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Abstract

We define the class of sequentially semi-separable matrices in this paper. Essentially this is the class of
matrices which have low numerical rank on their off diagonal blocks. Examples include banded matrices,
semi-separable matrices, their sums as well as inverses of these sums. Fast and stable algorithms for
solving linear systems of equations involving such matrices and computing Moore-Penrose inverses are
presented. Supporting numerical results are also presented. In addition, fast algorithms to construct and
update this matrix structure for any given matrix are presented. Finally, numerical results that show
that the coefficient matrices resulting from global spectral discretizations of certain integral equations
indeed have this matrix structure are given.

Keywords: Backward stability, fast direct solver, fast multi-pole method, integral equations, method of
moments, scattering theory, semi-separable matrices, spectral methods, Moore-Penrose inverses.

1 Introduction

In this paper we will present fast backward stable algorithms for the solution (or in the case of singular
or rectangular systems the determination of Moore-Penrose inverses) of a large class of structured matrices
which can be either sparse or dense. The structure concerned is called ’semi-separable’ and is a matrix
analog of semi-separable integral kernels as described by Kailath in [29]. This matrix analog was most likely
first described by Gohberg, Kailath and Koltracht in [20]. In that paper it is shown that, under further
technical restrictions, an LDU factorization is possible with a complexity n2N where n is the complexity
of the semi-separable description and N the dimension of the matrix - in effect an algorithm linear in the
size of the matrix, when n is small. In a number of papers Alpay, Dewilde and Dym introduce a new
formalism for time-varying systems which provides for a framework closely analog to the classical time
invariant state space description and which allows for the generalization of many time invariant methods to
the time-varying case [1, 2]. When applied to matrices, this formalism generalizes the formalism used in [20]
and allows for more general types of efficient operations (by ’efficient’ we mean operations that are linear
in the size of the matrix). In the book Time-varying Systems and Computations [14], Dewilde and van der
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Matrix Ui Vi Wi Pi Qi Ri

Dimensions mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

Table 1: Dimensions of matrices in (1). ki and li are column dimensions of Ui and Pi, respectively.

Veen describe the various operations that are possible on time-varying systems in great detail, including the
efficient application of orthogonal transformations. In particular, they show how a URV type transformation
on a general, (possibly infinite dimensional) semi-separable system can be done with an efficient recursive
procedure. This procedure is based on the ideas presented in [39] and then further elaborated by Dewilde
and van der Veen in [15] and by Eidelman and Gohberg in [19]. In the former paper the connection with
Kalman filtering as a special case of the procedures is also discussed.

In this paper we will present an implicit version of these algorithms for finite-dimensional matrices. This
essentially combines the fast solution techniques for banded plus semi-separable linear systems of equations of
Chandrasekaran and Gu [5] with related techniques of Dewilde and van der Veen for time-varying systems [14].
In addition, we indicate new improvements on these methods, and in particular a method to compute Moore-
Penrose inverses of general semi-separable matrices with a single top-down recursion.

We will also use the proposed techniques to suggest fast direct solvers for two classes of spectral methods for
which there had been no known fast direct solvers (not even unstable ones). This will illustrate the usefulness
of the algorithms presented in this paper. One spectral method is due to Greengard and Rokhlin [23, 31, 37,
38] for two-point boundary-value problems, and the other is by Kress [12] for solving the integral equations
of classical exterior scattering theory in two dimensions.

To be more specific, let A be an N × N (possibly complex) matrix satisfying the matrix structure. Then
there exist n positive integers m1, · · · ,mn with N = m1 + · · ·+ mn to block-partition A as

A = (Ai,j) , where Aij ∈ Cmi×mj satisfies Aij =


Di, if i = j,
UiWi+1 · · ·Wj−1V

H
j , if j > i,

PiRi−1 · · ·Rj+1Q
H
j , if j < i.

(1)

Here we use the superscript H to denote the Hermitian transpose. The sequences {Ui}n−1
i=1 , {Vi}ni=2, {Wi}n−1

i=2 ,
{Pi}ni=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and {Di}ni=1 are all matrices whose dimensions are defined in Table 1. While any

matrix can be represented in this form for large enough ki’s and li’s, our main focus will be on matrices of
this special form that have relatively small values for the ki’s and li’s (see Section 6). In the above equation,
empty products are defined to be the identity matrix. For n = 4, the matrix A has the form

A =


D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

 .

We say that the matrix A is sequentially semi-separable if it satisfies (1). In the case where all Wi and
Ri are identities, A reduces to a block-diagonal plus semi-separable matrix, which can be handled directly
using techniques in Chandrasekaran and Gu [5]. It is shown in [14] that this class of matrices is closed under
inversion and includes banded matrices, semi-separable matrices as well as their inverses as special cases.

It should be noted that the sequentially semi-separable structure of a given matrix A depends on the sequence
mi. Different sequences will lead to different representations. Through out the first part of this paper we
will assume that the Di’s are square matrices, we generalize to Moore-Penrose inverses in later sections.

Our main objective of this paper is to present a fast backward stable algorithm for solving systems of linear
equations where the coefficient matrix satisfies (1). Additionally, we demonstrate the usefulness of this
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approach by showing how this algorithm can be used to potentially speed-up a two-dimensional exterior
Helmholtz solver and also greatly reduces the amount of memory needed.

In Section 2, we discuss a fast algorithm to multiply the matrix in (1) by any given vector or matrix; such
an algorithm is already presented in [14], but we include it here for completeness and convenience. In
Section 5, we present a fast backward stable solver for solving sequentially semi-separable linear systems
of equations; in Sections 6 and 8, we show how to effectively construct and update the sequentially semi-
separable representation for a broad class of dense matrices, thereby significantly reducing the solution time
for related linear systems of equations; and in Section 12, we discuss applications of the above algorithms to
solve equations arising from the spectral discretization of two-point boundary-value problems and exterior
scattering problems.

2 Fast Multiplication

We begin by presenting the fast multiplication algorithm which is useful for efficiently checking the backward
error of the solution generated by the fast direct solver.

Assume that we want to multiply the sequentially semi-separable matrix A with the vector x to get b = Ax.
We partition x = (xi ) and b = ( bj ) such that xi and bi have mi rows. Then

bj = PjRj−1 · · ·R2Q
H
1 x1 + PjRj−1 · · ·R3Q

H
2 x2 + · · ·+ PjQ

H
j−1xj−1 + Djxj

+ UjV
H
j+1xj+1 + UjWj+1V

H
j+2xj+2 + · · ·+ UjWj+1 · · ·Wn−1V

H
n xn.

Staring at this formula we realize that we can speed up these calculations by first calculating the intermediate
quantities:

gn = V H
n xn, and gi = V H

i xi + Wigi+1, i = n− 1, . . . , 1;
h1 = QH

1 x1, and hj = QH
j xj + Rjhj−1, j = 2, . . . , n.

With these quantities we have that

b1 = D1x1 + U1g2, bi = Pihi−1 + Dixi + Uigi+1, 1 < i < n, and bn = Pnhn−1 + Dnxn.

Here is the flop count. It takes at most 2
∑

ki−1(mi +1+ki) flops to compute the gi’s, at most 2
∑

li+1(mi +
1 + li) flops to compute the hi’s. Similarly, it takes at most 2

∑
mi(mi + li + ki + 1) flops to compute all

the bi’s from the gi’s and hi’s. Hence the total number of flops does not exceed

2
∑

ki−1(mi + 1 + ki) + li+1(mi + 1 + li) + mi(mi + li + ki + 1).

To see the benefits of this algorithm consider the total number of flops when mi = m and ki = k and li = l
for all i. It works out to be at most 11n(l2 + k2 + m2) flops, as opposed to 2n2m2 flops for doing it by the
usual multiplication method. As can be seen, if k and l are small compared to m

√
n substantial savings in

flops can be obtained.

This algorithm can be straightforwardly generalized to deal with the case where x is replaced by an N ×K
matrix for K > 1 with similar flop savings. We note that all the matrix-vector products now become
matrix-matrix products, hence the usual benefits of level-3 BLAS still remain [16].
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3 Fast SSS matrix-matrix multiplication

The basic algorithms for multiplying either two upper or lower triangular matrices in SSS form is presented
in [14]. We now present a fast and stable method to multiply two matrices that have SSS representations.
This algorithm is an order of magnitude faster than applying the algorithm in section 2 either column by
column, or row by row. Let A and B be matrices in SSS form that are conformally partitioned. We first
define forward and backward recursions

G1 = 0, Gi+1 = QH
i (A)Ui(B) + Ri(A)GiWi(B), , i = 1, · · · , n− 1.

Hn = 0, Hi−1 = V H
i (A)Pi(B) + Wi(A)HiRi(B), , i = n, · · · , 2.

Theorem 1 The SSS form of the matrix C = AB can be computed through the following recursions:

Di(C) = Di(A)Di(B) + Pi(A)GiV
H
i (B) + Ui(A)HiQ

H
i (B),

Pi(C) = (Di(A)Pi(B) + Ui(A)HiRi(B) Pi(A) ) ,

Ri(C) =
(

Ri(B)
QH

i (A)Pi(B) Ri(A)

)
,

Qi(C) = (Qi(B) DH
i (B)Qi(A) + Vi(B)GH

i RH
i (A) ) ,

Ui(C) = (Di(A)Ui(B) + Pi(A)GiWi(B) Ui(A) ) ,

Wi(C) =
(

Wi(B)
V H

i (A)Ui(B) Wi(A)

)
,

Vi(C) = (Vi(B) DH
i (B)Vi(A) + Qi(B)HH

i WH
i (A) ) .

Proof. We prove the recursions by a mathematical induction on n, the number of blocks in the SSS
representation of C. To avoid redundant work, we postpone the proof on the base step to the end, and begin
by assuming that the recursions hold for any A and B with at most n ≥ 3 blocks.

Now let A and B be SSS matrices with n + 1 blocks. We turn them and C to SSS matrices with n blocks
by merging the last 2 blocks into one in each matrix. The n-block SSS representation is the same as in the
(n + 1)-block representation in the first n− 1 blocks. In the n-th block, the new representation in C is

Dmg
n (C) =

(
Dn(C) Un(C)V H

n+1(C)
Pn+1(C)QH

n (C) Dn+1(C)

)
, (2)

Pmg
n (C) =

(
Pn(C)

Pn+1(C)Rn(C)

)
, (3)

V mg
n (C) =

(
Vn(C)

Vn+1(C)WH
n (C)

)
. (4)

The new n-th block representations in A and B are similar.

