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Abstract

The paper introduces a notion of the Laplace operator of a polynomial p in noncommutative
variables x = (x1, · · · , xg). The Laplacian Lap[p, h] of p is a polynomial in x and in a non-
commuting variable h. When all variables commute we have Lap[p, h] = h2∆xp where ∆xp is
the usual Laplacian. A symmetric polynomial in symmetric variables will be called harmonic if
Lap[p, h] = 0 and subharmonic if the polynomial q(x, h) := Lap[p, h] takes positive semidefinite
matrix values whenever matrices X1, · · · , Xg,H are substituted for the variables x1, · · · , xg, h.
In this paper we classify all homogeneous symmetric harmonic and subharmonic polynomials
in two symmetric variables. We find there are not many of them: for example, the span of all
such subharmonics of any degree higher than 4 has dimension 2 (if odd degree) and 3 (if even
degree). Hopefully, the approach here will suggest ways of defining and analyzing other partial
differential equations and inequalities.
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1 Introduction

In the introduction we shall make essential definitions, then state our main results. The rest of the
paper proves them.

1.1 Definitions

1.1.1 Non-Commutative Polynomials

A non-commutative monomial m of degree d on the free variables (x1, . . . , xg) is a product
xa1xa2 · · ·xad

of these variables, corresponding to a unique sequence of ai of nonnegative inte-
gers, 1 ≤ ai ≤ g. We abbreviate this m = xw, where w is the d-tuple (a1, . . . , ad). The set of all
monomials in (x1, . . . , xg) is denoted asM and the set of indexes w is denotedW. Some notation is:

|w| = d the length of w
(w)i = ai the ith entry of w
wT = (ad, . . . , a1) the transpose of w
φ = () the empty word (word of length zero)

The space of non-commutative polynomials p(x) = p(x1, . . . , xg) with real coefficients is denoted
R〈x〉 and we express p as

p(x) =
∑

m∈M
Am m.

An example of a non-commutative polynomial is

p(x) = p(x1, x2) = x2
1 x2 x1 + x1 x2 x2

1 + x1 x2 − x2 x1 + 7

(in commutative variables, this would be equivalent to 2x3
1x2 + 7).

The transpose of a monomial m = xw is defined to be mT = xwT
. The transpose of a polynomial

p, denoted pT , is defined by p(x) =
∑

m∈M
Am mT and has the following properties:

(1) (pT )T = p
(2) (p1 + p2)T = pT

1 + pT
2

(3) (αp)T = αpT (α ∈ R)
(4) (p1 p2)T = pT

2 pT
1 .

In this paper, we shall consider primarily polynomials in symmetric variables. That is, we consider
variables xi where xT

i = xi. Then monomials satisfy (xa1 . . . xad−1
)T = xad−1

. . . xa1 , which in
other notation is (xw)T = xwT

. Symmetric (or self-adjoint) polynomials are those that are equal to
their transposes.

1.1.2 Evaluating Noncommutative Polynomials

Let (Rn×n
sym )g denote the set of g-tuples (X1, . . . , Xg) of real symmetric n × n matrices. We shall

be interested in evaluating a polynomial p(x) = p(x1, . . . , xg) that belongs to R〈x〉 at a tuple
X = (X1, . . . , Xg) ∈ (Rn×n

sym )g. In this case p(X) is also an n×n matrix and the involution on R〈x〉
that was introduced earlier is compatible with matrix transposition, i.e.,

pT (X) = p(X)T ,

2



where p(X)T denotes the transpose of the matrix p(X). When X ∈ (Rn×n
sym )g is substituted into p

the constant term p(0) of p(x) becomes p(0)In. Thus, for example,

p(x) = 3 + x2
1 + 5x3

2 =⇒ p(X) = 3In + X2
1 + 5X3

2 .

A symmetric polynomial p ∈ R〈x〉 is matrix positive if p(X) is a positive semidefinite matrix
for each tuple X = (X1, . . . , Xg) ∈ (Rn×n

sym )g. We emphasize that throughout this paper, unless
otherwise noted, x1, x2, . . . , xn stand for variables and X1, X2, . . . , Xn stand for matrices (usually
symmetric).

1.1.3 Non-Commutative Differentiation

For our non-commutative purposes, we take directional derivatives in xi with regard to an indeter-
minate direction parameter h.

D[p(x1, . . . , xg), xi, h] :=
d

dt
[p(x1, . . . , (xi + th), . . . , xg)]|t=0

. (1)

We say that this is the directional derivative of p(x) = p(x1, . . . , xg) in xi in the direction h. Note
it is linear in h. For a detailed formal definition see [HMV06], for more examples see [CHSY03].

Example 1.1 The directional derivative

D[x2
1 x2, x1, h] = d

dt [(x1 + th)2x2]|t=0

= d
dt [x

2
1 x2 + th x1 x2 + tx1 h x2 + t2h2 x2]|t=0

= [hx1 x2 + x1 hx2 + 2th2 x2]|t=0

= hx1 x2 + x1 hx2.

As this example shows, the directional derivative of p on xi in the direction h is the sum of
the terms produced by replacing one instance of xi with h.

Lemma 1.1 The directional derivative of NC polynomials is linear,

D[a p(x) + b q(x), xi, h] = a D[p(x), xi, h] + bD[q(x), xi, h]

and respects transposes
D[p(x)T , xi, h] = D[p(x), xi, h]T .

Proof: Straighforward.

¥

1.1.4 Non-Commutative Laplacian and Subharmonicity

The Laplacian of a NC polynomial p(x) is defined as:

Lap[p, h] :=
g∑

i=1

D[D[p(x), xi, h], xi, h] (2)

=
g∑

i=1

d2

dt2
[p(x1, . . . , (xi + th), . . . , xg)]|t=0

. (3)
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Our notation is slightly inconsistent (but has advantages) in that the single letter x stands for g
variables x1, . . . , xg while h is a single variable. Note that Lap is linear in h. An NC polynomial is
called harmonic if its Laplacian is zero, and subharmonic if its Laplacian is matrix-positive and
purely subharmonic is used to describe a polynomial which is subharmonic but not harmonic -
that is, having a nonzero, matrix-positive Laplacian.

Specialization of Lap[p, h], to commutative variables, is h2∆
(
p
)

where ∆
(
p
)

is the standard

Laplacian, namely, ∆
(
p
)

:=
g∑

i=1
∂xixip(x). Here p : Rn → R.

1.2 Classification of Harmonics and Subharmonics in Two Variables

For our special homogeneous polynomials on two variables, define

γ := x1 + i x2 (4)

where i is the imaginary number.

