LOOK AT OTHER

NOTES??

|||-

��
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The collectionMl�l(N�) of all symmetricMl�l-valued NC polynomials

is a real vector space. The collection C`
P
consisting of those Ml�l valued

elements of CP is a cone in Ml�l(N�); i.e., C
`
P
is closed under sums and

multiplication by non-negative scalars and the relation s � t if and only

if s� t 2 CP on Ml�l(N�) makes Ml�l(N�) an ordered vector space. One

proof of this for bounded DP can be gotten from Lemma
lem:interior

3.3 below which

treats a more re�ned situation.

|||||||||||||

DELETE ?? OK??

IfM is a (real) subspace ofMl�l(N�) and if � :M 7! R is linear, then

� is positive provided �(s) � 0 for each s 2 C`
P
\M: Let I denote the

Ml�l-valued polynomial constantly equal to I, the `� ` identity matrix.

?? BILL LOOk AT positive NOT A CONSISTENT DEF because

positive depends on which M. tune it ?? [6/10. The M could be

moved to later SCOTT? WHERE LATERM causes expository problems

. Needed to de�ne � positive for the lemma immediately below only on

the whole space, but later needed for the subspace.]

END DELETE??

||||-

Let jwj denote the length of the word w 2 Fg. An hereditary Ml�l-

valued polynomial s has degree at most d if s =
P
jvj;jwj�d sv;wv

Tw. The

degree of s is d if it has degree at most d, but not degree at most d� 1.

The de�nitions of the degree of NC polynomials in the classes N and

N� is similar. For instance, s in N or in N� has degree at most d if

s =
P
jwj�d sww. The only di�erence being that, in the �rst case w 2 Fg,

and in the second w 2 F2g.

Let C`
Pjd denote those elements of C`

P
of degree at most d and let

Ml�l(N�)jd denote the symmetric Ml�l-valued polynomials of degree at

most d. Note that Ml�l(N�)jd is a �nite dimensional vector space and as

such is a Banach space.
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lem:interior Lemma 3.3 The set C`bjd � I is absorbing in Ml�l(N�)jd and

Ml�l(N�)jd = C`bjd � C
`
bjd

.

BILL WONDERS: Ml�l(N�)jd = Sos -SoS. which can be proved by

taking the LTDL decomposition of the Gramm matrix. Why the com-

plication with b?

Proof. We do the hereditary case �rst, since the calculations involved

include the calculations for the other cases. For the hereditary case, let

g; h 2 R
` and v; w 2 Fg with jwj; jvj � d be given and assume that C � 1

so that C2d � C2jwj and C2d � C2jvj. Observe, an arbitrary hereditary

polynomial ( in Ml�l(N�N ) ) is a linear combination of terms which can

be expanded as

ghT 
 wTv + hgT 
 vTw

= (gT 
 w + hT 
 v)T (gT 
 w + hT 
 v)� ggT 
 vTv � hhT 
 wTw

and note that

C2d(gTg + hTh)I � ggT 
 vTv � hhT 
 wTw

= ggT 
 (C2d � vTv) + hhT 
 (C2d � wTw) + C2d(gTgI � ggT ) + C2d(hThI � hhT )

is in C`
Pjd

. Since also

(gT 
 w + hT 
 v)T (gT 
 w + hT 
 v) (8) eq:absorb1

is in C`
Pjd

, it follows that

C2d(gTg + hTh)I � (ghT 
 wTv + hgT 
 vTw) 2 C`
P jd

:

Thus

ghT
wTv+hgT
vTw = C2d(gTg+hTh)I�( a poly in C`
P jd

) � C`
P jd
�C`

P jd

which proves one assertion of the theorem. Further, (
eq:absorb1

8) implies

t(�ghT 
 wTv � hgT 
 vTw) 2 C`
P jd

� I;
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where t = (C2d(gTg+hTh))�1 > 0. Thus, as every member ofMl�l(N�)jd

is a �nite linear combination of terms of the form �ghT 
 wTv � hgT 


vTw 2Ml�l(N�)jd, the set C
`
Pjd

� I is absorbing. ��

SCOTT ?? DO N and N�. These are easier??
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We shall be working with bounded sets DP and instead of writing ~P

to indicate that we have included polynomials b;~b, we shall henceforth

use the convention P = ~P, that is P includes P = ~P .

lem:extend Lemma 3.4 Suppose the set P of polynomials contains b. If � : Ml�l(N�)jd 7!

