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1 LMI Inequalities - REAL

||||||||||||-

SEE PROPERTIES i Poss4.tex

DEF of CP in Poss4.tex?? is used only in isolated places.

delete heavy?? thruout since it is implied by results in pos 4.

How is DcP bounded used in the proof?

||||||||||-

De�ne M
g

1�1
to be all g tuples of matrices in M1�1. We emphasize that any

member of such a tuple is a �nite dimensional matrix.

If L 2 M1�1(N�) is aÆne linear and X = (X1; : : : ; Xg) is a tuple of operators,

then L(X) � 0 is called a Linear Matrix Inequality (LMI). Note if P1 is a collec-

tion of symmetric aÆne linear polynomials from Ml�l(N�), then DP1
is an heavy??

convex positivity domain.

Theorem 1.1 Suppose P is a collection of polynomials inM1�1(N�), or inM1�1(N ),

or in M1�1(N�N ). If DP is a bounded heavy?? convex positivity domain, then there

exists a collection P1 of symmetric aÆne linear polynomials from M1�1??(N�) such

that

DP1
\Mg

1�1
= DP \M

g

1�1

.

Of course a P1 may be an in�nite collection with no bound on the size of the matrix

polynomials involved, even if P is �nite. A conjecture is that P1 is �nite if P consists

of a �nite number of polynomials?

1.1 Arveson gets real

Let H and ~H be real Hilbert spaces with ~H a �nite dimensional. A real completely

positive map  on a subspace � of B(H) into B( ~H) has a representation

 (Z) = V T�(Z)V 8Z 2 �

with homomorphism � on real spaces B(H) ! B(K) and V : B( ~H) ! B(K) an

isometry.
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SAY MORE: WHAT IS COMPLETELY POS.

Give REFerence OR PROOF FOR REAL CASE that �nite dim (or some faximile)

is essential to real but not complex case???

1.2 Proof for REAL LMI

First we treat the M1�1(N�) case. Let P1 denote the collection of all aÆne linear

(square) matrix-valued M1�1(N�) symmetric polynomials L such that L(X) � 0

whenever X 2 DP . The boundedness hypothesis implies that

Lj =

0
@ C xj

x�j C

1
A

is in P1, since Lj(X) � 0 if and only if kXjk � C, it follows that DP1
is a bounded

positivity domain. It is also heavy?? convex.

Suppose Y 2 DP : If L 2 P1, then L(Y ) � 0 by the de�nition of P1 and so

Y 2 DP1
. Hence DP � DP1

.

To prove the converse (reverse inclusion), �x a separable in�nite dimensional

Hilbert spaceH (soH is isomorphic to `2) and letD denote the tuplesX = (X1; : : : ; Xg)

of operators on H such that X 2 DP . Let X = �DX acting on H = �DH .

SCOTT ?? - could you write a passage justifying the techniclities of this really

in�nite direct sum.

|||||||||||-

UNECESSARY ??? SCOTT

Of course, if q 2 CP , then q(X) � 0. Conversely, if q(X) > 0, then q 2 CP which

we prove in the following paragraph.

Suppose W = (W1; : : : ;Wg) is a tuple of bounded operators acting on the Hilbert

space T and W 2 DP and assume that q 2Ml�l(N�) (so `� ` matrix valued). Given

a non-zero vector  = �`
1
j 2 �`

1
T , to see that < q(W );  > is positive , let T

denote the smallest reducing subspace for fW1; : : : ;Wg ;W
�

1
; : : : ;W �

g g containing .

The subspace T is seperable so there are two cases. First, if T is in�nite dimensional,

then T is isomorphic to H and, up to unitary equivalence, we may assume that T ,

the restriction of W to T , is a member of DP . It follows that, as q(X) > 0, one

has q(W) > 0. Thus < q(W );  >=< q(W);  > is positive. If T is �nite

dimensional, then replace T with �1
1
T and W with �1

1
W and argue as above.

In any event, we have q(W ) > 0. By the Positivestellensatz, we conclude q 2 CP .
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END UNECESSASaRY ??

||||{

Let �(X) denote the subspace of B(H),

�(X) = fl(X) : l is a scalar aÆne linear NC polynomialg:

Given Y 2 DP1
acting on the �nite dimensional Hilbert space Y , consider the mapping

 : �(X) 7! �(Y ) de�ned by

 (l(X)) = l(Y ):

To see that this mapping is well de�ned and completely positive, it is enough to show

for any `, if L 2Ml�l(�(X)) and if L(X) � 0, then L(Y ) � 0.

|||||||||||

THIS RELPLACED WITH ARG BELOW ?? OK??