Theorem 1 The homogeneous noncommutative polynomials in two symmetric variables which are

(1a.) harmonic of degree d > 2 are exactly the linear combinations of

Re(γd) and Im(γd),

(1b.) harmonic of degree d = 2 are exactly the linear combinations of

Re(γd) and Im(γd) and x1x2,

(note this includes x2x1),

(2a) subharmonic of degree 2d with d > 2 , are exactly the linear combinations:

c0[Re(γd)]2 + c1 Re(γ2d) + c2 Im(γ2d)

= c0[Im(γd)]2 + (c0 + c1) Re(γ2d) + c2 Im(γ2d) (5)

where c0 ≥ 0,

(2b) symmetric subharmonics of degree 4, are exactly the linear combinations:

f = B1(x4
1 − x2

1 x2
2 − x2

2 x2
1 + x4

2) + B2(x3
1 x2 + x2 x3

1 − x2 x1 x2
2 − x2

2 x1 x2) (6)
+B3(x2

1 x2 x1 + x1 x2 x2
1 − x1 x3

2 − x3
2 x1) + B4(x1 x2 x1 x2 + x2 x1 x2 x1)

+B5 x1 x2
2 x1 + B6x2 x2

1 x2

with coefficients satisfying the inequalities:

(III) =⇒ (B1 + B6)(B1 + B5) > (B3 −B2)2 + (B1 + B4)2 and (7)
(I) =⇒ B1 + B6 > 0 (or, equivalently B1 + B5 > 0). (8)
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(2c) All subharmonics of degree 2 are,

A1 x2
1 + A2 x2

2 + A3 x1x2 + A4x2x1

with A1 + A2 ≥ 0.

(3) Pure subharmonics of odd degree do not exist.

Note: all of these functions except for x1x2 and x2x1 in (1b) and in (2c) are symmetric.

Proof: Most of the remainder of this paper is focused on proving this theorem. The proofs for the
parts of the theorem are as follows:

Part of theorem Section of the proof
(1a.) 4.2.1
(1b.) 4.2.2
(2a.) 2.4
(2b.) 3.3 also Remark 2
(2c.) 4.2.2
(3.) 2.4

Remark 1 The following degree 3 polynomial p is unusual in that there is a region of X1, X2 where
Lap(p) is positive, but Lap(p) is not positive everywhere:

A1 (x3
1 − x1 x2

2 − x2 x2
1) + A2 x2 x1 x2 + A3 x1 x2 x1 + A4 (x3

2 − x2
1 x2 − x2 x2

1)

For this the region of subharmonicity is (A1 +A2)x1+(A3+A4)x2 > 0 and the region of harmonicity
is A1 + A2 = A3 + A4 = 0. Of course, there is no homogeneous polynomial of degree three which
is subharmonic over all values of x1 and x2.

1.3 Subharmonics are All Built from Harmonics

Our second main result is a general fact which holds in any number of variables:

Theorem 2 Assume the harmonic polynomials homogeneous of degree d
2 have a basis γ1, · · · , γk

with the independence property: there is a monomial wj in γj which does not occur in the other
γ1, · · · , γk. If p is a homogeneous symmetric subharmonic polynomial of degree even d, then p has
the form

p =
finite∑

i

ciR
T
i Ri

for some homogeneous harmonic functions Rj of degree d
2 and real numbers cj.

Because of this, knowing all homogeneous subharmonics will likely occur once the harmonics are
classified.
Proof: The proof is found in §4.1.1.
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1.4 Comparison with Commutative Subharmonic Polynomials

The study of harmonic and subharmonic polynomials in commuting variables is classical. Harmonic
commuting polynomials are classified in any number of variables and the have a close correspondence
to spherical harmonics. A good reference on this is [HT92] §2.4, pp. 110-113.

For two commuting variables, the homogeneous harmonic polynomials are those of the form,

Re(x1 + Ix2)n and Im(x1 + Ix2)n,

so the commuting and noncommuting case are exactly parallel.

1.5 Related Topics and Motivation

Non-Commutative Convexity The non-commutative Hessian is defined as:

NCHes[p(x1, . . . , xg), {x1, η1}, . . . , {xg, ηg}] :=
d2

dt2
[p(x1 + tη1, . . . , xg + tgηg)]|t=0

.

Note that this is composed of several independent direction parameters, ηi and that if p is a
polynomial, then its Hessian is a polynomial in x and η which is homogeneous of degree 2 in η. A
non-commutative polynomial is considered convex wherever its Hessian is matrix-positive.

A polynomial p(x) = p(x1, . . . , xd) is geometrically convex if and only if, for every X, Y ∈
(Rn×n

sym )g,
1
2
(
p(X) + p(Y )

)− p

(
X + Y

2

)

is positive-semidefinite. It is proved in [HM98] that convexity is equivalent to geometric convexity.
A crucial fact regarding these polynomials (see [HM04]) is that they are all of degree two or less.
Some excellent papers on noncommutative convexity are [HT06] [Han97].

The commutative analog of this “directional” Hessian is the quadratic function

H
(
p
)



η1
...
ηg


 ·




η1
...
ηg


 (9)

where H
(
p
)

is the Hessian matrix:



∂x1x1p(x) · · · ∂x1xgp(x)
...

. . .
...

∂xgx1p(x) · · · ∂xgxgp(x)


 . (10)

If this Hessian is positive semidefinite at all (x1, . . . , xg), then f is said to be convex.

Non-Commutative Algebra in Engineering Inequalities, involving polynomials in matrices
and their inverses, and associated optimization problems have become very important in engi-
neering. When such polynomials are matrix convex, local minima are global. This is extremely
important in applications. Also, interior point numerical methods apply well to these. In the last
few years, the approaches that have been proposed in the field of optimization and control theory
based on linear matrix inequalities and semidefinite programming have become very important and
promising, since the same framework can be used for a large set of problems. Matrix inequalities
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provide a nice setup for many engineering and related problems, and if they are convex the opti-
mization problem is well behaved and interior point methods provide efficient algorithms which are
effective on moderate sized problems. Unfortunately, the class of matrix convex noncommutative
polynomials is very small; as already mentioned they are all of degree two or less [HM04].

Our original interest in subharmonic polynomials was to analyze conditions similar to convexity,
though not as restrictive, in the hopes of finding much broader classes which still had nice properties.
What we found (as reported here) was that subharmonic polynomials are (in two) variables a highly
restricted class.

Noncommutative Analysis This article would come under the general heading of “free analysis”,
since the setting is a noncommutative algebra whose generators are “free” of relations. This is
a burdgeoning area, of which free probability is currently the largest component. The interested
reader is referred to the web site [SV06] of American Institute of Mathematics, in particular it gives
the findings of the AIM workshop in 2006 on free analysis. A fairly expository article describing
noncommutative convexity, noncommutative semialgebraic geometry and relations to engineering
is [HP06].

2 Existence Proofs

Now we set about to prove Theorem 1. In this section, we show that the polynomials claimed to be
harmonic and subharmonic are indeed. In section 4, we show that these are the only posibilities.

