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Abstract. Matrix inequalities have come to be extremely important in systems

engineering in the past decade. This is because many systems problems convert directly

into matrix inequalities.

Matrix inequalities take the form of a list of requirements that polynomials or ra-

tional functions of matrices be positive semide�nite. Of course while some engineering

problems present rational functions which are well behaved, many other problems present

rational functions which are badly behaved. Thus taking the list of functions which a

design problem presents and converting these to a nice form, or at least checking if

they already have or do not have a nice form is a major enterprise. Since matrix mul-

tiplication is not commutative, one sees much e�ort going into calculations (by hand)

on noncommutative rational functions. A major goal in systems engineering is to con-

vert, if possible,\noncommutative inequalities" to equivalent Linear Noncommutative

Inequalities (e�ectively to Linear Matrix Inequalities, to LMI's).

This survey concerns e�orts to process \noncommutative inequalities" using com-

puter algebra. The most basic e�orts, such as determining when noncommutative poly-

nomials are positive, convex, convertible to noncommutative LMI's, transformable to

convex inequalities, etc., force one to a rich area of undeveloped mathematics.
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1. Introduction. Many di�erent types of matrix inequalities have

come up in the mathematics of the previous century, but the ones which

predominate in engineering systems usually take the form of a polynomial

or rational function of matrices being positive semide�nite, (PSD). For

example, there are Riccati expressions like

AX +XAT �XBBTX + CTC � 0 (1.1)

or Linear Matrix Inequalities LMI's like�
AX +XAT + CTC XB

BTX I

�
� 0 (1.2)
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which is equivalent to the Riccati inequality (has an equivalent set of so-

lutions). The matrices A;B;C are typically given, and X = XT is a

symmetric matrix which must be found by some numerical method. Here

all matrices are assumed to have compatible dimension.

Inequalities involving polynomials and rational functions also occur,

as well as lists of them. Indeed there are rich mathematical issues which

bear on matrix inequalities. The focus of this article is on algebraic (rather

than numerical) ones.

This paper is dedicated to the memory of my very devoted mother,

Maxene Helton.

2. To Commute or Not Commute: An Homage to Formulas

which Scale Elegantly with System Size. This section discusses two

di�erent ways of writing matrix inequalities. As an example, we could

consider either the Riccati inequality (1.1) or the equivalent LMI in (1.2).

Let us focus on this LMI, and discuss the various ways one could write this

linear matrix inequality.

The LMI in (1.2) has the same form regardless of the dimension of

the system and its de�ning matrices A;B;C. In other words, if we take

the matrices A;B;C and X to have compatible dimension, (regardless of

what those dimensions are), then the inequality (1.2) is meaningful and

substantive and its form does not change.

When the dimensions of the matrices A;B;C and X are speci�ed

it is common to write (1.2) as a linear combination of known matrices

L0; L1; : : : ; Lm of dimension d� d in unknown real numbers x1; : : : ; xm:

L0 +

mX
j=1

Ljxj � 0: (2.1)

For example, in the inequality (2.1) if A 2 R2�2; B 2 R2�1; C 2 R1�2,

then XT = X 2 R2�2 and we would take m = 3 and the numbers xi in

X =

�
x1 x2
x2 x3

�

as unknowns in the inequality (2.1). The unpleasant part is that the Li are

L0 :=

�
CTC 0

0 I

�
(2.2)

L1 :=

0
BB@

2a11 a21 b11 b12
a21 0 0 0

b11 0 0 0

b12 0 0 0

1
CCA
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L2 :=

0
BB@

2a12 a11 + a22 b21 b22
a22 + a11 2a21 b11 b12

b21 b11 0 0

b22 b12 0 0

1
CCA

L3 :=

0
BB@

0 0 0 a12
0 0 0 a22
0 0 0 b21
a12 a22 b21 2b22

1
CCA

Now consider A 2 R3�3; B 2 R3�2; C 2 R2�3; X 2 R3�3. This gives a

messier formula than (2.1) whose relationship to (2.1) takes a little while to

�gure out. The point is that the formula (2.1) (2.2) does not scale simply

with dimension of the matrices or of the system producing them, while

formula (1.2) does.

I vastly prefer scalable formulas to ones of the second type. It would be

good to write down lists of rational reasons for this, but the real reason is

that I �nd unscalable formulas are usually UGLY. A more rational reason

is that formula (1.1) and (1.2) are easier for a specialist to manipulate

with a pencil and paper (or with NCAlgebra) than formula (2.1) ( 2.2).

Also scalable formulas tend to keep physical quantities nicely grouped.

Moreover, there are situations where one wants to build a network out

of simple pieces and then build a bigger network out of the same simple

pieces. Scalable formulas lend themselves to this approach more than do

badly scalable ones, like inequality (1.1) .