The (n + 1)-block representation defines the recursion matrices {Gi}n+1
i=1 and {Hi}n+1

i=1 . In the n-block
representation, the recursion matrices {Gi}ni=1 remain the same, but there is a slight difference in {Hi}ni=1.
In fact, Hmg

n = 0 and

Hmg
n−1 = (V mg)H

n (A)Pmg
n (B)

= (V H
n (C) Wn(C)V H

n+1 )
(

Pn(A)
Pn+1(A)Rn(A)

)
= V H

n (C)Pn(A) + Wn(C)
(
V H

n+1Pn+1(A)
)
Rn(A)

= V H
n (C)Pn(A) + Wn(C)HnRn(A) = Hn−1.
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It follows that Hi remains the same for i = n − 1, · · · , 1. Hence the recursion formulas remain identical in
both representations for any i ≤ n − 1. Consequently, the induction assumption implies that the recursion
formulas remain true for any i ≤ n− 1 in the (n + 1)-block representation. To show that these formulas are
also true for i = n and n + 1 in this representation, we note that the induction assumption on Pmg

n (C) is

Pmg
n (C) = (Dmg

n (A)Pmg
n (B) + Umg

n (A)Hmg
n Rmg

n (B) Pmg
n (A) )

=
( (

Dn(A) Un(A)V H
n+1(A)

Pn+1(A)QH
n (A) Dn+1(A)

) (
Pn(B)

Pn+1(B)Rn(B)

) (
Pn(A)

Pn+1(A)Rn(A)

) )
=

(
Dn(A)Pn(B) + Un(A)HnRn(B) Pn(A)

Pn+1(A)QH
n (A)Pn(B) + Dn+1(A)Pn+1(B)Rn(B) Pn+1(A)Rn(A)

)

=

 ( Dn(A)Pn(B) + Un(A)HnRn(B) Pn(A) )

(Dn+1(A)Pn+1(B) Pn+1(A) )
(

Rn(B)
QH

n (A)Pn(B) Rn(B)

)  .

By comparing this with (3), we set

Rn(C) =
(

Rn(B)
QH

n (A)Pn(B) Rn(B)

)
,

Pi(C) = (Di(A)Pi(B) + Ui(A)HiRi(B) Pi(A) ) , i = n, n + 1.

Similarly, the induction assumption on Wmg
n (C) simplifies to

V mg
n (C) =

(
V mg

n (B) (Dmg
n )H (B)V mg

n (A) + Qmg
n (B) (Hmg

n )H (Wmg
n )H (A)

)
=

( (
Vn(B)

Vn+1(B)WH
n (B)

) (
Dn(B) Un(B)V H

n+1(B)
Pn+1(B)QH

n (B) Dn+1(B)

)H (
Vn(A)

Vn+1(A)WH
n (A)

) )

=

 ( Vn(B) DH
n (B)Vn(A) + Qn(B)HH

n WH
n (A) )

( Vn+1(B) DH
n+1(B)Vn+1(A) )

(
Wn(B)

V H
n (A)Un(B) Wn(A)

)H

 .

Now equation (4) allows identification

Wn(C) =
(

Wn(B)
V H

n (A)Un(B) Wn(A)

)
,

Vi(C) = (Vi(B) DH
i (B)Vi(A) + Qi(B)HH

i WH
i (A) ) , i = n, n + 1.

Finally, the induction assumption on Dmg
n (C) simplifies to

Dmg
n (C) = Dmg

n (A)Dmg
n (B) + Pmg

n (A)Gn (V mg
n (B))H + Umg

n (A)Hmg
n (Qmg

n (B))H

=
(

Dn(A) Un(A)V H
n+1(A)

Pn+1(A)QH
n (A) Dn+1(A)

) (
Dn(B) Un(B)V H

n+1(B)
Pn+1(B)QH

n (B) Dn+1(B)

)
+

(
Pn(A)

Pn+1(A)Rn(A)

)
Gn

( (
Vn(B)

Vn+1(B)WH
n (B)

)H )
.

We can further simplify the (1, 2) block of Dmg
n (C) to

Dn(A)Un(B)Vn+(B)H + Un(A)Vn+1(A)HDn+1(B) + Pn(A)GnWn(B)Vn+1(B)H

= (Dn(A)Un(B) + Pn(A)GnWn(B) Un(A) ) Vn+1(C)H .

According to (2), we can now identify

Un(C) = ( Dn(A)Un(B) + Pn(A)GnWn(B) Un(A) ) .

In addition, by simplifying the other three blocks of Dmg
n (C), we can set

Qn(C) = (Qn(B) DH
n (B)Qn(A) + Vn(B)GH

n RH
n (A) ) ,

Di(C) = Di(A)Di(B) + Pi(A)GiV
H
i (B) + Ui(A)HiQ

H
i (B), i = n, n + 1.
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This concludes the induction.

We now complete the recursion by considering the base step. It is straightforward to verify that(
D1(A) U1(A)V H

2 (A)
P2(A)Q1(A)H D2(A)

) (
D1(B) U1(B)V H

2 (B)
P2(B)Q1(B)H D2(B)

)
=

(
D1(C) U1(C)V H

2 (C)
P2(C)Q1(C)H D2(C)

)
,

where

P2(C) = (D2(A)P2(B) P2(A) ) ,

V2(C) = (V2(B) DH
2 (B)V2(A) ) ,

Q1(C) = (Q1(B) DH
1 (B)Q1(A) + V1(B)RH

1 (A) ) ,

U1(C) = (D1(A)U1(B) + P1(A)W1(B) U1(A) ) ,

Di(C) = Di(A)Di(B) + Pi(A)GiV
H
i (B) + Ui(A)HiQ

H
i (B), i = 1, 2.

Now repeat the induction step with n = 2 with minor modifications, it is straightforward to verify that all
the recursive formulas hold for n = 3 as well. Hence they must hold for all n ≥ 3.

3.1 Flop count

We now estimate the flop count for this algorithm when mi = p = ki = li. In this case the total flop count
is at most 40np3 flops. As can be seen the constant is of reasonable size.

4 Fast Forward and Backward Substitutions

The SSS structure also allows a fast method to compute L−1B and R−1B for lower and upper triangular
SSS matrices L and U and a general SSS matrix B. Again, this algorithm is an order of magnitude faster
than computing L−1B and R−1B column by column.

We first consider L−1B, where L is lower triangular and both L and B are matrices in SSS form that are
conformally partitioned. We need the following lemma

Lemma 2 Assume that the lower triangular SSS matrix

L =


D1(L)

P2(L)QH
1 (L) D2(L)

...
. . . . . .

Pn(L)Rn−1(L) · · ·R2(L)QH
1 (L) · · · Dn(L)


is non-singular. Then L−1 is a lower triangular SSS matrix with

Di

(
L−1

)
= D−1

i (L), Pi

(
L−1

)
= −D−1

i (L)Pi(L),

Qi

(
L−1

)
=

(
D−1

i (L)
)H

Qi(L), Ri

(
L−1

)
= Ri(L)−Qi(L)HD−1

i (L)Pi(L).

According to the lemma above and Theorem 1, the SSS representation of the forward substitution matrix
L−1B can be obtained by plugging the SSS representation of L−1 into the matrix multiplication recursions
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of Theorem 1. The following recursions for L−1B are simplified from these recursions by taking advantage
of the fact that L−1 is lower triangular. We omit the proof.

Define the following intermediate quantities

Ûi(B) = D−1
i (L)Ui(B), P̂i(B) = D−1

i (L)Pi(B), D̂i(B) = D−1
i (L)Di(B),

P̂i(L) = D−1
i (L)Pi(L), R̂i(L) = Ri(L)−Qi(L)H P̂i(L).

We also define the forward recursion

G1 = 0, Gi+1 = QH
i (L)Ûi(B) + R̂i(L)GiWi(B), , i = 1, · · · , n− 1.

The SSS form of the matrix L−1B can now be computed through the following recursions:

Di(L−1B) = D̂i(B)− P̂i(L)GiV
H
i (B),

Pi(L−1B) =
(
P̂i(B) −P̂i(L)

)
,

Ri(L−1B) =
(

Ri(B)
QH

i (L)P̂i(B) R̂i(L)

)
,

Qi(L−1B) =
(
Qi(B) D̂H

i (B)Qi(L) + Vi(B)GH
i R̂i(L)

)
,

Ui(L−1B) = Ûi(B)− P̂i(L)GiWi(B),
Wi(L−1B) = Wi(B),
Vi(L−1B) = Vi(B).

We now consider R−1B, where R is upper triangular and both R and B are matrices in SSS form that are
conformally partitioned. Define the following intermediate quantities

Ûi(B) = D−1
i (R)Ui(B), P̂i(B) = D−1

i (R)Pi(B), D̂i(B) = D−1
i (R)Di(B),

Ûi(R) = D−1
i (R)Pi(R), Ŵi(R) = Wi(R)− Vi(R)H Ûi(R).

We also define the backward recursion

Hn = 0, Hi−1 = −V H
i (R)P̂i(B) + Ŵi(R)HiRi(B), , i = n, · · · , 2.

The SSS form of the matrix R−1B now takes the following recursive form:

Di(R−1B) = D̂i(B) + Ûi(R)HiQ
H
i (B),

Pi(R−1B) = P̂i(B) + Ûi(R)HiRi(B),
Ri(R−1B) = Ri(B),
Qi(R−1B) = Qi(B),
Ui(R−1B) =

(
Ûi(B) Ûi(R)

)
,

Wi(R−1B) =
(

Wi(B)
V H

i (R)Ûi(B) Ŵi(R)

)
,

Vi(R−1B) =
(
Vi(B) −D̂H

i (B)Vi(R) + Qi(B)HH
i ŴH

i (R)
)
.

5 Fast Backward Stable Solver

In this section we describe a recursive and fast backward stable solver for the linear system of equations
Ax = b, where A satisfies (1) and b itself is an unstructured matrix. But before we present the formal
algorithm we demonstrate the key ideas on a 4× 4 block matrix example.
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5.1 A 4× 4 Example

Let the initial equations Ax = b be partitioned as follows:
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4




x1

x2

x3

x4

 =


b1

b2

b3

b4

−


0
P2

P3R2

P4R3R2

 τ, (5)

where τ = 0. We have added the extra (zero) vector in the right hand side of (5) to bring the equations into
the general form of our recursion.

The algorithm takes one of two essential forms depending on whether k1, the number of columns of U1, is
strictly less than m1, the number of rows (columns) of D1, or not.

5.1.1 Case of n > 1 and k1 < m1: Elimination

Our goal is to first use a (unitary) transformation from the left of A to zero out most of the entries in the first
m1−k1 rows; and then use a (unitary) transformation from the right of A to produce a (m1−k1)×(m1−k1)
lower-triangular system at the top right corner of A.

To this end, we first apply a unitary transformation qH
1 , from the left of A to the first m1 rows of the equation

such that the first m1 − k1 rows of U1 become zero. More specifically let

qH
1 U1 =

(
0
Û1

)
m1 − k1

k1
.

Now we multiply the first m1 rows of the equation from the left of A by qH
1 to obtain

((
qH
1 0
0 I

)
A

)
x =

((
qH
1 0
0 I

)
b

)
−


0
P2

P3R2

P4R3R2

 τ.

In the new coefficient matrix
((

qH
1 0
0 I

)
A

)
, the matrix U1 has become

(
0
Û1

)
and D1 has become qH

1 D1.

Hence the first m1 − k1 rows of the new matrix are zero starting from the (m1 + 1)-st column. The only

difference between
((

qH
1 0
0 I

)
b

)
and b is in b1, which becomes qH

1 b1. There is no need to multiply the

term involving τ since its first block is a zero matrix.

Next we pick a unitary transformation wH
1 that lower-triangularizes qH

1 D1, the (1, 1) diagonal block of the
new coefficient matrix.

(
qH
1 D1

)
wH

1 =
( m1 − k1 k1

m1 − k1 D11 0
k1 D21 D22

)
.