2.1 Product Rules for Derivatives

To begin with, we will build up facts about derivatives.

2.1.1 Product Rule for First Derivatives

Lemma 2.1 The product rule for the directional derivative of NC polynomials is

D[p1 p2, xi, h] = D[p1, xi, h] p2 + p1 D[p2, xi, h].

Proof: The directional derivative D[m,xi, h] of a product m = m1m2 of non-commutative mono-
mials m1 and m2 is the sum of terms produced by replacing one instance of xi in m by h. This
sum can be divided into two parts:

µ1, the sum of terms whose h lie in the first |m1| letters, i.e. D[m1, xi, h]m2

µ2, the sum of terms whose h lie in the last |m2| letters, i.e. m1D[m2, xi, h].
Therefore

D[m1m2, xi, h] = D[m1, xi, h]m2 + m1D[m2, xi, h].
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We can extend this product rule to the product of any two non-commutative polynomials p1

and p2 as follows.

D[p1 p2, xi, h] = D
[( ∑

m1∈Wp1

Am1m1

)( ∑

m2∈Wp2

Am2m2

)
, xi, h

]

=
∑

m1∈Wp1

∑

m2∈Wp2

Am1Am2D[m1 m2, xi, h]

=
∑

m1∈Wp1

∑

m2∈Wp2

Am1Am2D[m1, xi, h] m2 + Am1Am2 m1 D[m2xi, h]

= D
[ ∑

m1∈Wp1

Am1m1, xi, h
] ∑

m2∈Wp2

Am2m2 +
∑

m1∈Wp1

Am1m1 D
[ ∑

m2∈Wp2

Am2m2, xi, h
]

= D[p1, xi, h] p2 + p1 D[p2, xi, h]. (11)

¥

2.1.2 The Laplacian of a Product

We now prove Theorem 1 part (2b).

Lemma 2.2 The product rule for the Laplacian of NC polynomials is

Lap[p1 p2, h] = Lap[p1, h] p2 + p1 Lap[p2, h] + 2
g∑

i=1

(
D[p1, xi, h] D[p2, xi, h]

)
.

As a consequence if p is harmonic, then

Lap[pT p, h] = 2
g∑

i=1

(
D[p, xi, h]T D[p, xi, h]

)
.

Proof:

Lap[p1 p2, h] =
g∑

i=1

D[D[p1 p2, xi, h], xi, h]

=
g∑

i=1

(
D[p1 D[p2, xi, h] + D[p1, xi, h] p2, xi, h]

)

=
g∑

i=1

(
p1 D[D[p2, xi, h], xi, h] + D[D[p1, xi, h], xi, h] p2

+ 2D[p1, xi, h], D[p2, xi, h]
)

= Lap[p1, h] p2 + p1 Lap[p2, h] + 2
g∑

i=1

(
D[p1, xi, h] D[p2, xi, h]

)
.

¥
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2.2 Formulas Involving γd and its Derivatives

Recall from (4) that γ := x1 + ix2.
Note that γ = γT and therefore that γd = (γd)T . So

(
Re(γd)

)T
= Re((γd)T ) = Re(γd) and

(
Im(γd)

)T
= Im((γd)T ) = Im(γd).

This proves the (last) assertion in Theorem 1 that all but a few subharmonics on our list are
symmetric.

Lemma 2.3 The derivatives of of γd exhibit the following symmetries.

D[Re(γd), x1, h] = D[Im(γd), x2, h]

and
D[Re(γd), x2, h] = −D[Im(γd), x1, h].

Proof: The proof proceeds by induction. To begin, it is easily seen that

D[Re(γ), x1, h] = D[Im(γ), x2, h] = h

D[Im(γ), x1, h] = −D[Re(γ), x2, h] = 0.

Assume that

D[Re(γd−1), x1, h] = D[Im(γd−1), x2, h]

D[Im(γd−1), x1, 1] = −D[Re(γd−1), x2, h].

Then

D[ Re(γd), x1, h] = D[x1Re(γd−1)− x2Im(γd−1), x1, h]

= x1 D[Re(γd−1), x1, h] + h Re(γd−1)− x2 D[Im(γd−1), x1, h]

D[Im(γd), x2, h] = D[x1Im(γd−1) + x2Re(γd−1), x2, h]

= x1 D[Im(γd−1), x2, h] + x2 D[Re(γd−1), x2, h] + hRe(γd−1),

so
D[Re(γd), x1, h] = D[Im(γd), x2, h]

which satisfies the first half of our inductive hypothesis. For the next half compute

D[ Re(γd), x2, h] = D[x1Re(γd−1)− x2Im(γd−1), x2, h]

= x1 D[Re(γd−1), x2, h]− x2 D[Im(γd−1), x2, h]− h Im(γd−1)

D[Im(γd), x1, h] = D[x1Im(γd−1) + x2Re(γd−1), x1, h]

= x1 D[Im(γd−1), x1, h] + h Im(γd−1) + x2 D[Re(γd−1), x2, h],

so
D[Re(γd), x2, h] = −D[Im(γd), x1, h].

¥
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2.3 Harmonics degree > 2: Proof of Theorem 1 part (1)

Our proof will proceed by induction. Since the Laplacian of words of length 1 is zero,

Lap[Re(γ), h] = Lap[x1, h] = 0 and Lap[Im(γ), h] = Lap[x2, h] = 0.

Now, assume that
Lap[Re(γd−1), h] = Lap[Im(γd−1), h] = 0. (12)

Pushing ahead,

Re(γd) = Re((x1 + ix2) γd−1) = x1 Re(γd−1)− x2 Im(γd−1) (13)

Im(γd) = Im((x1 + ix2) γd−1) = x1 Im(γd−1) + x2 Re(γd−1). (14)

Applying our product rule to (13):

Lap[Re(γd), h] = Lap[x1 Re(γd−1), h]− Lap[x2 Im(γd−1), h]

= x1 Lap[Re(γd−1), h] + Lap[x1, h] Re(γd−1)

+ 2D[x1, x1, h] D[Re(γd−1), x1, h]

+ 2D[x1, x2, h] D[Re(γd−1), x2, h]

− x2 Lap[Im(γd−1), h]− Lap[x2, h] Im(γd−1)

− 2D[x2, x1, h] D[Im(γd−1), x1, h]

− 2D[x2, x2, h] D[Im(γd−1), x2, h].

Use (12) and (12) to obtain that the Lap[] terms are 0, and that “cross partials are 0” to get

Lap[Re(γd), h] = hD[Re(γd−1), x1, h]− h D[Im(γd−1), x2, h].

By symmetry Lemma 2.3, this means

Re(Lap[γd, h]) = Lap[Re(γd), h] = 0.