But, if L(X) � 0 and � > 0, then by what was proved above L+ � 2 CP and thus

L+ � 2 P1. We conclude that L(Y ) � �� and since � > 0 is arbitrary, L(Y ) � 0.

|||||||||||||||||

NEW

If L(X) � 0, then L is nonegative on DP ; so, by the de�nition of P1, we have that

L 2 P1. Since Y is in DP1
, we get L(Y ) � 0.

|||||||||||||||||

Since �(X) is a symmetric subspace of B(H) containing the identity and  (I) = I

( is unital) and completely positive on �(X), by the Arveson Extension Theorem

and the Steinsprings Representation Theorem, there exists an auxiliary real Hilbert

space K, an isometry V : Y 7! K, and representation � : B(H) 7! B(K), such

that  (�) = V ��(�)V . (The fact that this works for H a real space uses that Y is

�nite dimensional.) Thus, for aÆne linear scalar polynomials l, we have  (l(Y )) =

V ��(l(X))V . In particular, Y = V ��(X)V for an isometry V . (Note that in the

construction X doesn't depend upon Y , but � does.)

If p 2 P and p = fq�;�g
`
�;�

2Ml�l(N�), then

p(�(X)) = f�(p�;�(X))g
`
�;� ;

which is �(p(X), or more properly written is 1
 �(p(X)). Thus p(�(X)) � 0 for

all p 2 P , and consequently �(X) 2 DP . Thus, by the heavy?? convex hypothesis,
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Y 2 DP . Hence DP = DP1
, thereby proving the main result in the Theorem for

M1�1(N�).
1

To prove the P �M1�1(N ) case think of P as a subset of M1�1(N�) and set

~P := P [ �(xj � xTj ). Apply the M1�1(N�) result to ~P .

For the hereditary case the proof follows from the M1�1(N�) case, since aÆne

linear polynomials in N� are automatically hereditary. ��

INTRODUCE NEXT corrolary??

Corollary 1.2 ?? BEWARE NEEDS DEF OF CP ??

Suppose we are in the set up of Theorem 3.4. If p 2 P and � > 0, then p+� 2 CP1
.

Moreover, if L 2 P1 and � > 0, then L+ � 2 CP .

Proof ?? BEWARE NEEDS PSS ?? If q 2 CP and � > 0, then q(X) + �I > 0 for all

X 2 DP1
and therefore by the noncommutative Positivestelensatz, q + � 2 CP1

. The

proof of the last assertion in the theoerem is almost the same. ��

1This result holds more generally than for positivity domains. Namely, for convex domains closed

with respect to direct sums and unital representations (including restriction to reducing subspaces.
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2 DEFS- Complex

Some additional results on NC polynomials, positivity domains, and LMI inequalities.

Let NCP� denote the NC polynomials in the non-commutative variables

fx1; : : : ; xg ; x
�

1
; : : : ; x�gg and let MNCP� denote the matrix valued NC polynomials

in the same variables. To emphasis a particular matrix size, write Mm;n(NCP�) to

denote the m� n matrices with entries from NCP�.

There is the involution on NCP� and p 2MNCP� is self-adjoint if p
� = p. Given

P ; a collection of symmetric polynomials from MNCP�, let CP denote the wedge

generated by polynomials of the form s�ps and r�r where p 2 P and r and s come

from MNCP�.

Also, let DcP denote the tuplesX = (X1; : : : ; Xg), whereX1; : : : ; Xg are operators

on the same Hilbert space H , such that p(X) � 0 for all p 2 P .