Advantages of unscalable formulas like (2.1) (2.2) are: they hold more

generally than scalable ones, and the formula (2.1) (2.2) loses (or at least

scrambles) a lot of special structure which means a student deriving the

formula can ignore a lot of special structure. Also a disadvantage of formula

(1.1) and (1.2) is intrinsically noncommutative, so to take advantage of their

simplicity a person must have skill with noncommutative calculations. On

balance, I think it is �ne to focus on formulas like (1.2) if one is teaching

Masters degree students in systems and control, or maybe people in other

areas where similar formulas do not easily scale, or people who want a quick

introduction, or numerical analysts who only want to solve such equations.

However, Ph.D. students in systems and control should be encouraged to

strive for formulas which automatically scale with dimension. Even though

such formulas are typically noncommutative, they have the advantages just

described.

3. Noncommutative Inequalities Behave Better than Com-

mutative Ones. To develop a basis for computer algebra packages which

could assist engineers in manipulating matrix inequalities, (that is, ones

which scale), we �rst need to say what a noncommutative inequality is.
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3.1. Noncommutative polynomials. We consider polynomials,

which are, weighted sums of words on 2n variables (letters) together with

an involution on the words, denoted by T , somewhat loosely called trans-

pose. An involution satis�es properties (XiXj)
T = XT

j X
T
i and (XT

j )
T =

Xj for all i; j. We denote the variables (often called indeterminates) by

X1; � � � ; Xn; X
T
1
; � � � ; XT

n and abbreviate them with the notation
!

X = fX1; X2; : : : ; Xng and
!

X
T

= fXT
1
; XT

2
; : : : ; XT

n g.

Call Q a symmetric polynomial provided Q(
!

X)T = Q(
!

X
T

).

3.2. Statements Must be True for Matrices. One who designs

a Matlab Toolbox wants formulas in it which have the advertised property

whenever matrices are of any dimension plugged into their formulas. For

example, what would one mean by a polynomial being positive? There

is an obvious answer, if we bear in mind our insistence that properties

survive matrix substitution. We call a symmetric polynomial Q in
!

X and
!

X
T

matrix-positive provided that for any r when we substitute into

Q any real matrices X1; � � � ;Xn of dimension r � r for X1; � � � ; Xn and we

substitute their transposes, X �
1 ; � � � ;X

�
n forXT

1 ; � � � ; X
T
n , then the resulting

matrix Q(X1; � � � ;Xn;X
�
1
; � � � ;X �

n ) is positive semide�nite.

Consider the following example in two indeterminates

Q(
!

X) = X2

1
+ (X2

1
)T +XT

2
X2: (3.1)

If X1 and X2 are one dimensional, then

Q(
!

X) = X 2

1
+ (X 2

1
)T + X T

2
X2 = 2X 2

1
+ X 2

2
:

This is a sum of squares of numbers and so is positive semide�nite. How-

ever, if we substitute X1 =

�
0 1

�1 0

�
for X1 and X2 =

�
1 0

0 1

�
for X2,

then we get

Q(
!

X) =

�
�1 0

0 �1

�
(3.2)

which is not positive semide�nite. Thus Q(
!

X) is not matrix positive.

3.3. Characterizing Positive Polynomials. We say a polynomial

Q is a Sum of Squares (SoS) provided Q can be put in the form

Q(
!

X) =

kX
i=1

hi(
!

X)Thi(
!

X) (3.3)

where each hi is a polynomial in
!

X and
!

X
T

.
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Clearly, any polynomial which is a SoS is matrix positive, but what

about the converse? The commutative case, that is, the case of polynomials

on Rn is very classical. Hilbert one hundred years ago knew that not all

positive polynomials are sums of squares. In fact his famous 17th problem

is devoted to this sort of problem: which polynomials are sums of squares

of rational functions. By now there is a lively area of mathematics devoted

to understanding which polynomials are and which are not SoS, along with

related phenomena. See [R00] [deAprept] for excellent surveys. Now we

return to the seemingly more complicated situation of noncommutative

polynomials.

Theorem 3.1. Suppose Q is a non-commutative symmetric polyno-

mial. If Q is a SoS, then Q is matrix-positive. If Q is matrix-positive, then

Q is a SoS.

The paper [Hprept] is devoted to this Theorem and its proof. The

important case where all operators are complex unitary was proved in

[Mprept].

3.4. Computing the SoS Decomposition of a Polynomial.

3.4.1. Representing Symmetric Polynomials. In this section we

give a standard \Gram" representation for a polynomial. Also we charac-

terize the non-uniqueness in the representation.

Lemma 3.1. If Q(
!

X) is a symmetric polynomial, then there exists a

symmetric matrix MQ with real entries, not dependent on
!

X, and a vector

V (
!

X) of monomials in
!

X such that

Q(
!

X) = V (
!

X)TMQ V (
!

X): (3.4)

Furthermore, the vector V (
!

X) can always be chosen to be V d(
!

X) where d

is the least integer bigger than 1

2
(degree of Q).

Here we let V d denote the column vector of all monic monomials of

degree less than or equal to d inXj andX
T
j for j = 1; : : : ; n, listed in graded

lexicographic order. The length of V d is �(d) := 1+(2n)+(2n)2+� � �+(2n)d,

since that is the number of monomials in
!

X;
!