By a similar argument, applying the product rule to (14),

Im(Lap[γd, h]) = Lap[Im(γd), h] = 0.

¥

2.4 Subharmonics degree > 4: Proof of Theorem 1 (2a.)

The product rule for the Laplacian of harmonics in Lemma 2.2 says Lap[
(
Re(γd)

)2
, h] is a sum of

squares. Thus we have shown
(
Re(γd)

)2 is subharmonic.
Now we prove the formula (5) relating subharmonics. We use

γ2d = (Re(γd) + i Im(γd))2

= (Re(γd))2 − (Im(γd))2 + i(Re(γd)Im(γd) + Im(γd)Re(γd)).

Therefore
Re(γ2d) =

(
Re(γd)

)2
−

(
Im(γd)

)2
.
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So

c0

[
Re(γd)

]2
+ c1 Re(γ2d) + c2 Im(γ2d)

= c0

[
Im(γd)

]2
+ (c0 + c1) (Re(γ2d)) + c2 Im(γ2d),

which is (5).

¥
Up to this point we have handled subharmonics of even degree. To see that there are no pure

subharmonics of odd degree, note that the Laplacian L(x) of an odd degree polynomial is itself an
odd degree polynomial which is matrix-positive. Consider L(tx) as t ∈ R approaches ±∞. Since
the highest order terms dominate, the signs of these limits are opposite. Thus the highest order
terms are 0.

3 Classification when Degree is Four or Less

We handle now what appear to be special cases which are exceptions to the general degree > 4
theorem.

3.1 The Matrix Representation

Important in our proofs for polynomials of low degree is a representation for polynomials q(x1, · · · , xg)[h]
which are homogeneous of degree 2 in h. Recall that often x stands for (x1, · · · , xg) and h is a
single variable. In our notation q(x)[h] we use [ ] to distinguish the variable which is of degree 2.

Any NC symmetric polynomial q in symmetric variables quadratic in h can be written

q(x)[h] =
n∑

i=1

n∑

j=1

(hmi)T Zij(x) (hmj) =
n∑

i=1

n∑

j=1

(mi
T h) Zij (h mj)

where mi are monomials in x and Zij(x) are polynomials in x.
Define Z(x) as the N -by-N matrix of polynomials in x whose i, jth element is Zij , and define

V (x)[h] as
V (x)[h]T = h(m1, m2, . . . , mN ).

We call Z the middle matrix for q and V its border vector. In this notation our representation
is

q(x, h) = V (x)[h]T Z(x)V (x)[h]

We can and typically do take Z(x) to be symmetric. If the monomials mi in V (x)[h] do not repeat,
then Z(x) is uniquely determined and is symmetric.

Example 3.1 A “middle matrix” representation g = 2

3x1hx2
2hx1 + hx1x2x1h− hx1hx2

2 − x2
2hx1h + 5 x1x2hx2hx2x1

=




h
hx1

hx2x1

hx2
2




T 


x1x2x1 0 0 −x1

0 3x2
2 0 0

0 0 5x2 0
−x1 0 0 0







h
hx1

hx2x1

hx2
2


 .
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3.1.1 Positivity of q vs. Positivity of its Middle Matrix

A key fact is that positivity of q is equivalent to positivity of its middle matrix in the following
sense.

Lemma 3.1 Suppose q(x)[h] a symmetric NC polynomial in noncommuting variables pure quadratic
in h and Z(x) is its middle matrix. If X ∈ (Rn×n

sym )g and Z(X) º 0, then q(X)[H] º 0 for all
H ∈ (Rn×n

sym )g.
Conversely, if q(x)[h] is matrix positive; i.e., q(X)[H] º 0, for every n and X,H ∈ (Rn×n

sym )g

in the (non empty) positivity domain {X : f(X) Â 0} of some polynomial f , then for each n and
X ∈ (Rn×n

sym )g, we have Z(X) Â 0 on {X : f(X) º 0}.
Proof:The first statement is evident. The converse is proved in [CHSY03] in Lemma 9.5 and
Theorem 10.10 in [CHSY03]. for a cleaner proofs see [HMV06] in particular Proposition 6.1.

¥

3.2 The Zeroes Lemma

The following is useful in our analysis of subharmonics.

Lemma 3.2 Let S be any N × N symmetric matrix with entries in R〈x〉. If there exists some
diagonal entry Sii = 0 and corresponding off-diagonal entries Sij = ST

ji 6= 0, then S is not matrix-
positive semidefinite.

Proof: Let ei and ej be standard basis vectors for RN (i.e. eT
i Aej = aij) and define

v := β1ei + β2ej where β1, β2 ∈ R. Then,

vT S(x)v = ((Sij + Sji) β1 + Sjj β2) β2 = (2Sij β1 + Sjj β2) β2

Given β2 > 0, we can choose β1 such that

2β1 Sij(X)β2 + β2Sjj(X) β2

is neither a positive nor negative matrix. ¥
This lemma is useful when applied to our matrix representation of the Laplacian of a symmetric

NC polynomial .

3.3 The Laplacian of a Degree 4 Polynomial

We begin with a parameterization the set of degree 4 homogeneous polynomials in symmetric free
variables

p = A1 x4
1 x2

1 + A2(x3
1 x2 + x2 x3

1) + A3 (x2
1 x2 x1 + x1 x2 x2

1) + A4 (x2
1 x2

2 + x2
2 x2

1)

+ A5 (x1 x2 x1 x2 + x2 x1 x2 x1) + A6 x1 x2
2 x1 + A7 (x1 x3

2 + x3
2 x1) + A8 x2 x2

1 x2

+ A9 (x2 x1 x2
2 + x2

2 x1 x2) + A10 x4
2.

12



We calculate the Laplacian of p:

2A1 (h2 x2
1 + hx1 hx1 + h x2

1 h + x1 h2 x1 + x1 hx1 h + x2
1 h2)

+ 2 A2 (h2 x1 x2 + hx1 hx2 + x1 h2 x2 + x2 h2 x1 + x2 hx1 h + x2 x1 h2)

+ 2 A3 (h2 x2 x1 + hx1 x2 h + h x2 hx1 + hx2 x1 h + x1 hx2 h + x1 x2 h2)

+ 2 A4 (h2 x2
1 + h2 x2

2 + x2
1 h2 + x2

2 h2)

+ 2 A5 (hx1 hx1 + hx2 hx2 + x1 hx1 h + x2 h x2 h) + 2A6 (hx2
2 h + x1 h2 x1)

+ 2 A7 (h2 x2 x1 + hx2 hx1 + x1 h2 x2 + x1 h x2 h + x1 x2 h2 + x2 h2 x1) + 2 A8 (h x2
1 h + x2 h2 x2)

+ 2 A9 (h2 x1 x2 + hx1 hx2 + h x1 x2 h + hx2 x1 h + x2 hx1 h + x2 x1 h2)

+ 2 A10 (h2 x2
2 + hx2 hx2 + hx2

2 h + x2 h2 x2 + x2 hx2 h + x2
2 h2).