Note DcP is really a graded object, graded by the dimension of H , and is called

the positivity domain of P .

A positivity domain DcP is bounded if there exists a C > 0 such that kXjk � C

for each 1 � j � g whenever X = (X1; : : : ; Xg) 2 DcP .

END SEMIOLD DEFS
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3 Symmetrized hereditary polynomial heavy con-

vex domains

Fix a scalar symmetrized hereditary polynomial of degree d; i.e.,

p = I �

dX
k=1

X
jwj=k

pww
�w; (1)

where jwj is the length of the word w in the free semi-group on the symbols fx1; : : : ; xgg.

(Note that the positivity domainDcp = Dcfpg contains the 0 tuple 0 = (0; 0; : : : ; 0)

(for every choice of Hilbert space H) and therefore, if Dcp is also heavy convex and

if X 2 Dcp, then tX 2 Dcp for all jtj � 1. This seems not entirely relevant, though

related.)

We will say that Dcp is psuedo-bounded if, for each �nite dimensional Hilbert

space H the component of the set

fX = (X1; : : : ; Xg) : Xj 2 B(H); p(X) > 0g � B(H)

containing 0 is bounded. Here p(X) > 0 means p(X) is strictly positive de�nite. (This

de�nition is somewhat PROVISIONAL ?? Also placed psuedo-bounded in braces fg

for easy renaming.) There is of course a similar notion for self-adjoint collections P

instead of just the singleton fpg.

The positivity domain Dcp is closed with respect to compression to semi-invariant

subspaces if whenever a tuple X = (X1; : : : ; Xg) acting on a Hilbert space H is in

Dcp and P is the projection onto a a subspace which is semi-invariant for each Xj

it follows that PXP is in Dcp. Thus, closed with respect to compressions to semi-

invariant subspaces is a weaker condition than heavy?? convex.

Theorem 3.1 (a) If Dcp is psuedo-bounded and closed with respect to compression

to semi-invariant subspaces, then pxj > 0 for each 1 � j � g and pw � 0 for all w.

(b) If Dcp is psuedo-bounded and heavy convex, then, pxj > 0 for each 1 � j � g

and pw = 0 for all jwj > 1. In particular, p is quadratic.

Consequently, if p de�nes a psuedo-bounded heavy convex positivity domain, then

p = I�
P

0<jwj�d
c2ww

�w and, using the Cholesky algorithm, there is a (D+1)�(D+1)

matrix-valued linear polynomial L such that p and L determine the same positivity

domain: Dcp = DcL. To describe L, let D =
Pd

n=1
gn and view CD as the Hilbert
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space with orthonormal basis fw : w is a word ; 0 < jwj � dg. Let B denote the D�1

(column) polynomial B =
P
w 
 xw and let

L =

0
@ I B

B� I

1
A :

The proof of the part about compressions to semi-invariant subspaces is a variant

of the necessary part of the characterization of NP kernels. (McCullough x2, Agler

and McCarthy x2, Jury has most general, suÆciency also add Quiggin.)

3.1 Proof of 3.1

Recall the de�nition of p in (1). It is easy to see pxj � 0 for each j. For instance, if

px1 < 0, then consider the tuple X = (Y; 0; : : : ; 0) where

Y =

0
@ 0 1

0 0

1
A :

Verify that tY 2 Dcp for all t so that Dcp is not psuedo-bounded.

Now, let 1 � m < d denote the smallest integer such that there is a word z with

jzj = m+ 1 and pz < 0. Let B = fw : jwj � mg [ fzg. Let

r = I �
X
jwj2B

pww (2)

and let k denote the rational function

k(w) =
1

r(w)
= I +

X
n�1

r(w)n = I +
X

kvv: (3)

Alternatively, for each v 2 B with jvj > 0,

0 = kv �
X

fpukw : uw = v; juj > 0g (4)

so that kv is de�ned recursively as

kv =
X

fpukw : uw = v; jwj < jvjg:

Note that (4) implies, as p; = 1, pw � 0 for jwj � m; and pxj > 0 for each j, kv > 0

for all jvj � m and

kz =
X

fpukw : uw = z; 0 < jwj < jvjg+ pz: (5)

We also think of k as a kernel in the NC tuples fx1; : : : ; xgg and fy1; : : : ; ygg as

k(y; x) =
X

kv(y
v)�xv ;
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where xv = v and yv is the same as xv but with xj replaced by yj ; so y
v = v(y).