R is a linear functional which is non-negative on C`
Pjd, and not identically

zero, then there exists a linear functional � : Ml�l(N�) 7! R extending �

which is non-negative on C`
P
.

Proof. ?? JEFF owns this proof ??

We �rst take up the hereditary case. The real vector space Ml�l(N�)

with the relation s � t provided s� t 2 C`
P
is an ordered vector space, in

the sense found in Conway's text on functional analysis. ?? WHATS

THAT SENSE?? Given ghT 
 vTw + hgT 
 wTv we have

(gT
v�hT
w)T (gT
v�hT
w)+(ghT
vTw+hgT
wTv) = ggT
vTv+hhT
wwT :

Hence,

(ghT 
 vTw + hgT 
 wTv) � ggT 
 vTv + hhT 
 wwT :

From Lemma
lem:incalC

3.1 it now follows that

(ghT 
 vTw + hgT 
 wTv) � C2jvjggT + C2jwjhhT ;

where jvj and jwj are the lengths of the words v and w and C > 0 is our

constant such that C2 � xTj xj 2 P for each j. Since every element of

Ml�l(N�) is a �nite linear combination of those of the form (ghT 
vTw+

hgT 
wTv), for each p 2Ml�l(N�) there exists a number t > 0 such that

p � tI.

|||-

?? JEFF - will lookup Krein Ext

Hence I is an ??order unit?? inMl�l(N�) andMl�l(N�)jd is ??co�nal??

in Ml�l(N�). The result now follows by a version of the Hahn-Banach

22



Theorem, often called the Krein Extension Theorem, see for instance

Conway's text on functional analysis page 87 item 9.8.

|||{

Now do other cases. Similar? ��
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3.2 Separating a Polynomial from CP

Now we give the main result of Section
sec:sepCP

3.

thm:sep Proposition 3.5 If q is in Ml�l(N�);Ml�l(N );Ml�l(N�N ) but not in

the corresponding C`
P
, then there is a non-zero linear functional �

� : Ml�l(N�) 7! R, respectively � : Ml�l(N�) 7! R,

respectively � : Ml�l(N�) 7! R

which is non-negative on C`
P
and non-positive elsewhere.

Proof. We focus on the Ml�l(N�) case since the others are very similar.

??SCOTT - im bluÆng OK?? Do you believe THIS ?? Suppose q =2 C`
P

and has degree d. Let B = ftq : t > 0g. Both C`
Pjd

and B are convex, the

intersection is empty, and C`
Pjd

� I is absorbing by Lemma
lem:interior

3.3. Hence,

by a result in Rudin's Functional Analysis (Exercise 3 Chapter 3), there

exists a non-zero (real) linear functional � : Ml�l(N�)jd 7! R such that

�(C`
Pjd

) \ �(B) contains at most one point. Observe that �(C`
Pjd

) 6=

f0g as otherwise Lemma
lem:interior

3.3 implies Ml�l(N�)jd is contained in a closed

hyperplane inMl�l(N�)jd. Because 0 is in C
`
P jd

and in the closure of B, the

sets �(B) and �(C`
Pjd

) each have 0 in their closure (here we have used that

�(B) and �(C`
Pjd

) are �nite dimensional so that we can unambiguously

speak of closures). The sets are also convex. Hence �(C`
Pjd

) \ �(B) is

either f0g or empty. In the �rst case, �(q) = 0 and, without loss of

generality, �(C`
Pjd

) � 0. In the second case, it again may be assumed

that �(C`
Pjd

) � 0 and �(q) < 0. Thus, there exists a linear functional

� : Ml�l(N�)jd 7! R which is non-negative on C`
P jd

such that �(q) � 0.

By Lemma
lem:extend

3.4 the functional � extends to a non-zero linear functional

� : Ml�l(N�) 7! R which is non-negative on C`
P
.
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4 Representing Linear Functionals

This section is devoted to a representation which will soon be applied to

� of the previous section.

lem:Hilbertspace Proposition 4.1 If � : Ml�l(N�) 7! R (resp � : Ml�l(N�N ) : 7! R, resp.