The directional Laplacian is quadratic in h, and so can be represented by border vector

V (x)[h]T =
(
h x1 h x2 h x2

1 h x1 x2 h x2 x1 h x2
2h

)T

and middle matrix Z(x) which is



(A1 + A8) x2
1 +(A6 + A10) x2

2

+(A3 + A9) (x1 x2 + x2 x1)
(A1 + A5) x1

+(A3 + A7) x2

(A2 + A9) x1

+(A5 + A10) x2

A1+A4 A3+A7 A2+A9 A4+A10

(A1 + A5) x1

+(A3 + A7) x2

A1 + A6 A2 + A7 0 0 0 0

(A2 + A9) x1

+(A5 + A10) x2

A2 + A7 A8 + A10 0 0 0 0

A1 + A4 0 0 0 0 0 0

A3 + A7 0 0 0 0 0 0

A2 + A9 0 0 0 0 0 0

A4 + A10 0 0 0 0 0 0




.

Assume that Z(X) is a positive semidefinite matrix for X ∈ (Rn×n
sym )g. By the Zeroes Lemma, the

zeroes on the last four diagonals force all entries in the last four rows or columns to be zero, that
is:

A4 = −A1, A10 = A1, A9 = −A2, A7 = −A3. (15)

Applying these conditions to the matrix above, and ignoring the rows and columns which are zero,
we have: 


(A1 + A8) x2

1 +(A1 + A6) x2
2

+(A2−A3)(x2 x1−x1 x2)
(A1+A5)x1 (A1+A5)x2

(A1+A5)x1 A1+A6 A2−A3

(A1+A5)x2 A2−A3 A1+A8


 .

This matrix can be simplified by substitution of reoccurring pairs by single letters:

G = A1 + A6, H = A1 + A8 J = A2 −A3, K = A1 + A5.

to obtain 


Hx2
1 − J(x1 x2 + x2 x1) + Gx2

2 Kx1 Kx2

Kx1 G J
Kx2 J H


 .

13



We now find its noncommutative LDLT (Cholesky) decomposition to have D term equal to



G 0 0
0 H − J2

G 0

0 0 Hx2
1 + J(x1 x2 + x2 x1) + Gx2

2 − K2x2
1

G − (
JKx1

G
+Kx2) (

JKx1
G

+Kx2)

H−J2

G


 .

A reference is [CHSY03] which describes the NCAlgebra command, NCLDUDecomposition, we
used to do this.

We see there are three inequalities, which must be satisfied for Z(X) to be positive semidefinite.

G > 0, H − J2

G
> 0,

HX2
1 + J(X1 X2 + X2 X1) + GX2

2 −
K2X2

1

G
− (JKX1

G + KX2) (JKX1
G + KX2)

H − J2

G

> 0.

The last condition is purely quadratic in X1 and X2, and therefore has a middle matrix represen-
tation which we compute to be




G− H2K2

(G−H2

J
)J2

− K2

J H + HK2

(G−H2

J
)J

H + HK2

(G−H2

J
)J

J − K2

G−H2

J


 .

Again we perform the LDLT decomposition:



G− K2

H− J2

JG

0

0 H − J2K2

(H−J2

G
)G2

− K2

G −
(
J− JK2

(H−J2
G

)G

)2

G− K2

H−J2
G


 .

Although the inequality

H − J2K2

(H − J2

G )G2
− K2

G
−

(
J − JK2

(H−J2

G
)G

)2

G− K2

H−J2

G

> 0 (16)

is quite complicated, we can simplify it some by multiplying it by expressions which are known to
be positive, such as:

G, H − J2

G
, and G− K2

H − J2

G

which we encountered earlier. This gives a polynomial inequality equivalent to (16), which, after
some simplification, gives us:

(GH − J2 −K2)2 > 0.

Which, considering only the case of all real coefficients, is rather vacuous, informing us only that
GH − J2 −K2 6= 0.

Bringing all our inequalities together (simplifying each as we did above), we obtain

(I) G > 0, (II) GH > J2, (III) GH > J2 + K2, (IV ) GH 6= H2 + K2.

14



Notice (III) implies (II) and (IV), thus reducing to (I) and (II). Therefore, we conclude that the
set of polynomials making the Laplacian matrix “positive” is exactly those of the form:

f = A1(x4
1 − x2

1 x2
2 − x2

2 x2
1 + x4

2) + A2(x3
1 x2 + x2 x3

1 − x2 x1 x2
2 − x2

2 x1 x2) (17)
+A3(x2

1 x2 x1 + x1 x2 x2
1 − x1 x3

2 − x3
2 x1) + A5(x1 x2 x1 x2 + x2 x1 x2 x1)

+A6 x1 x2
2 x1 + A8x2 x2

1 x2

with coefficients satisfying the inequalities:

(III) =⇒ (A1 + A8)(A1 + A6) > (A3 −A2)2 + (A1 + A5)2 and (18)
(I) =⇒ A1 + A8 > 0 (or, equivalently A1 + A6 > 0). (19)

For neatness, and to more clearly see the dimension of the space of subharmonics,we set B1 =
A1, B2 = A2, B3 = A3, B4 = A5, B5 = A6, B6 = A8.

¥

4 Uniqueness Proofs

Now we set about to prove that the list of subharmonic and harmonic polynomials in Theorem 1
is complete. We do this, as is required, only for two variables but in the course of our proof we
discover some promising recursions valid in any number of variables.

4.1 Even Degree Homogeneous p

Given 0 < m < d a noncommutative polynomial p of degree d decompose it as

p =
∑

|t|=m

xtpt(x) + Λ (20)

where deg Λ < m. Call the polynomial pt(x) the right neighbor of xt

Lemma 4.1 If p is harmonic in any number of variables consider the right neighbor representation
of p for any m; the right neighbor pt of each monomial xt of degree m is harmonic, that is,
Lap(pt) = 0.

If p is subharmonic in any number of variables, if p is homogeneous of degree d then the right
neighbor pt of each monomial xt of degree d

2 is harmonic, that is, Lap(pt) = 0.

Proof: Apply the Laplacian to the right neighbor decomposition (20) of p and get from the product
rule for the Laplacian (Lemma 2.2):

Lap[p, h] = ∑

|t|=m

xtLap[pt(x), h] (21)

+
∑

|t|=m

Lap[xt, h]pt(x) (22)

+2
∑

|t|=m

D(xt)[h]D(pt)[h] (23)

15



+Lap[Λ, h].