To multiply the first m1 columns of the coefficient matrix with wH
1 from the right, we also need to replace

the unknowns x1 by the new (transformed) unknowns

w1x1 =
(

m1 − k1 z1

k1 x̂1

)
,
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and do the multiplication QH
1 wH

1 . In summary, equation (5) becomes:

(
qH
1 0
0 I

)
A

(
wH

1 0
0 I

) (
w1 0
0 I

)
x =

(
qH
1 0
0 I

)
b−


0
P2

P3R2

P4R3R2

 τ,

which can be simplified to read as follows:
D11 0 0 0 0
D21 D22 Û1V

H
2 Û1W2V

H
3 Û1W2W3V

H
4

P2Q
H
11 P2Q̂

H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
11 P3R2Q̂

H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
11 P4R3R2Q̂

H
1 P4R3Q

H
2 P4Q

H
3 D4




z1

x̂1

x2

x3

x4

 =


β1

γ1

b2

b3

b4

−


0
0
P2

P3R2

P4R3R2

 τ,

where we have used the partition

qH
1 b1 =

(
m1 − k1 β1

k1 γ1

)
and w1Q1 =

(
m1 − k1 Q11

k1 Q̂1

)
.

Now we solve for z1 from the system of equations D11z1 = β1. We also subtract D21 times z1 from the
right-hand side to obtain b̂1 = γ1 −D21z1.

The remaining z1 term on the left hand of the new equations has a form that is similar to the τ term on the
right hand side and can therefore be merged into a new right hand side term as

0
0
P2

P3R2

P4R3R2

 τ̂ , where τ̂ = τ + QH
11z1.

Now we can discard the first m1 − k1 rows and columns of the equations to arrive at:
D22 Û1V

H
2 Û1W2V

H
3 Û1W2W3V

H
4

P2Q̂
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q̂
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q̂
H
1 P4R3Q

H
2 P4Q

H
3 D4




x̂1

x2

x3

x4

 =


b̂1

b2

b3

b4

−


0
P2

P3R2

P4R3R2

 τ̂ .

Observe that this new system is structurally identical to the one we started with, except that it has a smaller
dimension. So let us assume that by the magic of recursion we can solve this system quickly for the unknowns
x̂1, x2, x3 and x4. Then we can recover x1 by computing

x1 = wH
1

(
z1

x̂1

)
.

This completes the first possibility in the recursive algorithm.

5.1.2 Case of k1 ≥ m1: Merge

The second possibility is that k1, the number of columns of U1 is at least as large as m1 the number of rows
(and columns) of D1. In this case we cannot necessarily induce any zeros in the first few rows by a small
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transformation from the left. Hence we proceed by merging the first two block rows and columns of the
matrix. To do that observe that we can rewrite the system of equations as follows:

(
D1 U1V

H
2

P2Q
H
1 D2

) (
U1W2

U2

)
V H

3

(
U1W2

U2

)
W3V

H
4

P3

(
Q1R

H
2

Q2

)H

D3 U3V
H
4

P4R3

(
Q1R

H
2

Q2

)H

P4Q
H
3 D4




(
x1

x2

)
x3

x4

 =


(

b1

b2 − P2τ

)
b3

b4

−


(

0
0

)
P3

P4R3

 (R2τ).

Hence if we make the following definitions (computations)

D̂1 =
(

D1 U1V
H
2

P2Q
H
1 D2

)
, Û1 =

(
U1W2

U2

)
, Q̂1 =

(
Q1R

H
2

Q2

)
,

x̂1 =
(

x1

x2

)
, b̂1 =

(
b1

b2 − P2τ

)
, τ̂ = R2τ,

then we can rewrite the system of equations as follows: D̂1 Û1V
H
3 Û1W3V

H
4

P3Q̂
H
1 D3 U3V

H
4

P4R3Q̂
H
1 P4Q

H
3 D4

  x̂1

x3

x4

 =

 b̂1

b3

b4

−
 0

P3

P4R3

 (τ̂),

which is structurally identical to (5). Hence we can proceed to solve it recursively. In case n = 1, we have
the system D1x1 = b1 − 0τ , which is solved by standard means.

5.2 The Full Algorithm

We now present the full algorithm. We assume that the sequentially semi-separable matrix A is represented
by the seven sequences {Ui}n−1

i=1 , {Vi}ni=2, {Wi}n−1
i=2 , {Pi}ni=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and {Di}ni=1 as in (1). We

also partition x = (xi ) and b = ( bj ) such that xi and bi have mi rows. As in the 4× 4 example, there are
two cases at each step of the recursion.

5.2.1 Case of n > 1 and k1 < m1: Elimination

As in Section 5.1.1, our goal is to do orthogonal eliminations on both sides of A to create an (m1 − k1) ×
(m1 − k1) lower triangular submatrix at the top left corner of A.

We perform orthogonal eliminations by computing QL and LQ factorizations

U1 = q1

(
0
Û1

)
m1 − k1

k1
and

(
qH
1 D1

)
=

( m1 − k1 k1

m1 − k1 D11 0
k1 D21 D22

)
w1,

where q1 and w1 are unitary matrices. To complete the eliminations, we also need to apply qH
1 to b1 and w1

to Q1 to obtain

qH
1 b1 =

(
m1 − k1 β1

k1 γ1

)
and w1Q1 =

(
m1 − k1 Q11

k1 Q̂1

)
.
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Equations (1) have now become

(
qH
1 0
0 I

)
A

(
wH

1 0
0 I

) (
w1 0
0 I

)
x =

(
qH
1 0
0 I

)
b−



0
P2

P3R2

P4R3R2
...

PnRn−1 · · ·R2

 τ, (6)

As was done in Section 5.1.1, we now orthogonally transform the unknowns x1 and solve the (m1 − k1) ×

(m1−k1) lower triangular system of equations. Let
(

m1 − k1 z1

k1 x̂1

)
= w1x1. Then the first m1−k1 equations

of (6) have been simplified to D11z1 = β1. Hence we compute z1 = D−1
1 β1 by forward substitution.

We further compute b̂1 = γ1 − D21z1. This in effect subtracts the D21 portion of the columns from the
right-hand side. Finally we compute τ̂ = τ + QH

11z1. This simple operation merges the previous pending
subtraction at the right-hand side and the subtraction of the first m1 − k1 columns (those corresponding to
z1) from the new right-hand side.

At this stage, we discard the first m1 − k1 equations and are left with a new linear system of equations

Âx̂ = b̂−



0
P2

P3R2

P4R3R2
...

PnRn−1 · · ·R2

 τ̂

with exactly the same form as (1). To see this, we note that among the seven sequences {Ui}n−1
i=1 , {Vi}ni=2,

{Wi}n−1
i=2 , {Pi}ni=2, {Qi}n−1

i=1 , {Ri}n−1
i=2 and {Di}ni=1, everything remains the same except that U1, Q1, and

D1 have been replaced by Û1, Q̂1, and D22. Among the partitioned unknown subvectors xi’s and right hand
side subvectors bi’s, the only changes are that x1 and b1 have been replaced by x̂1 and b̂1, respectively. Of
course, the new linear system of equations has a strictly smaller dimension, hence we can indeed proceed
with this recursion. After we have computed the unknowns x2 to xn and the transformed unknowns x̂1, we
can recover x1 using the formula

x1 = wH
1

(
z1

x̂1

)
.

5.2.2 Case of k1 ≥ m1: Merge

As in Section 5.1.2, we perform merging in this case. In the case n > 1 and m1 ≤ k1, we cannot perform
eliminations. Instead we merge the first two block rows and columns of A while still maintaining the
sequentially semi-separable structure.

We merge the first two blocks by computing

D̂1 =
(

D1 U1V
H
2

P2Q
H
1 D2

)
, Û1 =

(
U1W2

U2

)
, and Q̂1 =

(
Q1R

H
2

Q2

)
.

11



We merge x1 and x2 into x̂1, and we merge the right hand sides by computing

b̂1 =
(

b1

b2 − P2τ

)
and τ̂ = R2τ.

Let Â and b̂ denote the matrix A and the vector b after this merge. We can rewrite (1) equivalently as

Âx̂ = b̂−



0
P3

P4R3

P5R4R3
...

Pn−1Rn−2 · · ·R3

 τ̂ .

Clearly Â is again a sequentially semi-separable matrix associated with the seven hatted sequences except
that we have reduced the number of blocks from n to n− 1.

To complete the recursion, we observe as in Section 5.1.2 that if n = 1, the equations (1) become the standard
linear system of equations and can therefore be solved by standard solution techniques.

5.3 Flop Count

The total flop count for this algorithm can be estimated as follows. For simplicity we assume that compression
and merging steps always alternate. We also assume without loss of generality that b has only one column.
Then we can show that the leading terms of the flop count are given by

2
n∑

i=1

(mi + ki−1)k2
i + (mi + ki−1)3 + (mi + ki−1)2li+1 + k2

i mi+1 + kili+1(mi+1 + li + li+2).

When the semi-separable structure is constructed using the construction algorithm presented in Section 6 or
its faster variants in Section 10, ki and li will be chosen to be the numerical ranks of the i-th upper-triangular
and lower-triangular Hankel blocks, respectively. To get a better feel for the operation count we look at the
important case when each block has the same dimension mi = m. Let k and l be the maximum numerical
ranks of any upper-triangular and lower-triangular Hankel blocks, respectively. Then above expression is
bounded by

2N
(
m2 + m(3k + l) + (3kl + 5k2) + (2k3 + k2l + 2kl2)/m

)
, (7)

where N = n m is the dimension of the full matrix. We observe that the count is not symmetric in ki and
li. Sometimes it is cheaper to compute a URV T factorization instead if k > l. This matter is also covered
in [5].

Equation (7) implies that it is possible to chose the optimal block size m to minimize the (upper bound on
the) total cost. Indeed, the expression in (7) becomes very large for both very small and very large values of
m. Setting the derivative with respect to m in this expression to 0, we see that the total cost is minimized
when we choose m to the the integer closest to the unique positive root of the following equation

2m + (3k + l)− (2k3 + k2l + 2kl2)/m2 = 0,

or
2m3 + (3k + l)m2 − (2k3 + k2l + 2kl2) = 0. (8)

For k = l, this equation simplifies further to

2m3 + 4km2 − 5k3 = 0,
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size
mi = li = ki for all i 256 512 1024 2048 4096 8192
16 0.04 0.08 0.16 0.36 0.67 1.34
32 0.08 0.19 0.42 0.83 1.66 3.44
64 0.18 0.48 1.12 2.36 4.8 9.87
128 0.15 1.01 2.73 6.09 12.91 26.9
Standard Solver (GEPP) 0.15 0.72 4.57 30.46 222.57 3499.46

Table 2: Run-times in seconds for both the fast stable algorithm and standard solver for random sequentially
semi-separable matrices with mi = ki = li for all i.

which has a unique positive root at m ≈ 0.9246k. With this choice of m, the total cost (7) is about 36Nk2

flops. Note that the constant in front of the leading term is not large.