� : Ml�l(N ) 7! R ) is positive and not identically zero, then there exists

a real Hilbert space H, a tuple X = (X1; : : : ; Xg) of operators (resp.

operators, resp. symmetric operators) on H, and a non-zero vector 
 2

�`
1
H, the ` fold direct sum of H, such that p(X) � 0 for all p 2 P and for

any symmetric s 2 M`�`(N�)-valued polynomial (resp s 2 M`�`(N�N ),

resp s 2M`�`(N )),

< s(X)
; 
 >= �(s):

Proof for Ml�l(N�) Case. Given 1 � ` matrix-valued polynomials s; t

with entries in N�, de�ne

< s; t >= (1=2)�(tTs + sT t) (9) eq:innerproduct

and verify that < s; t > is indeed bilinear. It is positive semi-de�nite

as sT s 2 CP and � is positive. Let H be the Hilbert space formed by

moding out < �; � >-null vectors and forming the completion. Note H

may be in�nite dimensional.

Recall our constant C > 0 such that C2�xTj xj 2 CP and C2�xjx
T
j 2

CP . Since

C2 < s; s > � < xjs; xjs >= �(sT (C2 � xTj xj)s) (10) eq:repBd

and since sT (C2� xTj xj)s 2??C??, it follows that multiplication by xj on

1 � ` matrix-valued N� polynomials de�nes a bounded operator Xj on

H. Likewise

C2 < s; s > � < xTj s; x
T
j s >= �(sT (C2 � xjx

T
j )s)

implies multiplication by xTj on 1 � ` matrix-valued is bounded on H.

Denote this multiplication operator by Xj and denote multiplication by
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xTj by XT
j . They are both bounded and they are adjoints of each other,

since

< xjs; s >= �(sTxTj s) = �(sTxTj s) =< s; xTj s > :

Now suppose p 2 CP ism�m and symmetric. We shall be substituting

Xj for xj in p(x) and this forces the substitution XT
j for xTj in p(x), since

XT
j is the adjoint of XT

j . If r is an m vector where each entry is a 1� `

matrix-valued polynomial, then

< p(X)r; r >=
X
a;b

< pa;b(X)rb; ra >= �(
X
a;b

rTa pa;brb) = �(rTpr) � 0;

where r is also canonically identi�ed with them�` matrix-valued polyno-

mial and where the inequality results from rTpr 2??C??. Hence p(X) �

0.

Let 
j denote the ( equivalence class of the) constant (basis) polyno-

mial ejR
` and note that

P

j


T
j = I. Thus, in view of Lemma

lem:strict

8.1, which

says that �(I) 6= 0, there is a j0 such that < 
j0; 
j0 >= �(
j0

T
j0
) > 0.

Hence the vector 
 = �
j is non-zero. Finally, if s is a symmetric Ml�l-

valued polynomial, then

< s(X)
; 
 >= �(
X


Ta sa;b
b) = �(s)

where the last equality takes into account that s is symmetric and that


Ta sa;b
b is the ` � ` matrix with sa;b in the (a; b) entry. This completes

the proof for Ml�l(N�) polynomials. ��

Proof for Ml�l(N ) Case .

The construction for the Ml�l(N ) case is very similar to that for the

Ml�l(N�) case. Given 1 � ` matrix-valued polynomials s; t with entries

in N , de�ne

< s; t >= �(sT t) (??USET = transpose??) (11) eq:innerproduct

and verify that < s; t > is indeed bilinear. It is positive semi-de�nite as

s2 2 CP and � is positive on CP . Let H be the Hilbert space formed by
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moding out < �; � >-null vectors and forming the completion. Note it is

in�nite dimensional.

Recall our constant C > 0 such that C2 � x2j 2 CP . Since

C2 < s; s > � < xjs; xjs >= �(s(C2 � xjxj)s)

and since s(C2 � x2j)s 2 C, it follows that multiplication by xj on 1� `

matrix-valued polynomials de�nes a bounded operator on the Hilbert

space H. Denote this multiplication operator by Xj and note it is sym-

metric, since

< xjs; s >= �(sxjs) = �(sxjs) =< s; xjs > :

From this point on the proof is exactly the same as it was in the

Ml�l(N�) case. ��

Proof for Hereditary Ml�l(N�N ) Case .