Suppose Lap[p, h] = 0. We shall now show that polynomial (21) is 0, (22) is 0, and (23) is 0.
All terms of the polynomials (21), (22), and (23) have degree at least m, while deg Λ < m. Since
the Laplacian of a polynomial respects degree, we have Lap(Λ) = 0. Next factor a given degree
≥ m monomial r into its m−front and back: namely, r = rfrb where rf has degree m. Consider
the polynomial (21): the m−back of each monomial in it contains two h’s. Likewise the m−back
of each monomial in (22) and (23) contains no h’s and one h respectively. Thus polynomials (21),
(22), and (23) contain no monomials which cancel and since their sum is zero they must be zero.
From (21) is 0 we immediately get Lap(pt) = 0. This proves the first part of the lemma.

Now to the subharmonic part. That Lap[p, h] is matrix positive implies that it is a sum of
squares:

Lap(p) =
∑

j

LT
j (x)[h]Lj(x)[h] (24)

First observe that each Lj is linear in h. This is true since the highest degree in h monomial λ(x)[h]
of Lj(x)[h] contributes a λ(x)[h]T λ(x)[h] to LT

j (x)[h]Lj(x)[h] monomial which holds because its
coefficient is positive and can not be cancelled out; likewise λ(x)[h]T λ(x)[h] appears in Lap(p).
Thus the monomial λ(x)[h] has degree one in h.

Because of equation (24) we can refer to each term of Lap(p) as having a first half and second
half; each half has degree d

2 . Also every term of Lap(p) has an h in its first half and also in its
second half. However, if m = d

2 all terms in (21) have two h’s in their second half and none in their
first half. This contradicts the previous sentence; thus equation (21) is 0. Since we have factored
out xt in the representation (21), their coefficients Lap(pt) are 0 for all |t| = d

2 .

¥

4.1.1 Homogeneous Subharmonics are Sums of Products of Harmonics

In this section we prove under weak hypotheses that homogeneous subharmonics are sums of prod-
ucts of harmonics. A subharmonic polynomial of odd degree is harmonic, so is the product of itself
and 1. Thus we restrict to even degree and prove the following.

Proposition 4.1 Assume the harmonic polynomials homogeneous of degree d
2 are the span of

γ1, · · · , γk. Assume there is a monomial wj in γj which does not occur in the other γ1, · · · , γk.
If p is subharmonic homogeneous of even degree d, then it has the form

p =
k∑

i,j=1

φijγiγj (25)

where each φij is a real number. Note further that for symmetric p we may take φij = φji. Let S
denote the span of these symmetric subharmonics.

This implies that S is a space of at most dimension k(k+1)
2 . For example, in two variables there

are two independent homogeneous harmonic polynomials of degree other than 2, so dim S is at
most 3 for all d 6= 4. For d = 4 we have dim S ≤ 6.

Proof: Assume p is subharmonic homogeneous of degree d. Write down its right neighbor repre-
sentation with m = d

2 and use Lemma 4.1 to get Lap(pt) = 0 for |t| = d
2 . Thus

pt =
k∑

j

µj(t)γj

16



for some numbers µj(t). Plug this into the decomposition

p =
∑

|t|= d
2

xtpt(x) =
∑

|t|= d
2

∑

j

µj(t)xtγj (26)

to get

p =
∑

j




∑

|t|= d
2

µj(t)xt


 γj =

k∑

j

pj(x)γj .

Now make a left neighbor decomposition of p which by the definition of the monomial w1 has the
form

p1(x)w1 + G

where all terms of G are without w1 on the right. The left neighbor version of Lemma 4.1 implies
Lap(p1(x)) = 0. Likewise each pj(x) is harmonic of degree d

2 . This proves representation (25) for
p.

¥

Next we prove our representation of subharmonics stated in the introduction as Theorem 2.
Proof of Theorem 2
Now suppose p is symmetric. Proposition 4.1 says we can represent p as in equation (25). Note if
u is harmonic then uT is harmonic and relabel and possibly expand (by taking transposes) the set
γ1, . . . , γk as

s1, . . . , sα, u1, . . . , uβ, uT
1 , . . . , uT

β

where the si are symmetric polynomials. Set Ψ := {φ̃ij}α+2β
i,j=1 where φ̃ij = φij for i, j corresponding

to an original γ` and 0 otherwise. Now let s =




s1
...

sα


, u =




u1
...

uβ


 and v =




uT
1
...

uT
β


. Then

p =




s
u
v




T

Ψ




s
u
v


 and

p =
p + pT

2
=




s
u
v




T

Φ




s
u
v




where Φ =
Ψ + ΨT

2
, a symmetric matrix as required.

Decompose the symmetric matrix Φ as Φ = NJNT where J is a diagonal matrix with ±1 or 0

on the diagonal and N has real numbers as entries. Now, let us put R = NT




s
u
v


. Then

p =




s
u
v




T

Φ




s
u
v


 =




s
u
v




T

NJNT




s
u
v


 = RT JR =

∑

i

ciR
T
i Ri.

where cj is ±1 or 0. The si, ui, uT
i are harmonic, so their linear combinations Ri are harmonic.
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An appealing, easily proved, formula is

Lap(p) = 2
g∑

j

D[R, xj , h]T JD[R, xj , h].

Clearly, if the matrix Φ := {φij}α+2β
i,j=1 is positive semidefinite (or equivalently J has nonnegative

entries), Lap(p) will be positive, so then p is subharmonic. Also we get even degree harmonics are
sums and differences of squares of harmonics. It is not clear which differences make p harmonic or
subharmonic.

However, we conjecture
A homogeneous symmetric subharmonic polynomial p of even degree d is a finite sum

p =
finite∑

i

RT
i Ri +

finite∑

`

H`

for some homogeneous harmonic functions Ri,H` with Ri of degree d
2 and H` of degree d.

At this point, we have finished discussing subharmonics, and will now turn our full attention to
harmonic polynomials.

4.2 Uniqueness of Harmonics in Two Variables

4.2.1 Polynomials of degree Three and Larger

At this point, we have proved that there are harmonic polynomials of arbitrary degree. Working in
two variables, we will now show that the polynomials Re γd and Im γd span all of the harmonics.
This can be a helpful result, which, as yet, we have been unable to show for any higher number
of variables. In fact, McAllaster has found, experimentally, that in three variables, the size of the
basis of harmonic polynomials increases on the order of d2 (See [McA04]).

Proposition 4.2 Let γ = x1 + ix2, and Bd = {Re γd, Im γd}. Then Bd forms a basis for all
harmonic polynomials which are homogeneous of degree d for any d > 2.

To prove the proposition we need two lemmas.

Lemma 4.2 In degree three, there are two linearly independent homogeneous harmonic polynomials
whose span is all harmonic polynomials which are homogeneous of degree three.