5.4 Experimental run-times

We now report the run-times of this algorithm on a PowerBook G4 running at 400 MHz with 768 MB
of RAM. We used the ATLAS BLAS version 3.3.14 and LAPACK version 3 libraries. For comparison we
also report the run-times of the standard dense solvers from LAPACK and ATLAS BLAS. All timings are
reported in Table 2. The columns are indexed by the actual size (

∑n
i=1 mi) of the matrix, which range from

256 to 8192. The horizontal rows are indexed by the value of mi which is set equal to ki and li for all i and
ranges from 16 to 128. These are representative for many classes of problems (see section 12). In the last
row we report the run-times in seconds of a standard dense (Gaussian elimination) solver from the LAPACK
version 3 library running on top of the ATLAS BLAS version 3.3.14. These are highly-tuned routines which
essentially run at peak flop rates.

From the table we can see the expected linear dependence on the size of the matrix. The non-quadratic
dependence on mi (and ki and li) seems to be due to the dominance of the low-order complexity terms. For
example we observe a decrease in run-time when we increase mi from 64 to 128 for a matrix of size 256! This
is because at this size and rank the matrix has no structure and essentially a dense solver (without any of
the overhead associated with a fast solver) is being used. There is also a non-linear increase in the run-time
when we increase the size from 256 to 512 for mi = ki = li = 128. This is due to the lower over-heads
associated with standard solver.

Restricting our attention to the last two rows in Table 2 where mi = ki = li = 128 for all i, we observe
that the fast algorithm breaks even with the dense solver for matrices of size between 512 and 1024. (The
estimated flop count actually predicts a break-even around matrices of size 940.) For matrices of size 4096
we have speed-ups in excess of 17.2401. Since the standard solver becomes unusually slower for matrices of
size 8192 (possibly due to a shortage of RAM) we get a speed-up of 130 at this size. The speed-ups are even
better for smaller values of mi’s.

We could further speed up the fast algorithm by using Gaussian elimination with partial pivoting instead
of orthogonal transforms. This approach would still be completely stable as long as the dimensions of the
diagonal blocks remain small.
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5.5 Stability

The algorithm we have presented is backward stable provided the SSS representation is stable. By this we
mean that ‖Wi‖2 ≤ 1 and ‖Ri‖2 ≤ 1. The reasoning is similar to the one presented in [5, 14]. The algorithm
implicitly computes an ULV H factorization, where U and V are unitary and L is lower-triangular. Both
U and V are represented as products of elementary unitary transforms. It follows from a straight-forward
error analysis that the algorithm is backward-stable provided the SSS representation is stable. Experimental
calculations of the backward error has shown that in all instances it is a small multiple of the machine
precision, as would be expected for a backward-stable method. The SSS construction algorithm presented
in section 6 computes stable SSS representations, as does the fast model reduction algorithm in section 10.6.

However, even if the SSS representation satisfies the much weaker condition ‖WiWi+1 · · ·Wj‖2 ≤ p(n) and
‖RiRi−1 · · ·Rj‖2 ≤ p(n), where p is a low-degree polynomial in n, then the algorithm is backward-stable to
first order in the machine precision. Such weakly stable SSS representations are produced by techniques like
the fast multipole method. However, they can be made stable by using the fast model reduction algorithm
of section 10.6.

6 Constructing sequentially semi-separable matrices

In this section we consider the problem of computing the sequentially semi-separable structure of a matrix
given the sequence {mi}ni=1 and a low-rank representation of some off-diagonal blocks. The method presented
can be applied to any unstructured matrix, thus proving that any matrix has a sequentially semi-separable
structure (of course, ki and li will usually be large in this case, precluding any speed-ups).

6.1 General Construction Algorithm

Let A represent the matrix for which we wish to construct a sequentially semi-separable representation
corresponding to the sequence {mi}ni=1, where

∑
mi = N , the order of the matrix. Our procedure is similar

to that of Dewilde and van der Veen [14]. Since the upper triangular part and lower triangular parts are so
similar, we will only describe how to construct the sequentially semi-separable representation of the strictly
block upper triangular part of A. The basic idea is to recursively compress off-diagonal blocks into low-rank
representations.

Let Hi denote the off-diagonal block

Hi =

 U1W2 · · ·WiV
H
i+1 · · · U1W2 · · ·Wn−1V

H
n

...
...

...
UiV

H
i+1 · · · UiWi+1 · · ·Wn−1V

H
n

 . (9)

Following Dewilde and van der Veen [14] we will call Hi the ith Hankel block. Each Hi is a µi × νi matrix
with µi = m1 + · · ·+ mi and νi = mi+1 + · · ·+ mn. Observe that we can obtain Hi+1 from Hi by dropping
the first mi+1 columns of Hi and then appending to the resulting matrix the last mi+1 rows of Hi+1.

To start the construction, we let H1 ≈ E1Σ1F
H
1 denote a low-rank (also called economy) SVD of H1. That

is, we assume that the matrix of singular values Σ1, is a square invertible matrix, all of whose singular values
below a certain threshold have been set to zero. Therefore, E1 and F1 have an orthonormal set of columns,

14



but they may not be unitary. Partition F1 as

F1 =
(

m2 F1,1

ν2 F1,2

)
,

and we pick U1 = E1 and V2 = F1,1Σ1. Define Ĥ1 = Σ1F
H
1,2. Ĥ1 is the portion of H1 whose SSS construction

has not yet been finished. We note that both the column dimension of U1 and the row dimension of Ĥ1 are
exactly the numerical rank of H1.

To continue, let Z2 be the last m2 rows of H2 so that

H2 =
(

U1 Ĥ1

Z2

)
.

We compute the following SVD

Ĥ2 =
(

Ĥ1

Z2

)
≈ E2Σ2F

H
2 .

Note that Ĥ2 is the matrix obtained from H2 by taking out the matrix U1 which has already been computed.
As before, any singular value of Ĥ2 below a certain threshold has been set to zero. Partition

E2 =
(

k1 E2,1

m2 E2,2

)
and F2 =

(
m3 F2,1

ν3 F2,2

)
.

We choose U2 = E2,2, V3 = F2,1Σ2, W2 = E2,1 and set Ĥ2 = Σ2F
H
2,2. Ĥ2 is the part of H2 which requires

further SSS construction. We again note that both the column dimension of U2 and the row dimension of
Ĥ2 are exactly the numerical rank of H2.

In general, let Ĥi be the remaining part of Hi, and let Zi+1 be the last mi+1 rows of Hi+1, we construct
Ĥi+1 and compute its SVD as follows

Ĥi+1 =
(

Ĥi

Zi+1

)
≈ Ei+1Σi+1F

H
i+1 where Ei+1 =

(
ki Ei+1,1

mi+1 Ei+1,2

)
, Fi+1 =

(
mi+2 Fi+1,1

νi+2 Fi+1,2

)
.

As before, we set Ui+1 = Ei+1,2, Vi+2 = Fi+1,1Σi+1,Wi+1 = Ei+1,1 and Ĥi+1 = Σi+1F
H
i+1,2. Similar to

above, both the column dimension of Ui+1 and the row dimension of Ĥi+1 are the numerical rank of Hi+1.
By substituting these formulas back into the sequentially semi-separable representation beginning with H1,
it is straightforward to show that these formulas indeed construct the sss matrix and the construction is
numerically stable.

Finally, we note that the sequentially semi-separable representation for the lower triangular part of A can
be computed by applying exactly the same procedure above to AH . The computational costs are similar as
well.

This algorithm takes O(N2) flops, where the hidden constants depend on mi, ki and li. It is clear from our
construction that ki and li are the numerical ranks of their corresponding Hankel blocks. This fact allows us
to easily choose the best partitioning that minimizes the overall cost for solving sequentially semi-separable
linear systems of equations (see Section 5.3).

Our construction algorithm also makes it clear that an efficient sequentially semi-separable representation
can be constructed for any matrix which has low numerical rank on every Hankel block. Hence computational

15



electromagnetics problems involving integral equations can be rapidly solved using an efficient sequentially
semi-separable representation.

The algorithm can be implemented to require only O(N) memory locations. This is particularly important
in those applications where a large dense structured matrix can be generated (or read from a file) on the fly.

We can replace the use of singular value decompositions with rank-revealing QR factorizations quite easily.
This may result in some speed ups with little loss of compression (see [10, 24] and the references therein).

A totally different alternative is to use the recursively semi-separable (RSS) representation presented in the
paper by Chandrasekaran and Gu [5]. This is usually easier to compute efficiently, but may be less flexible.

In many important applications the sequentially semi-separable representation needs to be computed only
once for a fixed problem size and stored in a file. In such cases the cost of the exact algorithm is not
important. Such cases include computing the sequentially semi-separable structure of spectral discretization
methods of Greengard and Rokhlin [31, 37] for two-point boundary value problems and that of Kress [12]
for integral equations of classical potential theory in two dimensions.

Finally, we note that the sequentially semi-separable representation for the lower triangular part of A can
be computed by applying exactly the same procedure above to AH . The computational costs are similar as
well.

This algorithm takes O(N2) flops, where the hidden constants depend on mi, ki and li. The algorithm can
be implemented to require only O(N) memory locations. This is particularly important in those applications
where a large dense structured matrix can be generated (or read from a file) on the fly. Many computational
electromagnetics problems involving integral equations fall in this class.

If one is prepared to live dangerously, we can compute Ui, Wi and Vi in time that is much less than O(N2).
For example we see that we can pretend that Ui and Vi+1 can be computed from the lower-left block of
Hi—the one that reads UiVi+1. Of course, the danger is obvious: we may fail to find all of Ui and Vi+1.
But for many classes of matrices, especially those that are “heavy” on the diagonal, the chances are good
that we will not fail. The necessary condition is that Ui and Vi+1 be full-rank well-conditioned matrices.
Similarly Wi+1 can be computed from the block that reads UiWi+1V

H
i+2. Again, this will only work if Ui and

Vi+1 are full-rank well-conditioned matrices. Note that in this scheme only the banded portion of the matrix
needs to be read. To check our guesses we can use nearby blocks. For example we can use the block that
reads UiWi+1Wi+2V

H
i+3 to check our calculations, and even improve them. Such an algorithm, assuming it

succeeds, will run in O(N) flops.

7 One pass solution for the Moore-Penrose inverse of a general
system

Let be given a general matrix A as before, the entries of A may be blocks, and a vector b conformal to the
rows of A. We wish to find a vector x of smallest possible magnitude ‖x‖2 =

√∑
‖xi‖2, which minimizes

‖Ax − b‖2. Our goal is to find a backward stable algorithm in the same taste as before, that is using a
one-pass, top down algorithm. As before we assume that we dispose of a realization consisting of block
matrices {Ui}, {Vi} etc., the only restriction being that these realization matrices must be appropriately
conformal to fit the products in the representation. In particular, the diagonal entries {Di} do not have to
be square or non-singular. In [13] a general algorithm was given to determine the Moore-Penrose inverse of
a general time-varying operator. We specialize the method given in that paper to the matrix case with two
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new and important additions:
- the new algorithm is one-pass, top-down;
- explicit use is made of the Chandrasekaran-Gu method.

The one pass character is obtained by making a judiciary use of left and right multiplications by elementary
orthogonal matrices. These matrices then combine to semi-separable operators of the same complexity as the
original semi-separable data. What makes the Moore-Penrose theory more complex than the mere system
reduction is the fact that exact solutions of reduced subsystems may not contribute to the Moore-Penrose
solution, except in the special circumstance that all rows in the system are linearly independent. For example,
the system of equations [

1
1

]
x =

[
b1

b2

]
has the least squares solution x = (b1+b2)/2 - the first equation can not be solved independently from the rest
of the system. Hence care has to be exercised in converting the system first to a system of row-independent
matrices, that is, the co-kernel has to be implicitly determined (see further!).