Now we turn to the hereditary case. Given 1�` matrix-valued polyno-

mials s; t with entries inN (so s; t contain no transposes and consequently

sT r and rTs are hereditary), de�ne

< s; t >=
1

2
�(tT s+ sT t) (12) eq:innerproduct

and verify that < s; t > is indeed bilinear. It is positive semi-de�nite

as sT s 2 CP and � is positive. Let H be the Hilbert space formed by

moding out < �; � >-null vectors and forming the completion. Note H

may be in�nite dimensional.

Recall our constant C > 0 such that C2 � xTj xj 2 CP . Estimate (
eq:repBd

10)

gives us that that multiplication by xj on 1 � ` matrix-valued polyno-

mials de�nes a bounded operator on the Hilbert space H. Denote this

multiplication operator by Xj.

In this case it is not true that X�

j is multiplication by xTj , as x
T
j s is

not in N . However, if P is an hereditary polynomial, P =
P
Pv;wv

Tw,
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X = (X1; : : : ; Xg) is a tuple, and 
 = �
j and Æ = �Æj are vectors, then

< P (X)
; Æ >=
X

Pv;w < Xw
;XvÆ >

so that it is not actually necessary to have an explicit representation for

X�

j .

Now suppose p 2 CP is m � m and symmetric. If f is an m vector

where each entry is a 1� ` matrix-valued polynomial, then

< p(X)r; r >=
X
a;b

< pa;b(X)rb; ra >= �(
X
a;b

rTa pa;brb) = �(rTpr) � 0;

where r is also canonically identi�ed with them�` matrix-valued polyno-

mial and where the inequality results from rTpr 2 CP . Hence p(X) � 0.

We emphasize that in the calculations above rTpr as well as all other

polynomials occuring are hereditary.

From this point the proof is exactly as it was for the Ml�l(N�) case.

��

5 Proof of Theorem
thm:main

1.2

Suppose is in Ml�l(N�) and q =2 CP . By Proposition
thm:sep

3.5 there is a non-

zero positive linear functional � : Ml�l(N�) 7! R which makes �(q) � 0.

By Proposition
lem:Hilbertspace

4.1, there exists a Hilbert space H, a non-zero vector


 in �`
1
H and a tuple of operators X = (X1; : : : ; Xg) on H such that

p(X) � 0 for all p 2 P and for each symmetric Ml�l-valued polynomial

s, we have < s(X)
; 
 >= �(s): In particular, substituting q for s gives,

< q(X)
; 
 >= �(q) = �(q) � 0. Since 
 is non-zero, it follows that

there is an X 2 DP such that q(X) is not strictly positive de�nite and

this proves the contrapositive of Theorem
thm:main

1.2.
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scalar polynomials, rather than 1� xjx
T
j .]
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7 DUMP DUMP

7.1 ORIGINAL VERSION of Proof of Representation

Now we turn to the hereditary case. Given 1� ` matrix-valued N poly-

nomials s; t (so s; t contain no adjoints here ?? SCOTT appropriate here

?? and so that sT r and rT s are hereditary), de�ne

< s; t >=
1

2
(�(tT s+ sT t) + i�(�itT s+ isT t)) (13) eq:innerproduct

and verify that < s; t > is indeed sesquilinear. It is positive semi-de�nite

as sT s 2 CP and � is positive. Let H be the Hilbert space formed by

moding out < �; � >-null vectors and forming the completion. Note it is

in�nite dimensional.

Recall our constant C > 0 such that C2 � xTj xj 2 CP .