There are now two cases to consider. In the �rst case kz > 0 so that the kernel

k determines a Hilbert space on �nite linear combinations of the words w 2 B by

declaring < v;w >= 0 if v 6= w and < v; v >= kv for v; w 2 B. There is no need

to mod out null vectors because kv > 0 for all v 2 B. De�ne operators Sj on Hk by

Sjxkv = v if j = k and 0 if j 6= k and Sj; = 0, where ; is the empty word and of

course v 2 B.

Proposition 3.2 With notations above, r(S) = I +
P

jwj�m
pww(S)

�w(S) = P0,

where P0 is the projection of M onto the span of f;g.

Given words w and v, say that w (left) divides v with divisor u if v = wu

Proof. Observe that w(S)�v = u if v = wu and w(S)�v = 0 otherwise. In particular,

if v 6= v0, then < w(S)�v; w(S)�v0 >= 0. On the other hand, < w(S)v ; w(S)�v > is

either < u; u >= ku or 0 depending upon whether or not w divides v. Hence, if v 2 B,

but v 6= ;, then

< r(S)v; v >=
X

fpwku : v = wu jwj � mg

which, by (4) is 0. The result follows. ��

Let N denote the span of fw : w 2 B; w 6= ;g and observe that N is semi-

invariant for Sj . Let Tj denote the compression of Sj to N . In particular, if x`

divides v, v = x`w, but v 6= x`, then Tjv = w. Otherwise Tjv = 0. Consequently,

< r(T )z; z > = �
X

fpwku : z = uw u 6= ;g

= �
X

fpwku : z = uwg+ pz

= 0 + pz < 0

where (4) was used in the third equality and the assumption pz < 0 in the inequality.

Finally, note that, from the de�nitions, r(T ) = p(T ) so that < p(T )z; z >< 0 and

Dcp is not heavy convex.

We now take up the case kz � 0 which is rule out with an argument similar to

that above, but contradicting the psuedo-bounded hypothesis rather than the closed

with respect to compression to semi-invariant subspace hypothesis.

By (5),

0 � �(
X

fpukw : uw = z; 0 < jwj < jvjg+ pz)

In particular, the polynomial

f(t) = �(
X

fpukwt
2jwj : uw = z; 0 < jwj < jvjg+ pzt

2jzj)
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satis�es f(1) � 0. Given 0 � t < 1, let �(t) = jf(t)j + (1 � t) and de�ne a Hilbert

space Hk;t, much as Hk was de�ned, by declaring < v;w >= 0 if v; w 2 mathcalB

but v 6= w, < v; v >= kv if jvj � m, and < z; z >= �(t). As before let Sj(t) denote

the backward shift operators on Hk;t. Observe, for 0 � t < 1 and jvj � m,

< p(tS(t))v; v >= kv �
X

fpwkut
2jwj : v = wu; jwj > 0g:

Thus, as pw � 0 and < p(S)v; v >= 0 by (3.2), < p(tS(t))v; v >> 0 for all 0 � t < 1

and jvj � m. Further,

< p(tS(t))z; z > = �(t)�
X

fpwkut
2jwj : v = wu; m � jwj > 0g � pzt

2jzj

� �(t)� jf(t)j

= 1� t:

Hence, < p(tS(t))z; z >> 0 for 0 � t < 1. It follows that p(tS(t)) > 0 for all 0 � t < 1

Write z = x`y and note < tS`(t)z; z >= t < y; y >= ky. Thus, as < z; z >= �(t) and

as t tends to 1, � tends to 0, tS(t) is unbounded as t tends to 1. Thus, Dcp is not

psuedo-bounded. This completes the proof of part (a) of (3.1).