The strategy that we follow to obtain the reduction to a row-independent form works in two steps, the third
step then consists in solving the resulting row-independent system using the methods described earlier (this
time actually on a simpler systems). The resulting complexity will roughly be twice that of the original
algorithm. Lazy evaluation allows the algorithm to proceed from the upper left corner down to the lower
right corner as before. A summary of the procedure is as follows:
1. Using elementary orthogonal (or in case or complex entries unitary) on the columns (on the right of the
matrix) we gradually transform the double sided representation into a block upper one, that is one in which
the P,Q and R type matrices are all zero. The upper representation will have the same complexity as the
original. The result is the representation of a block-upper matrix A1, related to A through

A1 = Aw

where w assembles the column transformations.
2. Using elementary orthogonal transformations on the rows (i.e. on the left) we gradually (lazily) determine
co-kernel and range of A1:

A1 = [u1 u2]
[

0
Ao

]
in which Ao has linearly independent rows. The columns of u2 then form an orthonormal basis for the range
of A1 and the columns of u1 for its co-kernel (i.e. the kernel of AH

1 ).
3. The combination of the two previous steps has produced

A = [u1 u2]
[

0
Ao

]
wH .

With y = wHx and
[

β1

β2

]
=

[
uH

1 b
uH

2 b

]
we find that the Moore-Penrose solution decomposes in

Aoy = β2

which is now a system with linearly independent rows that can be solved exactly with the techniques of the
preceding sections, leaving an irreducible residue β1 - the least squares error sought will be ‖β1‖.

Before detailing the general method we give the algorithm stepwise on a 3× 3 example.

For ease of exposition we go through the three ’w’ steps first, assemble a complete ’upper’ matrix and
then proceed through the three steps that work on the rows of the resulting matrix. We use the following
notations:
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Ti, in which T is an operator (represented by a block matrix) collects the i’th components of a unilateral
representation of T in a single block 2× 2 matrix

Ti =
[

Ai Ci

Bi Di

]
in which some of the block rows or columns may disappear - dimensions of the blocks have to be congruent
of course - the entry Ti,j for i < j being given by Ti,j = BiAi+1 · · ·Aj−1Cj and Ti,i = Di;
Splitting of a block, say A, in columns is indicated with a dot notation for a running index, e.g. A·,1, A·,2
would be a splitting of columns in two blocks, the dimensions being usually clear from the context.
Finally, we use the terms ’realization’ and ’representation’ indiscriminately to indicate the matrices used in
diverse semi-separable representations. In the next sections we assume that all the given representations are
of minimal dimensions (they will be if the construction procedures of the previous sections have been used).
Comments are put after a semicolon.

The ’w’ procedure

Step 1
We find in sequence:
M1 = ·, r1 = ·; the start of the procedure is ’empty’

w1 =
[
· ·

Q1 dw1

]
where dw1 is an orthonormal basis for the complement of the column span of Q1

[A1]1 =

 · · ·
· · ·

U1 Q1 D1dw1

; this produces the first realization matrices for A1, the net effect is to project

the columns of D1 to the orthogonal complement of Q1.
Step 2
M2 = QH

1 Q1 = rH
2 r2 where r2 is a square matrix making Q1r

−1
2 isometric, if the realization minimal, M2

will be non-singular.

w2 =
[

RH
2 r−1

2 bw2

Q2 dw2

]
where

[
bw2

dw2

]
is an orthonormal basis for the complement of the column space of[

r2R
H
2

Q2

]
; this yields now

[A1]2 =

 W2 V H
2 V H

2 dw2

RH
2 r−1

2 bw2

U2 Q2 + P2M2R
H
2 D2dw2 + P2r

H
2 bw2


and allows us to construct the first two block columns of A1:

A1 =

 D1dw1 [U1 Q1]
[

V H
2 dw2

r−1
2 bw2

]
?

0 D2dw2 + P2r
H
2 bw2 ?

0 0 ?


Step 3
M3 = QH

2 Q2 + R2M2R
H
2 = rH

3 r3, in which r3 is square non-singular, since we assume minimal realizations
and hence M3 is non-singular.

w3 =
[

RH
3 r−1

3 bw3

Q3 dw3

]
where

[
bw3

dw3

]
forms an orthonormal basis for the complement of the column space

of
[

r3R
H
3

Q3

]
, yielding the third set of realization blocks for A3:

[A1]3 =

 W3 V H
3 Q3 V H

3 dw3

RH
3 r−1

3 bw3

U3 Q3 + P3M3R
H
3 D3dw3 + P3r

H
3 bw3


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and finally the full upper conversion:

A1 =


D1dw1 [U1 Q1]

[
V H

2 dw2

r−1
2 bw2

]
[U1 Q1]

[
W2 UH

2 Q2

0 RH
2

] [
V H

3 dw3

r−1
3 dw3

]
0 D2dw2 + P2r

H
2 bw2 [U2 Q2 + P2M2R

H
2 ]

[
V H

3 dw3

r−1
3 bw3

]
0 0 D3dw3 + P3r

H
3 bw3


This terminates the w transformation for the 3 × 3 case. It should be clear from the general formulas that
the procedure goes on in the same recursive way for larger matrices, there is no growth in dimension of the
entries, they are all roughly twice the size of the originals, and still minimal.

The conversion to linearly independent rows

We use a different ordering of rows and columns than in the theory, the symbols and their indexing should
be self-explaining.
Step 1: QR decomposition on [D1dw1|U1Q1]: δH

11

δH
21

βH
1

 [D1dw1 |U1Q1] =

 0 0
do1 bo1

0 y2

 where QH
1 =

 δH
11

δH
21

βH
1

 is the ’Q’ of the QR decomposition (for later

convenience and consistency we’ve put the bottom row of zeros in the R factor on top), do1 and y2 have
linearly independent rows by construction (they can be in echelon form), and the result of step 1 applied to
the whole matrix by embedding the elementary transformation QH

1 is

0 0 0

do1 bo1

[
V H

2 dw2

r−1
2 dw2

]
bo1

[
W2 UH

2 Q2

0 RH
2

] [
V H

3 dw3

r−1
3 bw3

]
0 y2

[
V H

2 dw2

r−1
2 bw2

]
y2

[
W2 UH

2 Q2

0 RH
2

][
V H

3 dw3r
−1
3 bw3

]
0 D2dw2 + P2r

H
2 bw2 [U2 Q2 + P2M2R

H
2 ]

[
V H

3 dw3

r−1
3 bw3

]
0 0 D3dw3 + P3r

H
3 bw3


and the block row containing y2 goes to the next stage while the first two block rows will remain untouched
in the next steps.
Step 2

Let now, for ease of notation and consistent with the previous theory, c2 =
[

V H
2 dw2

r−1
2 bw2

]
and a2 =

[
W2 UH

2 Q2

0 RH
2

]
,

the step consists again in finding a QR factorization:

QH
2

[
y2c2 y2a2

d2 b2

]
=

 0 0
do2 bo2

0 y3

 ;

in which QH
2 has the block decomposition:

QH
2 =

 δ21 γH
21

δH
22 γH

22

βH
2 αH

2


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producing as result for the second step:

0 0 0

do1 bo1

[
V H

2 dw2

r−1
2 bw2

]
bo1

[
W2 UH

2 Q2

RH
2

] [
V H

3 dw3

r−1
3 bw3

]
0 0 0

0 do2 bo2

[
V H

3 dw3

r−1
3 bw3

]
0 0 y3

[
V H

3 dw3

r−1
3 bw3

]
0 0 D3dw3 + P3r

H
3 bw3


.

The final step will reduce the two last block rows to row-independent:

QH
3

 y3

[
V H

3 dw3

r−1
3 bw3

]
D3dw3 + P3r

H
3 bw3

 =
[

0
do3

]
,

in which the last block consists of linearly independent rows to yield the final result, now written in shorthand:
0 0 0

do1 bo1c2 bo1a2c3

0 0 0
0 do2 bo2c3

0 0 0
0 0 do3

 ·
 y1

y2

y3

? =?


β10

β11

β20

β21

β30

β33


in which

c2 =
[

V H
2 dw2

r−1
2 bw2

]
, a2 =

[
W2 UH

2 Q2

RH
2

]
, c3 =

[
V H

3 dw3

r−1
3 bw3

]
, do3 = D3dw3 + P3r

H
3 bw3,

are realization matrices for the resulting Ao and the right members have been duly modified as dictated by
the transformation. Hence, the quantities β10, β20 remain to produce the Moore-Penrose square error:

ε2MPI = ‖β10‖2 + ‖β20‖2 + ‖β30‖2,

while y1, y2 and y3 will now be uniquely determined by solving a unilateral semi-separable system given by do1 bo1c2 bo1a2c3

do2 b02c3

do3

 y1

y2

y3

 =

 β11

β21

β31


and this system can now be solved by the direct method explained earlier in this paper (see the motivation
further on).

It should now be clear that the two steps of the algorithm just described can be done in a top-down, left-right
fashion with ’lazy’ execution, and only the state space description has to be handled, of course. In fact, one
can say alternatively, that the state space descriptions are treated in increasing index order. This will also
be true for the algorithm described next.

Proofs and connection with previous theory

We use the general block-matrix representation of [13]. In contrast to the general time-varying system
notation we always take the ’11’ block as the origin (in the time-varying systems notation it is the ’00’ block
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for obvious reasons). In cases of doubt, the ’11’ block is singled out by putting a square around it. Matrices
are block-upper if their block entries Aij with i > j are zero. Blocks may be empty, empty blocks have either
a zero number of rows, a zero number of columns or both. We represent them by ’−’, ’|’ or ’·’ respectively.
By convention, the product of an empty matrix of dimensions m × 0 with an empty matrix of dimensions
0×n is an m×n matrix of zeros. (The scalar 0 has dimension 1× 1 of course). A special matrix is the shift
matrix Z with the general (block-) form

| I

0 I
. . . . . .

0 I
−


Notice the empty entries on the main diagonal, due to the index shift. The dimensions of the blocks in
this matrix may vary from entry to entry, but the blocks indicated by I are all square. The shift matrix
is nothing but a unit matrix - the underlying ’skeleton’ is a block unit matrix. Applied to the left it
shifts a vector ’upwards’ by one index, applied to the right, it will shift it to the right (in the sense of the
natural vector ordering, it is ’anticausal’ when applied to the left and ’causal’ when applied to the right of a
vector). If we now define diagonal matrices P , Q, R etc... (with empty entries for the missing blocks), e.g.
P = diag[ · , P2, · · · , Pn], then we find a straight representation for T as

A = PZH(I −RZH)−1QH + D + UZ(I −WZ)−1V H .

A decomposes into a ’strictly lower’ matrix A` given by PZH(I − RZH)−1QH and an upper matrix given
by D + UZ(I −WZ)−1V H . Our strategy to determine the nullspace of A with a computational complexity
equal to the original state space formalism will now consist in two steps:
(1) first we compute a unitary matrix w and A1 such that A1 = Aw is block upper,
(2) next we look for an isometric matrix u1 such that u1A1 = 0 (by isometric we mean that uH

1 u1 = I.