Lemma 4.3 Let β(x1, x2) be harmonic and homogeneous of degree d. Then we may uniquely
represent β as β(x1, x2) = x1f(x1, x2)+x2g(x1, x2), where f and g are harmonic and homogeneous
of degree d− 1 and D[f(x1, x2), x1, h] = −D[g(x1, x2), x2, h].

Proof: (Lemma 4.2) Every homogeneous polynomial of degree three has the form

a1x
3
1 + a2x

2
1x2 + a3x1x2x1 + a4x1x

2
2 + a5x2x

2
1 + a6x2x1x2 + a7x

2
2x1 + a8x

3
2

and the Laplacian of this is

a1h
2x1 + a7h

2x1 + a2h
2x2 + a8h

2x2 + a1x1h
2 + a4x1h

2

18



+ a5x2h
2 + a8x2h

2 + a1hx1h + a6hx1h + a3hx2h + a8hx2h

= (a1 + a7)h2x1 + (a2 + a8)h2x2 + (a1 + a4)x1h
2 + (a5 + a8)x2h

2 + (a1 + a6)hx1h + (a3 + a8)hx2h,

so if we want the polynomial to be harmonic, we need each monomial of the Laplacian to be zero, so
we need the equations a1+a7 = 0, a2+a8 = 0, a1+a4 = 0, a5+a8 = 0, a1+a6 = 0, a3+a8 = 0 to
hold. This amounts to having the vector (a1, a2, a3, a4, a5, a6, a7, a8) in the nullspace of the matrix




1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1




,

which has the basis {(0,−1,−1, 0,−1, 0, 0, 1), (−1, 0, 0, 1, 0, 1, 1, 0)}, corresponding to polynomials
x3

2 − x2
1x2 − x2x

2
1 − x1x2x1 and −x3

1 + x1x
2
2 + x2

2x1 + x2x1x2. Hence there are exactly two linearly
independent harmonic polynomials which are homogeneous of degree three.

¥

Proof: (Lemma 4.3) Now, suppose that we are given a polynomial function β(x1, x2) which is
harmonic, homogeneous, and of degree d. Then, every monomial of β begins with either x1 or x2, so
we may uniquely represent β by the neighbor decomposition β(x1, x2) = x1f(x1, x2) + x2g(x1, x2).
Now, by Lemma 4.1, we know that f and g are harmonic, and using the product rule for the
Laplacian, we find:

Lap[β, h] = Lap[x1f(x1, x2) + x2g(x1, x2), h]
= (Lap[x1, h]f(x1, x2) + x1Lap[f(x1, x2), h] + 2(D[x1, x1, h]D[f(x1, x2), x1, h]

+D[x1, x2, h]D[f(x1, x2), x2, h])) + (Lap[x2, h]g(x1, x2) + x2Lap[g(x1, x2), h]
+2(D[x2, x1, h]D[g(x1, x2), x1, h] + D[x2, x2, h]D[g(x1, x2), x2, h]))

= 2h(D[f(x1, x2), x1, h] + D[g(x1, x2), x2, h])

and since β is harmonic, this is zero, which gives:

0 = 2h(D[f(x1, x2), x1, h] + D[g(x1, x2), x2, h]).

or more specifically,
D[f(x1, x2), x1, h] = −D[g(x1, x2), x2, h]. (27)

Proof: (Prop. 4.2) First of all, we show that Re γd and Im γd are linearly independent:
Suppose they are linearly dependent. Then a Re γd = b Im γd, where a 6= 0, b 6= 0, a, b ∈ R. But

then, γd = (x1+ix2)(R+iI), where R = Re γd−1, I = Im γd−1, so that a(x1R−x2I) = b(x1I+x2R).
Now, we equate the terms starting with x1 and x2, respectively, to get that aR = bI and −aI = bR.
Then, we get that R = (b/a)I and I = (−b/a)R from the first and second equations, repectively.
Puting this together, we get R = (b/a)I = (b/a)(−b/a)R, so that cancelling R, we get b2/a2 = −1,
or b2 = −a2, which can happen only if a = b = 0, a contradiction.

Now, we are going to prove the proposition by induction.
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First of all, Lemma 4.2 begins the induction. To prove the rest of the proposition, suppose that
for degree d−1 ≥ 3, we know that there are exactly two linearly independent polynomials which are
harmonic and homogeneous. Then for degree d, we suppose that β is harmonic and homogeneous.
Then

β(x1, x2) = x1ϕ(x1, x2) + x2ψ(x1, x2),

where ϕ and ψ are both harmonic, and homogeneous of degree d − 1 (Lemma 4.3). Then by the
induction hypothesis

β(x1, x2) = x1(aϕ Re γd−1 + bϕ Im γd−1) + x2(aψ Re γd−1 + bψ Im γd−1),

but from Lemma 4.3, we know that we must have D[ϕ, x1, h] + D[ψ, x2, h] = 0 which is equivalent
to saying that

aϕD[Re γd−1, x1, h] + bϕD[Im γd−1, x1, h] + aψD[Re γd−1, x2, h] + bψD[Im γd−1, x2, h] = 0.

Now, by applying the identities for the derivatives of Re γd and Im γd (see Lemma 2.3), we get the
following:

aϕD[Re γd−1, x1, h] + bϕD[Im γd−1, x1, h]− aψD[Im γd−1, x1, h] + bψD[Re γd−1, x1, h] = 0,

so
(aϕ + bψ)D[Re γd−1, x1, h] + (bϕ − aψ)D[Im γd−1, x1, h] = 0,

which gives that

0 = D[(aϕ + bψ)Re γd−1 + (bϕ − aψ) Im γd−1, x1, h],

but if the derivative of a function with respect to x1 is zero, that function must be a polynomial in
x2, but we know that Re γd−1 and Im γd−1 are homogeneous of degree d− 1, so the function of x2

can only be cxd−1
2 for some constant c. That is to say

(aϕ + bψ)Re γd−1 + (bϕ − aψ) Im γd−1 = cxd−1
2 .

Now since xd−1
2 is not harmonic, it is not in the span of Re γd−1 and Im γd−1, so c = 0. Therefore,

0 = (aϕ + bψ)Re γd−1 + (bϕ − aψ) Im γd−1,

which means that 0 = aϕ + bψ and 0 = bϕ − aψ, so

aϕ = −bψ and aψ = bϕ.