X
T

of length = d. For example,

if
!

X = fX1; X2g, then V 2(
!

X) is the column vector with entries

fI;X1; X2; X
T
1 ; X

T
2 ; X

2

1 ; X1X2; X1X
T
1 ; X1X

T
2 ; X2X1; : : : ; (X

T
2 )

2g:

We think of V (
!

X) as a vector of monomials which often will be denoted

V (
!

X) =

0
BB@

V (
!

X)0
...

V (
!

X)p�1

1
CCA : (3.5)
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Examples of the representation (3.5) are

Q = X1X
T
1
+X1X2 +XT

2
XT
1
+ 2 + 2XT

2
XT
1
X1X2

=

0
@ I

XT
1

X1X2

1
A
T 0
@2 0 1

0 1 0

1 0 2

1
A
0
@ I

XT
1

X1X2

1
A :

Here

V (
!

X) =

0
@ I

XT
1

X1X2

1
A and M

Q
=

0
@2 0 1

0 1 0

1 0 2

1
A : (3.6)

Another example is

Q = 2XT
2 X

T
1 X

T
2 X2X1X2 =

�
X2X1X2

�T �
2
� �
X2X1X2

�
:

3.4.2. The Non-uniqueness in the Represention. De�ne SRp�p

to be the symmetric p � p matrices. A non-commutative polynomial Q

with a representation

Q(
!

X) = V (
!

X)TM0

Q
V (
!

X) (3.7)

with M0

Q
a symmetric matrix in SRp�p. Q may also be represented by

di�erent M 's and the same V . These representations of Q all have M of

the form

M =M0

Q
+B (3.8)

where B 2 BV with the subspace of matrices BV � SRp�p de�ned by

BV := fB : V (
!

X)TBV (
!

X) = 0 and B = BT g: (3.9)

Here M0

Q
2 SRp�p is one �xed matrix.

3.4.3. Computing SoS Decomposition is a LMI Problem.

If one matrix M of the form (3.8) is PSD, then the Cholesky

decomposition of M constructs a SoS decomposition of Q. Conversely, if

Q has a SoS decomposition, then there is a positive semide�nite matrix

M of the form (3.8).

It is this well known structure which was exploited quite successfully

by N. Z. Shor [S87], Powers-Wormann [PW98] for computational purposes

in attempting to express commutative polynomials as a SoS. Pablo Parrilo

observed that the critical problem here is an LMI, namely, the matrix B

enters the matrix valued expression

M0

Q
+B
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linearly, and we wish to �nd B making this PSD. Software for solving LMIs

abounds, see

http://plato.la.asu.edu/dimacs.html

for results of benchmark comparisons of numerical packages for solving

LMIs. There is a rich area of research devoted to �nding better numerical

algorithms. Although we will not deal with numerical issues, LMIs will be

the focus of Sections 4 and 5 which appear later in this article.

While this SoS algorithm, which was just outlined, appears in the lit-

erature for ordinary commutative polynomials, it also works without mod-

i�cation for noncommutative polynomials.

Often the point in computing a SoS decomposition for a polynomial

p is just to aÆrm that p is everywhere positive. We can not help but

emphasize that the algorithm, by determining if a SoS decomposition for

noncommutative p exists, determines de�nitively if p is matrix positive.

3.5. Applications of SoS Decompositions. Parrilo and Sturmfels

started experiments on commutative polynomials which ultimately sug-

gested that representing polynomials as SoS is an e�ective way in practice

to check if they are positive. While not all positive polynomials are SoS,

his experiments show a dramatic disposition for positive polynomials to

be represented as SoS, see [PSprept]. Parrilo also uses [P00] a theorem

of Reznick to the e�ect that if p is a positive polynomial, then there is a

integer n � 0 such that,

p(
!

x )

(1 + j
!

x j2)n

is a SoS of rational functions. With this, by stepping thru successively

higher n, one can determine if p is positive. Using these techniques Parrilo

has found many applications to areas such as combinatorial optimization,

dynamical systems and quantum entanglement.

Convexity is a very important property of a function one wishes to

optimize. Now this paper is promoting formulas which scale and so are

noncommutative. For these we need a theory of \noncommutative convex-

ity". That is the subject of Section 6. There we describe a noncommutative

second derivative and then use a theory of matrix positivity like the one

described above to determine automatically using a computer algebra \the

region of convexity" of a noncommutative rational function.

4. Which Sets have LMI Representations? We say a set C � Rm

has a Linear Matrix Inequality (LMI) Representation provided that

there are symmetric matrices L0; L1; L2; � � � ; Lm for which the set

f
!

x = (x1; x2; � � �xm) : L0 + L1x1 + � � �+ Lmxm is PosSemiDefg

equals the set C. We shall use the term linear pencil to refer to a m real

parameter family of symmetric matrices

L(
!

x ) := L0 + L1x1 + � � �+ Lmxm
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where
!

x = (x1; � � � ; xm) are m real parameters. We shall require by our

use of the term linear pencil that L0; L1; L2; � � �Lm are symmetric real

entried matrices, and often we refer to the linear pencil simply by listing

the (m+ 1)�tuple L = fL0; L1; L2; � � � ; Lmg of matrices. A monic pencil

is one with L0 = I .