To prove part (b) of (3.1), in view of part (a) and the fact that heavy convex

implies closed with respect to compressions to semi-invariant subspaces, without loss

of generality, it may be assumed that pw � 0 for each jwj > 0 and pw > 0 for each

jwj = 1. Also, as the degree of p is d, there exists a word z such that jzj = d and

pz > 0. By relabeling if necessary, we assume that z = x1y. Let D =
Pd�1

n=1
gn and

view CD as the Hilbert space with orthonormal basis fw : w is a word ; 0 < jwj < dg.

Given a tuple X = (X1; : : : ; Xg) de�ne MNCP� polynomials as follows. Let B =
P

0<jwj<d
w 
 xw, E = y 
 x�

1
and

L =

0
BB@

I B E

B� I 0

E� 0 I +EE�

1
CCA :

An application of the Cholesky algorithm gives,

Lemma 3.3 Let X = (X1; : : : ; Xg) be a given tuple. Then p(X) � 0 if and only if

L(X) � 0.

Proof. In the proof we will encounter

B�(X)E(X) = (
X

0<jwj<d

w� 
X�w)y 
X�

1

=
X
w

w�yX�wX�

1
(6)

= X�yX�

1
= X�z
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where we have used w�v is 1 if v = w and 0 otherwise.

Since the (1; 1) entry of L(X) is I; L(X) is positive semi-de�nite if and only if the

Schur complement of the (1; 1) (block matrix) entry of L(X)

0
@ I �B(X)�B(X) �B�(X)E(X)

�E�(X)B(X) I

1
A =

0
@ I �B(X)�B(X) �Xz

�X�

z I

1
A

is positive semi-de�nite. Similarly, the above (2; 2) block is positive semi-de�nite if

and only if its Schur complement with respect to its (2; 2) entry

I �B(X)�B(X)�X�zXz = p(X)

is positive semi-de�nite. ��

11



3.2 Result Complex {ORIGINAL VERSION

SCOTT ?? WE WANT L aÆne linear? OR L > �I or L > P with P a projection

??

If L 2MNCP� is aÆne linear and X = (X1; : : : ; Xg) is a tuple of operators, then

L(X) � 0 is called a Linear Matrix Inequality (LMI). Note if P1 is a collection of

self-adjoint aÆne linear polynomials from MNCP�, then DcP1
is an heavy?? convex

positivity domain.

Theorem 3.4 If DcP is a bounded heavy?? convex positivity domain, then there

exists a collection P1 of self-adjoint aÆne linear polynomials from MNCP� such that

DcP1
= DcP ; if p 2 P and � > 0, then p + � 2 CP1

. Moreover, if L 2 P1 and � > 0,

then L+ � 2 CP .

Of course a P1 may be an in�nite collection with no bound on the size of the

matrix polynomials involved, even if P is �nite. A conjecture is that P1 is �nite if P

consists of a �nite number of polynomials?

Looks like the result should imply a result for the hereditary case

since aÆne linear polynomials in NCP� are automatically hereditary. Also

should be a symmetric version. Simply include �(xj � x�j ) in P? to make

all X 2 DcP self-adjoint tuples of operators etc.

3.3 Proof of Complex LMI

Let P1 denote the collection of all aÆne linear (square) matrix-valued MNCP� self-

adjoint polynomials L such that L(X) � 0 whenever X 2 DcP . The boundedness

hypothesis implies that

Lj =

0
@ C xj

x�j C

1
A

is in P1, since Lj(X) � 0 if and only if kXjk � C, it follows that DcP1
is a bounded

positivity domain. It is also heavy?? convex. (P1 � CP , so DcP � DcP1
is usual??

thing.)

Suppose Y 2 DcP : If L 2 P1, then L(Y ) � 0 by the de�nition of P1 and so

Y 2 DcP1
. Hence DcP � DcP1

.

To prove the converse (reverse inclusion), �x a seperable in�nite dimensional

Hilbert space H (so H is isomorphic to `2) and let Dc denote the tuples X =

12



(X1; : : : ; Xg) of operators on H such that X 2 DcP . Let X = �DcX acting on

H = �DcH . Of course, if P 2 CP , then q(X) � 0. Conversely, if q(X) > 0, then

P 2 CP which we prove in the following paragraph.