Although step one may seem superfluous at first, it seems necessary because it converts the representation
of A into the block upper representation needed for the second step. Every entry in A can make it singular
- a determination of the co-kernel of T will necessarily involve all its entries. In step two we then compute

a unitary matrix u =
[

u1

u2

]
such that [

u1

u2

]
A =

[
0

Ao

]
and Ao has linearly independent rows (i.e. Ao has a right inverse, or ker(·A) = 0 - Ao has zero co-kernel).
We shall see that both steps can be done in purely top-down fashion. The final procedure will then be to
solve the system of linearly independent rows.

Step I: making the matrix block upper

In this step we compute w such that A1 = Aw is block upper. This step is nothing but a straightforward
conversion of the double sided representation for A (in function of two shifts Z and ZH) into an equally
efficient representation in a single shift of ’Z’ type. The purpose of w is simply to cancel out the strictly
lower part of the original matrix A - the part represented by A` = PZH(I − RZH)−1QH . We shall soon
see, by direct computation, that w has a representation of the form

w = dw + QZ(I −RHZ)−1b′w
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i.e. wH shares R and QH with A`, dw and b′w have to be computed (the prime anticipates on the computation
further) . (The principle of sharing parts of the representation is fairly universally applicable in cancellation or
factorization theory). Specializing to the k’th block and realizing that w should possess a unitary realization
since it is a unitary matrix, we look for matrices rk, bwk and dwk such that[

rkRH
k r−1

k+1 bwk

Qkr−1
k+1 dwk

]
is an orthonormal matrix, for each relevant k.
An alternative, equivalent but somewhat simpler realization for w is given by[

RH
k r−1

k bwk

Qk dwk

]
so that we have

w = dw + QZ(I −RHZ)−1r−1bw.

(hence b′w = r−1bw).

Introducing w in the product Aw we find

Aw = [PZH(I −RZH)−1QH + D + UZ(I −WZ)−1V H ]
·[dw + QZ(I −RHZ)−1r−1bw],

in which one ’mixed’ quadratic term occurs, which we split:

PZH(I −RZH)−1QHQZ(I −RHZ)−1r−1bw

= P (I − ZHR)−1ZHRrHbw + PrHbw + PMRHZ(I −RHZ)−1r−1bw

in which M = rHr has to satisfy the ’algebraic Lyapunov-Stein equation’

RMRH + QHQ = ZMZH

or specialized to the k’th stage
RkMkRH

k + QH
k Qk = Mk+1.

Hence we find

Aw = PZH(I −RZH)−1(QHdw + RrHbw)
+ Ddw + PrHbw

+ UZ(I −WZ)−1V Hdw + (Q + PMRH)(I −RHZ)−1r−1bw

+ UZ(I −WZ)−1V HQZ(I −RHZ)−1r−1bw

in which the first term is zero because of the orthogonality in the realization of w, and the subsequent terms
constitute the desired realization of A1:

A1 = (Ddw + PrHbw) + [UZ Q + PMRHZ]
[

I −WZ V HQ
0 I −RHZ

]−1 [
V Hdw

r−1bw

]
.

Since the Lyapunov-Stein equation can be computed top-down, this realization can be obtained in a top-down
fashion.

Step II: the determination of the range and the co-kernel

In this step we compute a realization for an orthonormal matrix u which is such that

A1 = [u1 u2]
[

0
Ao

]
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i.e. uH
1 spans the co-kernel of A1 and u2 its range. As in the previous step, the realization for u will turn

out to have the same complexity as the realization for A1 (and A). Let, for shortness, the realization for A1

be denoted as
A1 = a + bZ(I − aZ)−1c

and let the realizations for u and To be given by

u = Du + BuZ(I −AuZ)−1Cu

Ao = Do + BoZ(I − aZ)−1c

where this time we assume that Ao inherits {a, c} from A1, motivated by the computation that follows (or
by the generalized Beurling-Lax theory of [13]). The realization for u as an orthonormal operator can always
be choosen to form orthonormal matrices by themselves, hence we shall require, for each k, that[

Auk Cuk

Buk Duk

]
be orthogonal matrices - they will follow from the procedure. Writing out

uHA1 =
[

0
Ao

]
we find

(DH
u + CH

u (I − ZHAH
u )−1BH

u )(d + bZ(I − aZ)−1c) = do + boZ(I − aZ)−1c.

Again we split the mixed quadratic term, introducing a new block diagonal matrix y:

(I − ZHAH
u )−1ZHBH

u bZ(I − aZ)−1 = ZHAH
u (I − ZHAH

u )−1y + y(I − aZ)−1

in which y satisfies a Lyapunov-Stein type recursion:

ZyZH = BH
u b + AH

u ya

or, per stage k
yk+1 = BH

ukbk + AH
ukykak.

Equating the two sides now produces the four equations (for each k)[
0

dok

]
=

[
DH

u1k

DH
u2k

]
dk +

[
CH

u1k

CH
u2k

]
ykck[

0
bok

]
=

[
DH

u1k

DH
u2k

]
bk +

[
CH

u1k

CH
u2k

]
ykak

0 = AH
ukykck + BH

ukdk

yk+1 = BH
ukbk + AH

ukykak

or in matrix form  CH
u1k DH

u1k

AH
uk BH

uk

CH
u2k DH

u2k

[
ykak ykck

bk dk

]
=

 0 0
yk+1 0
bok dok

 .

In these expressions it must be so that all yk and all dok have independent rows, or in kernel terms:
ker(·yk+1) = 0 and ker(·dok) = 0. (the property for y follows from the inner-outer factorization theory
of [13], while the property for do follows from its outerness). The actual numerical algorithm produces a
canonical lower echelon form using unitary transformations on the rows of[

ykak ykck

bk dk

]
,
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of the form: 
· · ·
′0′ ′0′
′∗′ ∗ ′0′ 0
′∗′ ∗ ′∗′ ∗ ′0′ 0
′∗′ ∗ ′∗′ ∗ ′∗′ ∗ ′0′

 ,

starting from the rightmost entries of the bottom row, working upwards, and in which ultimately the top
rows are eventually zero (they may disappear) - also all the entries marked between ′∗′ can disappear. The
resulting orthonormal transformation matrix will then be subdivided as CH

u1k DH
u1k

AH
uk BH

uk

CH
u2k Du2k


because its block entries CH

u1k DH
u1k correspond to the zero rows of the left hand side echelon form.

Working these results back into the original form, we find for the k’th matrix (on which the echelon form
has to be computed and with an appropriate decomposition of y))

[
y1k y2k 0
0 0 I

] Wk V H
k Qk V H

k dwk

0 RH
k r−1

k bwk

Uk Qk + PkMkRH
k Dkdwk + Pkr∗kbwk


with

Mk+1 = QH
k Qk + RkMkRH

k

Mk = rH
k rk and

[
bwk

dwk

]
defined by the orthonormal completion of

[
rkRkr−1

k+1 bwk

Qkr−1
k+1 dwk

]
.

To terminate the proof we still have to show that a system with independent rows can be solved using the
methods explained in the earlier chapters. This is achieved by the following properties.

Lemma

Suppose
( R11 R21 R22 )

has linearly independent rows with R11 square. Then R11 is invertible and the Moore-Penrose inverse for[
R11

R21 R22

] [
x1

x2

]
=

[
b1

b2

]
is given by x1 = R−1

11 b1 plus the M.-P. solution of

R22x2 = b2 −R21R
−1
11 x1.
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Proof

The invertibility of R11 is obvious, and as a consequence, R22 has linearly independent rows. Let R22 =

[R′
22 0]q be an L-Q decomposition of R22, in which R′

22 is square and invertible. With Q =
[

I
q

]
, we

have
‖ Rx− b ‖2=‖ RQHQx− b ‖2,

and furthermore, with y = Qx,

‖Rx− b‖2 = ‖
[

R11 0 0
R21 R′

22 0

] y1

y2

y3

− [
b1

b2

]
‖2

Moore-Penrose puts y3 = 0 (for minimal norm of the argument) and solves[
R11 0
R21 R′

22

] [
y1

y2

]
=

[
b1

b2

]
exactly to make the error zero as well. We obtain: R11y1 = b1 and R21y1 + R′

22y2 = b2, from which the
statement of the lemma follows.
QED

The procedure of the paper now applies, with the additional remark that in each step of the procedure,
equations of the type ”D11z1 = β1” will have a square and invertible ”D11” and hence will be solvable.

8 A more general representation

The sequentially-semiseparable representation can be improved in various ways to better suit the problem
at hand. For matrices which are essentially discretizations of functions of the form log ‖x− y‖ or 1/‖x− y‖,
it is often better to replace the block diagonal part by a block-tridiagonal part. This is because the bottom
left corner of the Hankel-block Hi is typically a full-rank matrix in these applications, and they will end-up
being merged into the diagonal blocks anyway in the fast solver. We can save on this unnecessary merge by
generalizing the representation to allow for a block tridiagonal part. This will also permit the rank of the
off-diagonal blocks to be much lower. For example a block 5× 5 matrix would look like this now

A =


D1 B1 U1V

H
3 U1W2V

H
4 U1W2W3V

H
5

C1 D2 B2 U2V
H
4 U2W3V

H
5

P3Q
H
1 C2 D3 B3 U3V

H
5

P4R2Q
H
1 P4Q

H
2 C3 D4 B4

P5R3R2Q
H
1 P5R3Q

H
2 P5Q

H
3 C4 D5


This is slightly inelegant since the indices are no longer contiguous for the off-diagonal terms. One can go to
a more elegant (and general) representation by allowing overlapping diagonal blocks. In essence we would
redefine the diagonal blocks as follows

Di ← ( Ci−1 Di Bi ) .

However this leads to the development of a cumbersome non-classical partitioning notation, which we avoid
for the sake of simplicity.

The fast algorithms of this paper can be modified to accommodate this more general structure.
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9 A fast multi-way algorithm

So far we have presented the solver as proceeding from the top-left to the bottom-right of the matrix. We
always try to compress the first block row, and then merge it with the second-block row. A moments thought
will convince you that this is a sub-optimal choice. For example, after compressing the first block-row, and
before merging with the second block-row, it might be wise to compress the second-block row first. This has
the advantage of compressing a block-row with potentially much smaller rank. Of course, one can extend this
idea to consider all the block-rows. However the sequentially semi-separable structure is not very efficient for
such a scheme. The reason is that the ki’s represent the ranks of the Hankel blocks Hi which is not relevant
in such a scheme. An example will clarify the claim.

Consider the sequentially semi-separable matrix

A =


D1 0 · · · 0 B1

0 D2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Dn−1 0
C1 0 · · · 0 Dn

 .

In this case ki = rank(B1) and li = rank(C1) for all i. However, the second block row for example clearly
requires no compression step. Now suppose we block re-order the problem and obtain

ΠAΠT =


D2 0 · · · 0 0

0
. . . . . .

...
...

...
. . . Dn−1 0 0

0 · · · 0 Dn C1

0 · · · 0 B1 D1

 .

Now ki = 0 and li = 0 for all i except i = n− 1, for which they take on the ranks of C1 and B1 respectively.
In short, re-orderings can dramatically change the ranks of the Hankel-blocks.