In the many applications which LMIs have found there is no systematic

way to produce LMIs for general classes of problems. Each area has a few

special tricks which convert \lucky problems" to LMIs. Before there is any

hope of producing LMIs systematically one must have a good idea of which

types of constraint sets convert to LMIs and which do not.

This seems like fundamental issue regarding LMI's and I am grateful to

Stephen Boyd and Berndt Sturmfels for mentioning it to me. The question

is formally stated as an open problem in [PSprept]. In this survey I shall

sketch briey some theory of this question developed with Victor Vinnikov

in [HVprept] .

4.1. Obvious Necessary Conditions. Suppose we are given a pen-

cil L which represents a set C. Clearly

C is a convex set.

Without loss of generality take 0 2 C. We have L0 is PSD. It is easy

(see [HVprept] ) to reduce general pencils with L0 a PSD matrix to monic

pencils, so we assume that L is a monic pencil. De�ne a polynomial �p by

�p(
!

x ) := det[I + L1x1 + � � �+ Lmxm]: (4.1)

where the Lj are symmetric d� d matrices.

4.1.1. C is an Algebraic Interior. Clearly, the boundary of C is

contained in an algebraic curve, namely, the zero set of �p. In fact, C is

what we call an Algebraic Interior, that, is a set C in Rm for which

there is a polynomial p in m variables (normalized by p(0) = 1), such that

C equals the set Cp, de�ned to be the closed connected set containing 0,

with p(
!

x ) > 0 on the interior of Cp, and p(
!

x ) = 0 on the boundary of Cp.

Note that the set Cp is uniquely determined by the polynomial p as the

closure of the connected component of the origin in

f
!

x 2 Rm : p(
!

x ) 6= 0g:

4.1.2. p Satis�es the Real Zeroes Condition . For an LMI rep-

resentation to exist there is another obvious condition. Observe from (4.1)

that

�p(�
!

x ) := �d det[
I

�
+ L1x1 + � � �+ Lmxm]:

Since (for real numbers xj ) all eigenvalues of the symmetric matrix L1x1+

� � �+Lmxm are real we see that, while p(�
!

x ) is a complex valued function



MANIPULATING MATRIX INEQUALITIES AUTOMATICALLY 9

of the complex number �, it vanishes only at � which are real numbers.

This condition is critical enough that we formalize it in a de�nition.

A Real Zero polynomial (RZ polynomial) is de�ned to be a poly-

nomial in m variables satisfying, for each
!

x 2 Rm,

(RZ): p(�
!

x ) = 0 implies � is real

It is shown in [HVprept] that for an Algebraic Interior C, the minimal

degree de�ning polynomial p is unique; of course p has some degree d and

we say that C is an Algebraic Interior of Degree d.

Of course the RZ condition is biased with respect to the point zero, so

if we wish to study a set C which does not contain 0 but contains a point

O, then we would need to check that

(RZO): p(O + �
!

x ) = 0 implies � is real

4.2. Geometrical Version of the Necessary Conditions: Rigid

Convexity. In this section we give a geometric characterization of the

Real Zeroes Condition.

4.2.1. Rigid Convexity. An algebraic interior C of degree d in Rm

with minimal de�ning polynomial p will be called rigidly convex provided

that for every point
!

x
0

in C and almost every line ` through
!

x
0

(i.e. all but

a �nite number), ` intersects the (aÆne) real algebraic surface p(
!

x ) = 0 in

exactly d points 1. In this counting one ignores lines which go thru
!

x
0

and

hit the boundary of C at 1.

Proposition 4.1. (See [HVprept] ) If the line test which de�nes rigid

convexity holds for one point
!

x
0

inside C then it holds at all points inside

C, thereby implying rigid convexity.

Obviously this proposition simpli�es testing for rigid convexity, since

we just need to pass lines through one point, not all points. Although we

do not prove it here, rigid convexity implies convexity.

Theorem 4.1. Rigid convexity of an Algebraic Interior C is the same

as its minimal degree de�ning polynomial p having the RZ Property. As

a consequence we obtain that if C has an LMI representation, then it is

rigidly convex.

We prove this later after turning to some examples.

4.2.2. Example 1. The polynomial

p(x1; x2) = x31 � 3x22x1 � (x21 + x22)
2

has zero set shown in Figure 1.

1One can replace here \almost every line" by \every line" if one takes multiplicities

into account when counting the number of intersections, and also counts the intersections

at in�nity, i.e., replaces the aÆne real algebraic hypersurface p(
!

x ) = 0 by the projective

real algebraic hypersurface p(
!

x ) = 0.
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0:75 x2

0:5

0:25

�0:25

�0:5

�0:75

�0:25�0:5
�

0:25 0:5 0:75 1 x1

Fig. 1. p(x1; x2) = x3
1
� 3x2

2
x1 � (x2

1
+ x2

2
)2

The complement to p = 0 in R2 consists of 4 components, 3 bounded

convex components where p > 0 and an unbounded component where

p < 0. Let us analyze one of the bounded components, say the one in the

right half plane, C is the closure of

f
!

x : p(
!

x ) � 0; x1 > 0g:

Does C have an LMI representation? To check this: �x a point O inside C,

e.g. O = (:7; 0).