Suppose T = (T1; : : : ; Tg) is a tuple of bounded operators acting on the Hilbert

space T and T 2 DcP and assume that P 2 Ml�l(NCP�) (so ` � ` matrix valued).

Given a non-zero vector  = �`
1
j 2 �

`
1
T , to see that < q(T );  > is positive , let T

denote the smallest reducing subspace for fT1; : : : ; Tg; T
�

1
; : : : ; T �g g containing . The

subspace T is seperable so there are two cases. First, if T is in�nite dimensional,

then T is isomorphic to H and, up to unitary equivalence, we may assume that T ,

the restriction of T to T , is a member of DcP . It follows that, as q(X) > 0, one has

q(T) > 0. Thus < q(T );  >=< q(T);  > is positive. If T is �nite dimensional,

then replace T with �1
1
T and T with �

1

1
T and argue as above. In any event, we

have q(T ) > 0. By the Positivestellensatz, we conclude P 2 CP .

Let �(X) denote the subspace of B(H),

�(X) = fl(X) : l is a scalar aÆne linear NC polynomialg:

Given Y 2 DcP1
acting on the Hilbert space Y , consider the mapping  : �(X) 7!

�(Y ) de�ned by

 (l(X)) = l(Y ):

To see that this mapping is well de�ned and completely positive, it is enough to show

for any `, if L 2Ml�l(�(X)) and if L(X) � 0, then L(Y ) � 0. But, if L(X) � 0 and

� > 0, then by what was proved above L+ � 2 CP and thus L+ � 2 P1. We conclude

that L(Y ) � �� and since � > 0 is arbitrary, L(Y ) � 0.

Since �(X) is a self-adjoint subspace of B(H) containing the identity and  (I) = I

( is unital) and completely positive on �(X), by the Arveson Extension Theorem

and the Steinsprings Representation Theorem, there exists an auxiliary Hilbert space

K, an isometry V : Y 7! K, and representation � : B(H) 7! B(K), such that  (�) =

V ��(�)V . Thus, for aÆne linear scalar polynomials l, we have  (l(Y )) = V ��(l(X))V .

In particular, Y = V ��(X)V for an isometry V . (Note that in the construction X

doesn't depend upon Y , but � does.)

If q 2 P and q = fq�;�g 2Ml�l(NCP�), then

q(�(X)) = f�(q�;�(X))g = ??1
??�(q(X))

SCOTT ?? tensor 1??

and so q(�(X)) � 0. Thus, �(X) 2 DcP . (?? SCOTT ?? bill no compran?? Again
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this is really a general principle. Domains closed with respect to direct sums, unital

representations (including restrict to reducing subspaces) and, if heavy?? convex,

then compression to arbitrary subspaces even.) Thus, by the heavy convex hypothesis,

Y 2 DcP . Hence DcP = DcP1
.

If p 2 CP and � > 0, then p(X)+�I > 0 for allX 2 DcP1
and therefore, p+� 2 CP1

.

The other statement is almost the same.
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4 DUMP -Cutting down to �nite dimensions - REAL-

ALREADY PUT IN Poss3 DOCUM

For heavy convex positivity domains there is a bound on the dimension of Hilbert

spaces needed in the Positivestellensatz.

DEFINE IN MAIN DOC M1�1?? Here it should mean bded ops on Hilby, thats

what we need.

Theorem 4.1 Let P be a collection of symmetric polynomials from ?? M1�1(N�))

and suppose DP is a bounded heavy convex positivity domain. If q is a symmetric

`� ` matrix-valued Ml�l(N�)) polynomial of degree d and if q =2 CP , then there exists

a Hilbert space H of dimension at most `
Pd

0
(2g)n, a non-zero vector  2 H, and a

tuple X = (X1; : : : ; Xg) of operators on H such that X 2 DP , but < q(X);  >� 0.