Now we can seemingly proceed in two ways. Either we can find the best ordering before we start the
algorithm, or, we can do it on-line as the algorithm proceeds. The first approach is difficult to implement in
practice. The second is not suitable with the sequentially semi-separable representation.

In a future paper we will present a different representation (the hierarchically semi-separable representation)
that is more suitable to this approach, and yields very fast algorithms.

10 Fast updating

We now develop some useful facts about sequentially semi-separable matrices that are needed in section 12.
In particular we need the ability to rapidly update the sequentially semi-separable representation of a matrix
under various conditions. Some of these are discussed here.

10.1 Merging and Splitting SSS blocks

We first consider the simple operations of merging (small) blocks and splitting (large) blocks in the SSS
representation. According to the discussions in Section 5.3, an SSS representation is the most efficient when
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the block sizes are chosen in relation to the numerical ranks of Hankel blocks. Blocks that are too small or too
large could result in an inefficient algorithm for the solution of the corresponding linear systems of equations.
This issue is especially important when the SSS structure undergoes repeated modifications (see [?]).

We first consider block merging. In the following example, we have merged the second and third blocks in
a 4× 4 SSS matrix into one single block:

A =


D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4



=


D1 U1

(
V H

2 W2V
H
3

)
U1 (W2W3) V H

4(
P2

P3R2

)
QH

1

(
D2 U2V

H
3

P3Q
H
2 D3

) (
U2W3

U3

)
V H

4

P4 (R3R2)QH
1 P4

(
R3Q

H
2 QH

3

)
D4

 .

In general, To merge blocks i and i + 1 in a given SSS representation, we keep all other blocks unchanged
and use the following matrices to represent the new i-th block:

Dnew
i =

(
Di UiV

H
i+1

Pi+1Q
H
i Di+1

)
, Unew

i =
(

UiWi+1

Ui+1

)
, Pnew

i =
(

Pi

Pi+1Ri

)
,

(V new
i )H =

(
V H

i WiV
H
i+1

)
, Wnew

i = WiWi+1, Rnew
i = Ri+1Ri, (Qnew

i )H =
(
Ri+1Q

H
i QH

i+1

)
.

Now we consider the issue of splitting one block into two. To split block i into two blocks for a given SSS
representation, we can simply keep all other blocks unchanged and use the above merging formulas reversely
to get the equations for the new i and i + 1 blocks:(

Dnew
i Unew

i

(
V new

i+1

)H

Pnew
i+1 (Qnew

i )H
Dnew

i+1

)
= Di,

(
Unew

i Wnew
i+1

Unew
i+1

)
= Ui,

(
Pnew

i

Pnew
i+1 Rnew

i

)
= Pi,(

(V new
i )H

Wnew
i

(
V new

i+1

)H
)

= V H
i , Wnew

i Wnew
i+1 = Wi, Rnew

i+1 Rnew
i = Ri,

(
Rnew

i+1 (Qnew
i )H (

Qnew
i+1

)H
)

= QH
i .

To solve these equations, we partition the matrices for the old i-th block conformally with the two new
blocks as

Di =
(

D11
i D12

i

D21
i D22

i

)
, Ui =

(
U1

i

U2
i

)
, Pi =

(
P 1

i

P 2
i

)
, V H

i =
((

V 1
i

)H (
V 2

i

)H
)

, QH
i =

((
Q1

i

)H (
Q2

i

)H
)

.

These equations allow us to identify

Dnew
i = D11

i , Dnew
i+1 = D22

i , Unew
i+1 = U2

i , Pnew
i = P 1

i , V new
i = V 1

i , Qnew
i+1 = Q2

i .

The remaining matrices satisfy( (
V 2

i

)H
Wi

D12
i U1

i

)
=

(
Wnew

i

Unew
i

) ( (
V new

i+1

)H
Wnew

i+1

)
,

(
P 2

i D21
i

Ri (Qi)
H

)
=

(
Pnew

i+1

Rnew
i+1

) (
Rnew

i (Qnew
i )H

)
.

By factorizing the left hand side matrices using numerical tools such as the SVD and rank revealing QR
factorizations, these two equations allow us to compute an effective representation of those remaining matrices
for the new blocks.

10.2 Adding two sequentially semi-separable matrices

We now establish that if two sequentially semi-separable matrices are added together we get another sequen-
tially semi-separable matrix. Let A and B be two sequentially semi-separable matrices that are commensu-
rately partitioned; that is, mi(A) = mi(B). Then, it is easy to check, that the sum A + B, is a sequentially
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semi-separable matrix with representation given by the sequences

Ui(A + B) = (Ui(A) Ui(B) ) , Vi(A + B) = ( Vi(A) Vi(B) ) , Di(A + B) = Di(A) + Di(B),

Wi(A + B) =
(

Wi(A) 0
0 Wi(B)

)
, Ri(A + B) =

(
Ri(A) 0

0 Ri(B)

)
,

Pi(A + B) = (Pi(A) Pi(B) ) , Qi(A + B) = ( Qi(A) Qi(B) ) .

Note that the computed representation of the sum might be inefficient, in the sense that the ranks of the
Hankel blocks are assumed to increase additively, whereas, in some cases the rank might be far smaller.
Ideally, these formulas should be followed by a rank-reduction (or model reduction) step (see section 10.6).

10.3 Low-rank plus sequentially semi-separable matrices

We next establish that the sum of a sequentially semi-separable matrix A and a rank-k matrix XY H is
another sequentially semi-separable matrix B = A + XY H . This follows from section 10.2 since a rank-k
matrix is a sequentially semi-separable matrix with Hankel-rank k. First some notation. Let

X =

m1 X1
...

...
mn Xn

 and Y =

m1 Y1
...

...
mn Yn

.

Then we have that

Ui(XY H) = Xi, Vi(XY H) = Yi, Di(XY H) = XiY
H
i , Wi(XY H) = Ik,

Pi(XY H) = Xi, Qi(XY H) = Yi, Ri(XY H) = Ik.

10.4 Schur product

The Schur Product (denoted by �) of two m× n matrices A and B is defined as follows:

(A�B)ij = AijBij .

In other words, it is the component-wise product. In many applications we are faced with computing the
sequentially semi-separable structure of the Schur product of a sequentially semi-separable matrix and a low-
rank matrix. Due to section 10.2 it is enough to look at the Schur product of a sequentially semi-separable
matrix with a rank-1 matrix.

We begin with the Schur product of a rank-1 matrix:

(A� uvH)ij = uiAijvj .

Hence we have that
A� uvH = diag(u)Adiag(v). (10)

Now let A be a sequentially semi-separable matrix and let B = A � rsH . We would like to compute the
sequentially semi-separable representation of B from that of A. This is based on the formulas used to
compute the sequentially semi-separable representation in section 6.
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First some notation. Let

r =

m1 r1
...

...
mn rn

 and s =

m1 s1
...

...
mn sn

.

Then it follows readily from equation (10) that

Ui(B) = diag(ri)Ui(A), Vi(B) = diag(si)Vi(A), Wi(B) = Wi(A), Di(B) = Di(A)� (ris
H
i ),

Pi(B) = diag(ri)Pi(A), Qi(B) = diag(si)Qi(A), Ri(B) = Ri(A).

10.5 Tensor product

Equally important in applications is the tensor product (denoted by ⊗) of a sequentially semi-separable
matrix with the identity. The tensor product of an mA×nA matrix A with an mB ×nB matrix B is defined
as the mAmB × nAnB matrix

A⊗B =

 a11B · · · a1nA
B

... · · ·
...

amA1B · · · amAnA
B

 .

We observe that this form is preserved under block-partitioning of the first matrix:(
A11 A12

A21 A22

)
⊗B =

(
A11 ⊗B A12 ⊗B
A21 ⊗B A22 ⊗B

)
.

We also observe that for the tensor product of rank-1 matrices with the identity we have

uvH ⊗ IN = (u⊗ IN )(v ⊗ IN )H .

Hence it follows that the tensor product of a rank-k matrix with the identity is given by

ABH ⊗ IN = (A⊗ IN )(B ⊗ IN )H .

We are now interested in computing the sequentially semi-separable structure of B = A ⊗ IN when A is a
sequentially semi-separable matrix. To do that, we use the formulas in section 6 together with the formulas
just stated about tensor products, to observe that

Ui(B) = Ui(A)⊗ IN , Vi(B) = Vi(A)⊗ IN , Wi(B) = Wi(A)⊗ IN ,

Di(B) = Di(A)⊗ IN , Pi(B) = Pi(A)⊗ IN , Qi(B) = Qi(A)⊗ IN , Ri(B) = Ri(A)⊗ IN .

10.6 Fast Model Reduction

As it became evident in sections 10.2, 10.3, 10.4 and 10.5 sometimes we produce sequentially semi-separable
representations that are not as compact as possible (to some specified tolerance τ). Dewilde and van der
Veen [14] present a technique to find the optimal reduced order model. Here we present a simple, efficient
and numerically stable method to compress a given SSS representation to a pre-specified tolerance τ .

We will present the technique using SVDs. In particular we will call the SVD from which all singular values
that are less than τ have been discarded as a τ -accurate SVD. It is a simple matter to replace the SVD in
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these calculations with rank-revealing QR factorizations, or rank-revealing LU factorizations, or even LU
factorization with complete pivoting. It is likely that this will lead to considerable speed-up for a small loss
in compression.

Our algorithm for model reduction can be viewed as a natural extension of the algorithm presented in section 6
for constructing SSS representations. More formally, suppose we have a nominal SSS representation for the
matrix A. Given a tolerance τ , we would like to compute a new SSS representation for A, accurate to this
new tolerance, but more rapidly than the algorithm presented in section 6.

First we observe that it is enough to specify the method for Ui, Wi and Vi, since the same technique can
then be applied to the Pi, Ri amd Qi. We split the method into two stages. In the first stage we convert
the representation into left proper form. By left proper form we mean that all the column bases Ci of the
Hankel-blocks, where

C1 = U1,

Ci =
(

Ci−1Wi

Ui

)
,

should have orthonormal columns. In the second stage we convert the representation into right proper
form; that is, now all the row bases Gi of the Hankel-blocks, where

Gn = Vn,

Gi =
(

Vi

Gi+1W
H
i

)
.

will have orthonormal columns. The second stage recursions will essentially be first-stage recursions in the
opposite order. Note that Hi = CiG

H
i+1.

Note that the method of section 6 already produces SSS representations in left proper form. However it is
likely that updating operations will destroy proper form. So we begin by indicating how left proper form
can be restored efficiently. For convenience we use hats to denote the representation in left proper form.

Consider the following recursions(
W̃i

Ui

)
≈

(
Ŵi

Ûi

)
ΣiF

H
i , τ -accurate SVD factorization

W̃i+1 = ΣiF
H
i Wi+1,

V̂i+1 = Vi+1FiΣH
i ,

with the understanding that W̃1 and Ŵ1 are empty matrices. Then it is easy to check that new column bases

Ĉ1 = Û1

Ĉi =
(

Ĉi−1Ŵi

Ûi

)
,

have orthonormal columns, and that the hatted sequences form a valid SSS representation for the given
matrix. The hatted SSS representation will be accurate to τ provided we assume that the two-norm of the
Gi’s is bounded by a small multiple of the norm of the original matrix. We will call such SSS representations
to be stable, and observe that all SSS representations we have produced so far are stable. Also note that
the recursions depend only linearly on the matrix size. If by some chance the SSS representation is unstable,
then τ must be set to zero in the first stage. It should then be restored to its proper value in the second
stage.