1

�1

�2

�3

�0:5 �0:5 0:5 1

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Fig. 2. A line thru p = x3
1
� 3x2

2
x1 � (x2

1
+ x2

2
)2 hitting Zp in only 2 points.

By Theorem 4.1 almost every line l ( as in Figure 2) must intersect

p = 0 in 4 real points or the RZO condition is violated. We can see
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from the picture in R2 that there is a continuum of real lines ` through

O intersecting p = 0 in exactly two real points. Thus by Theorem 4.1 the

set C does not have an LMI representation. (Since p is irreducible it is the

minimum de�ning polynomial for C.)

4.2.3. Example 2.

p(x1; x2) = 1� x41 � x42

Clearly, Cp := fx : p(
!

x ) � 0g has degree 4 but all lines in R2 through it

intersect the set p = 0 in exactly two places. Thus Cp is not rigidly convex.

1

0:5

�0:5

�1

�1 �0:5 0:5 1

Fig. 3. p(x1; x2) = 1� x4
1
� x4

2

4.2.4. Idea of the Proof of Theorem 4.1. Let ` := f
!

x 2 Rm :
!

x = �
!

v +
!

x
0

; � 2 Rg, be a parameterization of a line through
!

x
0

in the

interior of C; its direction is
!

v 2 Rm. The points of intersection of the

real algebraic hypersurface p(
!

x ) = 0 with the line ` are parameterized by

exactly those � 2 R at which

f(�) := p(�
!

v +
!

x
0

) = 0;

and rigid convexity of Cp says (for all but �nitely many ` ) there are exactly

d such distinct �. However, the degree of p is d, so for all but �nitely many

directions
!

v 2 Rm, the degree of the polynomial f equals d. Thus these

f , by the Fundamental Theorem of Algebra, have exactly d zeroes � 2 C,

counting multiplicities. Thus rigid convexity says precisely that all zeroes

of f are at real �, for f arising from almost all
!

v . That this is equivalent

to the RZ Property for p follows from an elementary continuity argument

which implies that all f have only real zeroes. ��
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4.3. Rigid Convexity SuÆces in 2 Dimensions . Now we give a

de�nitive charachterization for LMI representations in 2 dimensions.

Theorem 4.2. If C is a closed convex set in Rm with an LMI rep-

resentation, then C is rigidly convex. When m = 2, the converse is true,

namely, a rigidly convex degree d set, whose interior contains 0, has a

monic LMI representation with symmetric matrices Lj 2 Rd�d.

The proof is not at all elementary and involves a considerable amount

of Riemann Surface theory. For related topics the reader is referred to

the Multi-dimensional systems workshop at this MTNS 2002 conference,

organized by Krzysztof Galkowski, Eric Rogers, and Victor Vinnikov. The

proof is based on earlier work of V. Vinnikov [V89], [V93] and improved by

more recent work with J. Ball [BV96] [BV99]. The proof itself can be found

in [HVprept]. There we give two proofs. One of them is a construction of

the L0; L1; L2 based on Riemann surface theory, � functions and such,

which does not bode well for dimensions higher than 2.

Nobody, has any idea at this point if in dimension higher than m = 2,

what conditions beside rigid convexity of C are required to ensure that C

has an LMI representation.

5. LMI Representations for Sets which Automatically Scale.

There seems to a be disconnect between the results of the previous section

and much of the control theory LMI literature. In the literature one typ-

ically sees methods for construction which depend on Schur complement

formulas and which clearly represent only very very special sets with LMI's.

In the previous section we saw that the rather weak RZ condition was all

that was required for there to exist an LMI representation at least in 2

dimensions. Maybe the reason is that most formulas obtained in the sys-

tems literature scale automatically with the dimension of the system being

analyzed, as opposed to what was studied in the previous section. In this

section we turn to scalable versions of LMI representations and simply ask

questions.

5.1. Questions. First we state some questions of this genre. We

begin with the easiest to state, although it is not the closest to our theme.

Question 5.1. For which symmetric polynomials p in symmetric

noncommuting variables Xj is there a monic linear pencil

L(
!

X) := I + L1 
X1 + L2 
X2 + � � �+ Lm 
Xm

with m matrices Lj 2 SRd�d , such that

det p(
!

X) = det[I + L1 
X1 + L2 
X2 + � � �+ Lm 
Xm]

for all m- tuples
!

X of SRr�r matrices.
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The notation Lj 
 Xj denotes tensor product but might be puzzling,

so we give an example.

Example 1. Take m = 2 and d = 2 and

L1 :=
� 2 3

3 0

�
L2 :=

� 3 5

5 0

�
(5.1)

Then

L1 
X1 :=
� 2X1 3X1

3X1 0

�

the pencil L(
!