Using this, we get

β(x1, x2) = x1(aϕ Re γd−1 + bϕ Im γd−1) + x2(aψ Re γd−1 + bψ Im γd−1)
= x1(aϕ Re γd−1 + aψ Im γd−1) + x2(aψ Re γd−1 − aϕ Im γd−1)
= aϕx1 Re γd−1 + aψx1 Im γd−1 + aψx2 Re γd−1 − aϕx2 Im γd−1

= aϕ(x1 Re γd−1 − x2 Im γd−1) + aψ(x1 Im γd−1 + x2 Re γd−1)
= aϕ Re γd + aψ Im γd,

which implies that β is linearly dependent upon Re γd and Im γd. Hence Re γd and Im γd form a
basis for all of the harmonic polynomials which are homogeneous of degree d.
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4.2.2 Degree Two Polynomials

The polynomials of degree two are a special case. This is because some terms of polynomials will
vanish when the Laplacian is taken. Specifically, if we are given the general polynomial

p = A1x
2
1 + A2x

2
2 + A3x1x2 + A4x2x1,

we find that the Laplacian is
Lap(p) = A1h

2 + A2h
2,

meaning that the polynomial will be harmonic provided that A1 + A2 = 0 and subharmonic pro-
vided that A1 + A2 ≥ 0. This is the one case where the harmonic polynomial is not symmetric.
Also, because the subharmonic polynomials are built up of harmonic polynomials of one half the
degree, this means that it may be possible, in the degree four case alone, to create nonsymmetric
subharmonic polynomials.

Remark 2 We now show that this gives a 6 dimensional spanning set for the symmetric sub-
harmonics of degree 4; denote these by S4. We use Proposition 4.1 which says S4 is spanned by
symmetrized products of the basis

s =: x2
1 − x2

2, u := x1x2, u
T := x2x1

. Thus we obtain
s2, su + uT s, suT + us, uu + uT uT , uT u, uuT .

Note this is consistent with Theorem 1 part (2b) which implies the span of the degree 6 symmetric
subharmonics has dimension.

4.3 Homogeneous Harmonics of Odd Degree

The remainder of this section is not used in the rest of the paper, but Proposition 4.3 may be useful
in further research on harmonics in many variables.

What does the argument in Section 4.1.1 say about harmonics of odd degree? As we have
already stated in §2.4, any subharmonic polynomial of odd degree is required to be harmonic.

Given NC polynomial p decompose it as

p =
∑

|t|= d−1
2

g∑

i=1

xtxipt,i(x) (28)

and call the polynomial pt,i(x) the right neighbor of xtxi. Here we are assuming all terms of p
have degree d−1

2 .
Apply Lap to the right neighbor decomposition (28) of harmonic p and from the Laplacian

Product Rule get
0 = Lap[p, h] =

∑

|t|= d−1
2

g∑

i=1

Lap[xtxi, h]pt,i(x) (29)

+
∑

|t|= d−1
2

g∑

i=1

xtxiLap[pt,i(x), h] (30)
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+2
∑

|t|= d−1
2

g∑

i=1

g∑

j=1

D[xtxi, xj , h]D[pt,i(x), xj , h] (31)

which is

∑

|t|= d−1
2

g∑

i=1


Lap[xt, h]xi + xtLap[xi, h] + 2

g∑

j=1

D[xt, xj , h]D[xi, xj , h]


 pt,i(x) (32)

+
∑

|t|= d−1
2

g∑

i=1

xtxiLap[pt,i(x), h] (33)

+2
∑

|t|= d−1
2

g∑

i=1

g∑

j=1

(
D[xt, xj , h]xi + xtD[xi, xj , h]

)
D[pt,i(x), xj , h] (34)

Finally it becomes

∑

|t|= d−1
2

g∑

i=1

(
Lap[xt, h]xi + 2D[xt, xi, h]h

)
pt,i(x) (35)

+
∑

|t|= d−1
2

g∑

i=1

xtxiLap[pt,i(x), h] (36)

+2
∑

|t|= d−1
2

g∑

i


xthD[pt,i(x), xi, h] +

g∑

j=1

D[xt, xj , h]xiD[pt,i(x), xj , h]


 , (37)

which must be 0. The right half of each monomial in (35) contains no h’s, while in (36) and (37)
each right half does; thus no term of (35) can be cancelled. We conclude (35) is 0. Similarly the
right halves in (36) are the only right halves monomials which contain two h’s and so cannot be
cancelled. Thus (36) is 0 and so we get

Lap[pt,i, h] = 0 for each |t| = d−1
2 , i = 1, · · · , g.

Use

pt,i =
k∑

j

µj(t, i)γj

as before. Plug this into the decomposition

p =
∑

|t|= d−1
2

,i

xtxipt,i(x) =
∑

|t|= d−1
2

,i

∑

j

µj(t, i)xtxiγj . (38)

to get

p =
∑

j




∑

|t|= d−1
2

,i

µj(t, i)xtxi


 γj =

∑

j




∑

i




∑

|t|= d−1
2

µj(t, i)xt


xi


 γj

=
k∑

j=1

(∑

i

pj,i(x)xi

)
γj
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Now make a left neighbor decomposition of p which by the definition γ1 has the form
(∑

i

p1,i(x)xi

)
γ1 + G

where all terms of G are without γ1 on the right. The left handed version of Lemma 4.1 implies
Lap(p1,i) = 0 for each i = 1, · · · , g.

We have proved the following:

Proposition 4.3 Assume the harmonic polynomials homogeneous of degree d−1
2 are the span of

γ1, · · · , γk.
Assume there is a monomial wj in γj which does not occur in the other γ1, · · · , γk.
If p is subharmonic homogeneous of odd degree d, then it is harmonic and has the form

p =
g∑

i=1

k∑

m,j=1

φmijγmxiγj (39)

where each φmij is a number.

Question 1 What φmij make it 0? That is to say, what properties must φmij satisfy in order for
p to be harmonic?

We do a few calculations which might someday help with this question. Note the Laplacian of such
a p is:

Lap[p, h] =
g∑

i=1

k∑

m,j=1

φmijLap[γmxiγj , h]

=
g∑

i=1

k∑

m,j=1

φmij

(
Lap[γm, h]xiγj + γmLap[xi, h]γj + γmxiLap[γj , h]

+ 2
g∑

l=1

(γmD[xi, xl, h]D[γj , xl, h] + D[γm, xl, h]xiD[γj , xl, h] + D[γm, xl, h]D[xi, xl, h]γj)
)

= 2
g∑

i=1

k∑

m,j=1

φmij

(
γmhD[γj , xi, h] + D[γm, xi, h]hγj +

g∑

l=1

D[γm, xl, h]xiD[γj , xl, h]
)

As before cancellation cannot occur between terms with right halves containing two h’s, one h and
no h’s. Thus, Lap[p, h] = 0 is equivalent to

k∑

m=1

γmh

g∑

i=1

D

[ k∑

j=1

φmijγj , xi, h

]
= 0, and

k∑

j=1

[ g∑

i=1

D

[ k∑

m=1

φmijγm, xi, h

]]
hγj = 0 and

g∑

`=1

g∑

i=1

k∑

j=1

D

[ k∑
m

φmijγm, xl, h

]
xiD

[
γj , xl, h

]
= 0.
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