4.1 Proof of Finite I

From the Positivestellensatz, there exists a tupleX = (X1; : : : ; Xg) acting on a Hilbert

space H and a non-zero vector  = �j 2 �`
1
H such that < q(X);  >. Here

q 2Ml�l(N�) and has degree d. Let

M = spanfw(X)j : w is a word of length at most dg:

Then M has dimension at most `
Pd

0
(2g)n and if P is the projection onto M, then

< q(PXP );  >=< p(X);  >� 0. On the other hand, PXP 2 DP by the heavy

convex hypothesis.
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5 Cutting down to �nite dimensions- ORIGINAL

For heavy convex positivity domains there is a bound on the dimension of Hilbert

spaces needed in the Positivestellensatz.

Theorem 5.1 Let P be a collection of self-adjoint polynomials from ?? MNCP�??

and suppose DcP is a bounded heavy convex positivity domain. If q is a self-adjoint

`� ` matrix-valued MNCP� polynomial of degree d and if q =2 CP , then there exists

a Hilbert space H of dimension at most `
Pd

0
(2g)n, a non-zero vector  2 H, and a

tuple X = (X1; : : : ; Xg) of operators on H such that X 2 DcP , but < q(X);  >� 0.

5.1 Proof of Finite I

From the Positivestellensatz, there exists a tupleX = (X1; : : : ; Xg) acting on a Hilbert

space H and a non-zero vector  = �j 2 �`
1
H such that < q(X);  >. Here

q 2Ml�l(NCP�) and has degree d. Let

M = spanfw(X)j : w is a word of length at most dg:

Then M has dimension at most `
Pd

0
(2g)n and if P is the projection onto M, then

< q(PXP );  >=< p(X);  >� 0. On the other hand, PXP 2 DcP by the heavy

convex hypothesis.

6 DUMP- convex defs done much better in Poss4.tex
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A positivity domain DcP is compression convex or heavy convex if PXP =

(PX1P; : : : ; PXgP ) 2 DcP whenever X = (X1; : : : ; Xg) 2 DcP and P is a projection.

Seemingly closer to the notion of convex is the condition: if X and Y are tuples

and CT
1
C1 + CT

2
C2 = I , then

CT
1
XC1 + CT

2
Y C2 := (CT

1
X1C1; : : : ; C

T
1
XgC1) + (CT

2
Y1C2; : : : ; C

T
2
YgC2) (7)

= CT
1
X1C1 + CT

2
Y1C2; � � � ; C

T
1
XgC1 + CT

2
YgC2)

is in DcP .

|||{

SAME AS ordinary convex, plus closed wrt unitary equiv, compression to reducing

spaces.

0 in set not needed.

|||{

Lemma 6.1 A set DcP in C`
P
which contains 0 satis�es condition (7) if and only if

it satis�es the projected convexity condition.

Proof Assume that condition (7) is satis�ed. Consider a projection P . Set C1 = P

and C2 = 1� P , and pick X and 0 both tuples in C`
P
. Condition (7) implies PXP is

in DcP .

Assume projected convexity. Given C1; C2 construct an isometry V : R2` ! R`

by

V :=
�
CT
1
CT
2

�
:

Now

V (X � Y )V T = CT
1
XC1 + CT

2
Y C2:

This gives, since X;Y 2 DcP implies X � Y is in DcP , that C
T
1
XC1 + CT

2
Y C2 is in

DcP .

NEED TO SET stu� above carefully -now it is nonsense.?? NEED IN B(HILBY)??

7 DUMP- Old real arveson

||||||||||||||||||||||-

OLD
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SPECULATION:

Call (in sync with SCV) a real � subspace of a complex Hilbert space totally real

provided that � \ i� contains only 0.

SPEC 1 H is real Hilbert space. Suppose  is a map on subspace � of B(H) into

B( ~H), where B(H) is a totally real subspace of B(Hc), and B( ~H) is a totally real

subspace of B( ~Hc). Then extends to a complex completely positive map

	 : B(H)! B( ~H)

provided  is real completely positive.

SPEC 2

A real completely positive map  on a totally real subspace � of B(H) into B( ~H)

has a representation as below with homomorphism � on real spaces B(H) ! B(K)

And V : Y ! K.

IF the speculation above holds, THEN the proof for complex should go thru for

real.
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