X) is

L(
!

X) =
� 1 + 2X1 + 3X2 3X1 + 5X2

3X1 + 2X2 1

�
:

Clearly, if we were to replace
!

X by 2-tuples of 3 � 3 matrices, then L(
!

X)

would be a 6� 6 matrix.

Our main interest is in sets of matrices on which p is PSD (rather than

in Question 5.1 about determinants). This requires a de�nition. Given

a symmetric polynomial p in symmetric noncommutative variables as in

Question 5.1, we call a subset Crp of m-tuples of symmetric r � r matrices

the rth - Algebraic Interior for p provided that the set Crp is arcwise

connected and, most important, we require p(
!

X) is positive de�nite for

each m-tuple
!

X of symmetric r � r matrices. The Noncommutative

Algebraic Interior for p is the union Cp of the C
r
p for all r. The de�nition

also applies to a symmetric pencil L, since L is a polynomial in
!

X, associate

to a pencil L a Noncommutative Algebraic Interior, denoted CL. Here we

emphasize that, for
!

X a tuple of r � r matrices, L(
!

X) is a Rdr�dr matrix

given by

L(
!

X) := L0 
 Ir + L1 
X1 + L2 
X2 + � � �+ Lm 
Xm:

Also if we assume the normalization the zero matrix tuple is in the interior

of CL, then we may without loss of generality take L to be monic.

Question 5.2. Which Noncommutative Algebraic Interiors C have a

monic noncommutative LMI representation? In other words, for which C

is there a symmetric linear pencil L(
!

X) having the same Noncommutative

Algebraic Interior, that is CL = C?
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Question 5.3. There are many obvious variants on these questions

centering on what is symmetric and what is not.

Example 2 Given

p(
!

X) := 1 + 2X1 + 3X2 � (3X1 + 2X2)(3X1 + 2X2):

It is easy to show that the answer to Question 5.2 is yes for this polynomial

p. Indeed, the monic linear pencil L(
!

X) given in equation (5.1) and p(
!

X)

have the same Noncommutative Algebraic Interior.

To see this note that p(
!

X) is a Schur complement for the 2� 2 matrix

function L(
!

X) and that p(
!

X) being PSD implies 1+2X1+3X2 is also PSD,

which together are equivalent to L(
!

X) being PSD. Note that h does not

factor, so is irreducible. ��

There is progress on these questions by Scott McCullough and me, but

�ndings are far from complete. The interested reader can look at Helton's

web page where preprints are posted.

6. Noncommutative Convexity. For numerical purposes convexity

goes a long way; indeed an LMI representation for many problems might

well be overkill. This section concerns noncommutative convexity and how

one in practice can test if a given noncommutative function is \convex".

This section will describe work with Juan Camino, Bob Skelton and Jeiping

Ye, see [CHSYprept].

We shall be investigating noncommutative rational functions, namely

functions � which are polynomial or rational in noncommutative variables.

Examples of noncommutative symmetric polynomials are

�(A;B;X) = AX +XAT �
3

4
XBBTX; X = XT ;

�(A;D;X; Y ) = XTAX+DYDT+XYXT ; Y = Y T and A = AT : (6.1)

They have coeÆcients which are real numbers. Noncommutative rational

functions of
!

X are polynomials in
!

X and inverses of polynomials in
!

X. An

example of a symmetric rational function is

�(A;D;E;X; Y ) = A(I +DXDT )�1AT +E(Y XY T )ET ; X = XT :

(6.2)

We also assume there is an involution on these rational functions which

we denote superscript T , and which will play the role of transpose later

when we substitute matrices for the indeterminates. The setup in this

section is more general than in Section 3 in that here we are willing to

restrict some variables to be symmetric and let others not be symmetric.

In Section 3 the variables were unconstrained. That is symmetry was not

(and could not be) imposed on variables.



MANIPULATING MATRIX INEQUALITIES AUTOMATICALLY 15

6.1. Notational Tedium. Often we shall think of some variables as

knowns and others as unknowns. We shall be concerned primarily with a

function's properties with respect to unknowns. For example, in function

(6.2) when we are mainly concerned about behavior such as convexity of �

in X;Y we often write �(A;D;E;X; Y ) simply as �(X;Y ). Often we use
!

Z to abbreviate all indeterminates which appear, for example, in (6.2) we

have
!

Z = fA;D;E;X; Y g. Often we distinguish knowns
!

A = fA1; : : : ; Amg

from unknowns
!

X = fX1; : : : ; Xkg by writing
!

Z = f
!

A;
!

Xg. Throughout

this exposition, letters near the beginning of the alphabet denote knowns,

while the letters X , Y stand for unknowns.

We call a noncommutative function �(
!

A;
!

X) symmetric provided

that

�(
!

A;
!

X)T = �(
!

A;
!

X) if
!

A
T

=
!

A;
!

X
T

=
!

X;

or provided that

�(
!

A;
!

X)T = �(
!

A
T

;
!

X) if
!

X
T

=
!

X;

etc.