Since

C2 < s; s > � < xjs; xjs >= �(sT (C2 � xTj xj)s)

and since sT (C2 � xTj xj)s 2??C??, it follows that multiplication by xj

on 1 � ` matrix-valued polynomials de�nes a bounded operator on the

Hilbert space H. Denote this multiplication operator by Xj and denote

multiplication by xTj by XT
j . They are both bounded and they are ad-

joints of each other, since

< xjs; s >= �(sTxTj s) = �(sTxTj s) =< s; xTj s > :

SCOTT bill added detail above and below. OK?? [6/10. Bill, In the

N and N� cases X
T
j is multiplication by xTj (and of course in the N case

this is just the same as xj). However, in the hereditary case, x
T
j s is not an

analytic (adjoint free) polynomial so that < s; xTj s > is not de�ned. The

diÆculty is with say the de�nition of < xT` s; x
T
j t > which would involve

non-hereditary polynomials like sTx`x
T
j t. As a side note, this really gives

non-self adjoint operator algebra as XT
j is the compression of mu All else

looks �ne.]
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Now suppose p 2 CP ism�m and symmetric. We shall be substituting

Xj for xj in p(x) and this forces the substitution XT
j for xTj in p(x), since

XT
j is the adjoint of XT

j . If r is an m vector where each entry is a 1� `

matrix-valued polynomial, then

< p(X)r; r >=
X
a;b

< pa;b(X)rb; ra >= �(
X
a;b

rTa pa;brb) = �(rTpr) � 0;

where r is also canonically identi�ed with them�` matrix-valued polyno-

mial and where the inequality results from rTpr 2??C??. Hence p(X) �

0.

Let 
j denote the (class of) the constant polynomial xj and note that
P

j


T
j = I. Thus, in view of Lemma

lem:strict

8.1, there is a j0 such that <


j0; 
j0 >= �(
j0

T
j0
) > 0. Hence the vector 
 = �
j is non-zero. Finally,

if s is a symmetric Ml�l-valued polynomial, then

< s(X)
; 
 >= �(
X


Ta sa;b
b) = �(s)

where the last equality takes into account that s is symmetric and that


Ta sa;b
b is the ` � ` matrix with sa;b in the (a; b) entry. This completes

the proof for hereditary polynomials. ��

||||||-

8 DUMP { Proof of a Lemma ORIGINAL VER-

SION -DELETE??

lem:strict Lemma 8.1 Suppose � : Ml�l(N�) 7! R is linear. If � is positive, and

if �(I) = 0, then � = 0.

The proof of Lemma
lem:strict

8.1 depends upon the boundedness hypothesis

on P.

Proof. First consider the case of hereditary polynomials, N�N . Using

Lemma
lem:incalC

3.1 and the de�nition of CP , for a word w 2 Fg of length n,

I 
 (C2n � wTw) =
X
k

ek(C
2n � wTw)eTk 2 C

`
P
:
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Here e1; : : : ; e` is the standard basis for R` and eTk is viewed as the 1� `

matrix-valued constant polynomial. Since � is positive, �(I 
 (C2n �

wTw)) � 0. As �(I) = 0, we have ��(I 
 wTw) � 0, which since

wTw 2 C`
P
implies that �(I 
 wTw) = 0.

Given a unit vector h1 2 R
` by choosing an orthonormal basis fh1; h2; : : : ; h`g

for R` , writing I =
P
hjh

T
j ; and considering these as constant polyno-

mials, it is evident that �(h1h
T
1
) = 0, since hjh

T
j 2 C`

P
for each j. By

scaling, the unit vector hypothesis on h1 may be dropped.

If h 2 R
` , then considering heT

1
as the Ml�l-valued constant polyno-

mial (here e1 is �rst standard basis vector in R`) shows

hhT 
 (C2n � wTw) = heT
1
(I 
 (C2n � wTw))e1h

T

is in ??C??. Hence, as before, �(hhT 
 wTw) = 0.

Suppose g; h 2 R
` and vTw is an hereditary word. For t real, let

r = (hT 
 v) + t(gT 
 w);

so that r is a M1�`-valued polynomial. Since rT r is in C`
P
,

0 � �(rT r) = �(hhT
vT v)+t�(hgT
vTw+ghT
wTv)+t2�(ggT
wTw)

for all real t. Thus, �(hgT 
 vTw + ghT 
 wTv) = 0 and the proof

for the hereditary case is complete since every symmetric Ml�l-valued

hereditary polynomial is a linear combination of polynomials of the form

hgT 
 vTw + ghT 
 wTv.

??NOW DO THE OTHER CASES. Very similar.?? ��END ORIG

||||||||||{

32