6.2. The Geometric De�nition of Matrix Convexity. A non-

commutative rational symmetric function � of
!

X = fX1; : : : ; Xkg will be

called geometrically matrix convex provided that whenever the non-

commutative variables
!

X are taken to be any matrices of compatible di-

mensions, then for all scalars 0 � � � 1 we have that

�(�
!

X

1

+ (1� �)
!

X

2

) � ��(
!

X

1

) + (1� �)�(
!

X

2

):

Here
!

X

1

= fX1
1
; : : : ;X1kg are k-tuples and

!

X

2

= fX2
1
; : : : ;X2kg of matrices of

compatible dimensions. The function � is strictly geometrically matrix

convex if the inequality is strict for 0 < � < 1. The reverse inequality

characterizes geometrically matrix concave.

6.3. The Algebraic De�nition of Matrix Convexity. We are all

familiar with the fact that for an ordinary (commutative) function f con-

vexity corresponds to positivity of the second derivatives of f . Now we

describe a quite practical noncommutative version of this. To emphasize

the concreteness of this formalism we list the NCAlgebra command which

implements it.

6.3.1. First Derivatives. Conventional convexity of a function can

be characterized by the second derivative being positive. As we shall see in

Section 6.3.3, this is also the case with \noncommutative convex functions"
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and so we review a notion of second derivative which is suitable for symbolic

computation. We begin with �rst rather than second derivatives.

Later we study convexity tests, and these are based on derivatives of

� and their transposes. Directional derivatives of noncommutative rational

�(
!

A;
!

X) with respect to
!

X in the direction
!

H are de�ned in the usual way

D�(
!

X)[
!

H ] := lim
t!0

1

t

�
�(
!

X + t
!

H)� �(
!

X)

�
(6.3)

=
d

dt
�(
!

X + t
!

H)

����
t=0

:

For example, the derivative of � in (6.1) with respect to X is

DX�(X;Y )[H ] = HTAX +XTAH +HYXT +XYHT :

and the derivative of � in (6.2) with respect to Y is

DY �(X;Y )[K] = E(KXY T + Y XKT )ET :

It is easy to check that derivatives of symmetric noncommutative rational

functions always have the form

D�(X)[H ] = sym

"
kX
`=1

A`HB`

#

where sym[R] := R+RT .

The noncommutative algebra command to generate the directional

derivative DX�(X;Y )[H ] is:

NCAlgebra Command: DirectionalD[Function �, X , H ].

6.3.2. Second Derivatives. To obtain suÆcient conditions for op-

timization we must use the second order terms of a Taylor expansion of

�(
!

X + t
!

H) about t = 0 2 R.

�(
!

X + t
!

H) = �(
!

X) +D�(
!

X)[
!

H ] t+
!

H�(
!

X)[
!

H ] t2 + : : :

Here H� denotes the Hessian of � and is de�ned by

H�(
!

X)[
!

H ] :=
d2

dt2
�(
!

X + t
!

H)
���
t=0

:

One can easily show that the second derivative of a hereditary sym-

metric noncommutative rational function � with respect to one variable X

has the form

H�(X)[H ] = sym

"
kX
`=1

A`H
TB`HC`

#
:
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An analogous more general expression holds for more variables. For exam-

ple, the second derivative of � in (6.2) with respect to X is

HX�(X;Y )[H ] =

2 (A(I +DXDT )�1DHDT (I +DXDT )�1DHDT (I +DXDT )�1AT ):

Once the Hessian H�(
!

X)[
!

H ] is computed, the only variable of interest

is
!

H . Thus, for convenience, the variables
!

X and
!

A are gathered in
!

Z ,

producing a function Q,

Q(
!

Z)[
!

H ] := H�(
!

X)[
!

H ];

which is quadratic in
!

H . Here of course, a noncommutative polynomial in

variables H1, H2, : : : , Hk is said to be quadratic if each monomial in the

polynomial expression is of order two in the variables H1, H2, : : : , Hk.

We emphasize that for our convexity considerations, once the Hessian

is computed, the fact that
!

X played a special role has no inuence.

NCAlgebra Command: Hessian[ function �, fX1, H1g, : : : , fXk, Hkg].

6.3.3. The Second Derivative De�nition of Matrix Convexity.

The function �(
!

A;
!

X) is said to bematrix convex with respect to variable
!

X provided its Hessian H�(
!

X)[
!

H] is a positive semide�nite matrix for all

square matrices
!

A;
!

X and all square matrices
!

H.

6.4. Matrix Convex and Geometrically Matrix Convex are

Equivalent. Both the de�nitions, matrix convex and geometrically matrix

convex, are equivalent provided that the domain of the function � is a

convex set, as stated by the following lemma.

Lemma 6.1. Suppose � is a noncommutative rational symmetric func-

tion. Then it is geometrically matrix convex (respectively geometrically

matrix concave) on a convex region 
 of matrices of �xed sizes if and only

if

H�(
!

X)[
!

H] � 0

(respectively � 0) for all
!

H and
!

X 2 
.

Proof. The proof is given in [HMer98] where 
 is all matrices of a

given size. It extends in a straight forward way to 
 which are convex sets.

6.5. Determining If � is Matrix Convex Everywhere. If some-

one gives us a symmetric noncommutative function � we can determine by

computer algebra, if � is matrix convex everywhere, simply by computing

its symbolic Hessian which is a quadratic Q(
!

Z)[
!

H ] in
!

H and then checking
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if the noncommutative function Q is matrix positive as we discussed in

Section 3.

We may conclude that our theory of matrix positivity pays o� not just

in and of itself, but also for determining matrix convexity.

6.6. Regions of Matrix Convexity. Functions are seldom convex

everywhere, so it behooves us to compute regions where a rational function

� is \matrix convex". The paper [CHSYprept] contains quite a satisfying

theory along these lines. It provides an algorithm, actually implemented

in NCAlgebra. Given � the algorithm produces a set of \symbolic inequal-

ities" which determines a domain G of matrix convexity for �. Moreover,

the domain produced by the algorithm is the largest such domain (in a nat-

ural sense). The fact that the domain is the \largest" requires a substantial

proof.

6.6.1. Some Examples. The rigorous setup takes a while to de-

scribe, so we shall begin with some formal examples of what our algorithm

produces. In fact we introduce our method with an example of an NCAl-

gebra command (which embodies it). While this is a bit unusual, since it

uses terms which have not been formally introduced, we �nd most people

understand the example anyway and the example eases the many pages of

de�nitions and constructions that the reader must endure before getting to

the rewards of the method in [CHSYprept]. The command for �nding the

region of convexity is

NCConvexityRegion[Function �,
!

X ].

When we input a noncommutative rational function �(
!

Z) of
!

Z =

fA1, : : : , Am, X1, : : : , Xkg this command outputs a family of inequalities

which determine a domain G of
!

Z on which � is \matrix convex" in
!

X =

fX1; : : : ; Xkg. This is illustrated by the next two examples.

Example 1

Suppose one wishes to determine the domain of convexity (concav-

ity) with respect to X , Y of the following function on matrices
!

Z =

fA;B;R;X; Y g:

F (
!

Z) = �(Y +ATXB)(R+BTXB)�1(Y +BTXA) +ATXA;

where X = XT and Y = Y T . We treat A;B;R;X; Y symbolically as

noncommutative indeterminates and apply the command NCConvexity-

Region[F , fX , Y g] which outputs the list

f�2 (R +BTXB)�1; 0; 0; 0g:

From this output, we conclude that whenever A, B, R, X , and Y are

matrices of compatible dimension, the function F is \matrix concave" in

X , Y on the domain G given by

G := f(X;Y ) : (R+BTXB)�1 > 0g:
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The command NCConvexityRegion also has an important feature which

for this problem assures us that the \closure" of G, in a certain sense, is

the \biggest domain of matrix concavity" for F .

Example 2

Let X = XT and Y = Y T , and de�ne the function F as

F (X;Y ) = (X � Y �1)�1:

The output of NCConvexityRegion[F , fX , Y g] is

f(X � Y �1)�1; Y �1; 0g:

Thus the function F is \matrix convex" on the region

G := f(X;Y ) : Y �1 > 0 and (X � Y �1)�1 > 0g;

whenever the symbolic elements X and Y are substituted by any matrices

of compatible dimension. Of course G is the same as f(X;Y ) : Y > 0 and

X �Y �1 > 0g. Again, our algorithm guarantees that the \closure" of G in

a certain sense is the \biggest domain of matrix convexity" of F .

6.6.2. Representing Noncommutative Quadratics. We leave

this exposition in an incomplete state rather than go into the fairly ob-

vious but long de�nitions of what a \matrix convex function on a Symbolic

Inequality Domain" means. Instead we indicate what type of mathematics

is involved in proving that the domain we found is, up to a certain type of

closure, the largest possible.

The core of the matter is a certain representation for noncommuta-

tive rational functions Q(Z1; : : : ; Zv; H1; : : : ; Hk) which are quadratic func-

tions of
!

H = fH1; : : : ; Hkg. Our concern is describing the region G of
!

Z= fZ1; : : : ; Zvg on which Q is \matrix positive" in
!

H . What we show

under reasonable hypotheses is that Q has a weighted sum of squares de-

composition

Q(
!

Z;
!

H) :=

rX
j=1

Lj(
!

Z;
!

H)TDj(
!

Z)Lj(
!

Z;
!

H)

with Lj ; Dj rational and Lj linear in
!

H, such that formal inequalities in-

volving the Dj determine a set

G := f
!

Z : Dj(
!

Z) > 0; j = 1; : : : ; rg

on which Q is \matrix positive" in
!

H. Moreover, a certain \closure" of G

is the largest such set. The precise statement of this result is Theorem

8.2 of [CHSYprept] and a weaker more accessible result is Theorem 3.1 of

[CHSYprept]. This is something of a Positivestellensatz for noncommuta-

tive quadratics Q, a very special class of functions, but the conclusions are

more re�ned in that they give precisely the \set of positivity" of Q.
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