In the next stage we take an SSS representation in left proper form and further compress it to the given
tolerance τ efficiently by converting it into right proper form. For simplicity we assume that the given
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SSS representation is already in left proper form, and denote it using un-hatted quantities. We use hatted
quantities to denote terms in the compressed right proper form representation. In the second stage it is
sufficient to concentrate on the row bases Gi since Hi = CiG

H
i+1, and Ci has orthonormal columns by our

assumption of left proper form.

However, this time we must run the recursions backward in time. Here they are(
Vi

W̃H
i

)
≈

(
V̂i

ŴH
i

)
ΣiF

H
i , τ -accurate SVD factorization,

W̃i−1 = Wi−1FiΣH
i ,

Ûi−1 = Ui−1FiΣH
i ,

with the understanding that W̃n and Ŵn are empty matrices. It can be seen that the hatted sequences
form a valid SSS representation in right proper form, and that the approximations are τ accurate. We draw
attention to the fact that in each stage the Wi matrices are transformed twice; first to W̃i and then to Ŵi.

11 Superfast solver

We now consider the superfast solution of the linear system of equations AX = B, where A and B are given
in SSS form, and we desire to find the SSS form of X. One possible approach to the problem is to first
compute explicitly the SSS form of U , L and V in the decomposition A = ULV H and then use the superfast
multiplication algorithm. Such an approach has already been described in [14]. Here we show how to extend
the implicit decomposition ideas in the same direction.

We will assume that A, X and B are conformally partitioned. It is useful to allow B and X to be non-square
matrices. To facilitate this description we will assume that the row and column partitions of the matrix A are
indexed from 1 to n. So the SSS representation of A is given by {Di(A)}ni=1, {Ui(A)}ni=1, and so on. We will
assume that the row partitions of both X and B are also indexed from 1 to n. However, we will assume that
the column partitions of X and B are indexed from m to r. Hence the SSS representation for B for example
will be given by {Di(B)}ni=1, {Ui(B)}ni=1, {Wi(B)}ri=1, {Vi(B)}ri=1, {Pi(B)}ni=1, {Ri(B)}ni=m, {Qi(B)}ni=m.
Similar considerations hold for X. Throughout this presentation we will pretend that m ≤ 1 ≤ n ≤ r.
However these assumptions can be removed.

To ease presentation we will assume that the initial equation AX = B is modified to read

AX = B −


0

P2(A)
P3(A)R2(A)

...
Pn(A)Rn−1(A) · · ·R2(A)





Qm(B)RH
m+1(B) · · ·RH

0 (B)PH
1 (τ)

...
Q0(B)PH

1 (τ)
DH

1 (τ)
V2(B)UH

1 (τ)
...

Vr(B)WH
r−1(B) · · ·WH

2 (B)UH
1 (τ)



H

, (11)

where D1(τ) = 0, P1(τ) = 0 and U1(τ) = 0. The reason for this peculiar form will become clear shortly.

The superfast solver is essentially of the same form as the fast solver presented in section 5. The superfast
solver can also be presented in a recursive fashion, which we proceed to do.
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11.1 Case of n > 1 and k1(A) < m1: Elimination

As before we perform orthogonal eliminations by computing QL and LQ factorizations

U1(A) = q1

(
0

Û1(A)

)
m1 − k1(A)
k1(A) ,

and

(
qH
1 D1(A)

)
=

( m1 − k1(A) k1(A)
m1 − k1(A) D11(A) 0
k1(A) D21(A) D22(A)

)
w1,

where q1 and w1 are unitary matrices. We now need to apply qH
1 to the first m1 rows of equation (11). As

before nothing needs to be done for A, X and the second term involving τ on the right-hand side. Applying
qH
1 to the first m1 rows of B we modify P1(B), D1(B) and U1(B) as follows:

qH
1 P1(B) =

(
m1 − k1(A) P̃1(B)
k1(A) P̂1(B)

)
,

qH
1 D1(B) =

(
m1 − k1(A) D̃1(B)
k1(A) D̃2(B)

)
,

qH
1 U1(B) =

(
m1 − k1(A) Ũ1(B)
k1(A) Û1(B)

)
.

Next we need to apply w1 to the first m1 rows of X. Of course this is a purely formal process since the first
m1 rows of X are unknown at this stage. Here are the quantities that are modified:

w1P1(X) =
(

m1 − k1(A) P̃1(X)
k1(A) P̂1(X)

)
,

w1D1(X) =
(

m1 − k1(A) D̃1(X)
k1(A) D̂1(X)

)
,

w1U1(X) =
(

m1 − k1(A) Ũ1(X)
k1(A) Û1(X)

)
.

We also need to apply wH
1 to the first m1 columns of the coefficient matrix. Since it has already been applied

to D1(A), we only need to compute

w1Q1(A) =
(

m1 − k1(A) Q̃1(A)
k1(A) Q̂1(A)

)
.
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We now observe that the first m1 − k1(A) equations of the transformed system are of the form

D11(A)



QH
m(X)RH

m+1(X) · · ·RH
0 (X)P̃H

1 (X)
...

QH
0 (X)P̃H

1 (X)
D̃H

1 (X)
V2(X)ŨH

1 (X)
...

Vr(X)WH
r−1(X) · · ·WH

2 (X)ŨH
1 (X)



H

=



QH
m(B)RH

m+1(B) · · ·RH
0 (B)P̃H

1 (B)
...

QH
0 (B)P̃H

1 (B)
D̃H

1 (B)
V2(B)ŨH

1 (B)
...

Vr(B)WH
r−1(B) · · ·WH

2 (B)ŨH
1 (B)



H

.

Solving this we obtain

D̃1(X) = D−1
11 (A)D̃1(B),

P̃1(X) = (D−1
11 (A)P̃1(B) 0 ) ,

Qi(X) =
(
Qi(B) ~Qi

)
,

Ri(X) =
(

Ri(B) 0
~Ri;21

~Ri;22

)
,

Ũ1(X) = (D−1
11 (A)Ũ1(B) 0 ) ,

Vi(X) =
(
Vi(B) ~Vi

)
,

Wi(X) =
(

Wi(B) 0
~Wi;21

~Wi;22

)
.

We now need to subtract from the right-hand side the first m1 − k1(A) columns of the coefficient matrix
multiplied by the first m1 − k1(A) rows of the transformed unknowns. We first subtract D21(A) times the
first m1 − k1(A) rows of the unknown from the corresponding rows of B. We observe that it leads to the
following changes:

D̂1(B) = D̃2(B)−D21(A)D−1
11 (A)D̃1(B) = D̃2(B)−D21(A)D̃1(X),

Û1(B) = Ũ2(B)−D21(A)D−1
11 (A)Ũ1(B),

P̂1(B) = P̃2(B)−D21(A)D−1
11 (A)P̃1(B).

To subtract the remaining rows of the first m1−k1(A) columns of the coefficient matrix from the right-hand
side, we observe that it can be merged with the τ terms as follows:

D̂1(τ) = D1(τ) + Q̃H
1 (A)D−1

11 (A)D̃1(B),

P̂1(τ) = P1(τ) + Q̃H
1 (A)D−1

11 (A)P̃1(B),

Û1(τ) = U1(τ) + Q̃H
1 (A)D−1

11 (A)Ũ1(B).

If we now discard the first m1 − k1(A) rows and columns we are left with a set of equations that are
identical in structure to the system (11) that we started with. In particular we replace in the SSS form for
A, X and B, all terms with subscript 1 by their corresponding hatted forms. The resulting hatted system
ÂX̂ = B̂ − (τ terms), looks exactly like the equation (11) we started with and can be solved recursively for
X̂. Once we have X̂ we need to recover X. The right formulas are:

D1(X) = wH
1

(
D̃1(X)
D̂1(X)

)
,

U1(X) = wH
1

(
( D−1

11 (A)Ũ1(B) 0 )
( Û1(X) 0 )

)
,

W2(X) =
(

W2(B) 0
Ŵ2;1(X) Ŵ2;2(X)

)
,
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V2(X) = (V2(B) V̂2(X) ) ,

P1(X) = wH
1

(
( D−1

11 (A)P̃1(B) 0 )
( P̂1(X) 0 )

)
,

R2(X) =
(

R2(B) 0
R̂2;1(X) R̂2;2(X)

)
,

Qi(X) = Q̂i(X),

where (
Ŵ2(X)

0

)
= ( Ŵ2;1(X) Ŵ2;2(X) ) ,(

R̂2(X)
0

)
= ( R̂2;1(X) R̂2;2(X) ) .

These formulas can be verified only by looking at the next two cases.

11.2 Case for n > 1 and k1(A) ≥ m1: Merge

The second possibility is that the k1(A) is not large enough to permit efficient elimination. In this case we
merge the the first two block rows of the equation. We also merge the first two block columns of A. However
for X and B we do not merge any block columns. Rather we move the diagonal block over by one position
to the right. For convenience we specify the quantities that change for each of A, X and B. Beginning with
A we have:

D̂1(A) =
(

D1(A) U1(A)V H
2 (A)

P2(A)QH
1 (A) D2(A)

)
,

Û1(A) =
(

U1(A)W2(A)
U2(A)

)
,

Q̂1(A) =
(

Q1(A)RH
2 (A)

Q2(A)

)
.

Next we need to merge the first two block rows of B and move the diagonal block one over to the right:

D̃1(B) =
(

U1(B)V H
2 (B)

D2(B)

)
,

D̂i(B) = Di+1(B), i = 2, . . . , n− 1,

P̃1(B)Q̂0(B) =
(

P1(B) D1(B)
P2(B)R1(B) P2(B)QH

1 (B)

)
, τ -accurate low-rank factorization,

P̃1(B) =
(

P1(B) ~P1(B)
P2(B)R1(B) ~P2(B)

)
,

P̂i(B) = Pi+1(B), n = 2, . . . , n− 1,

R̂0(B) =
(

I
0

)
,

R̂i(B) = Ri+1(B), i = −1, . . . ,m− 1,

R̂1(B) = (R1(B) 0 ) ,

R̂i(B) = Ri(B), i = 2, . . . , r
Q̂i(B) = Qi+1(B), n = −1, . . . ,m− 1,

Q̂0(B) =
(
Q1(B) ~Q1(B)

)
,

Q̂i(B) = Qi+1, i = 1, . . . , r − 1,
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Ũ1(B) =
(

U1(B)W2(B)
U2(B)

)
,

Ûi(B) = Ui+1(B), i = 2, . . . , n− 1,

where ~P1(B), ~P2(B) and ~Q1(B) are chosen further down. We just note as a warning that P̃1(B)Q̂H
0 (B) is

not conformally partitioned in the above formulas.

Some quantities in the SSS representation for B still do not wear hats since we still need to subtract the
second block row of the τ terms from B. To do that we must first move the diagonal τ block one position
over to the right. Doing that we obtain

D̃1(τ) = U1(τ)V H
2 (B),

P̃1(τ) =
(
P1(τ) ~P1(τ)

)
,

Ũ1(τ) = U1(τ)W2(B),

where we pick ~P1(τ), ~P1(B), ~P2(B) and ~Q1(B) such that (
D1(B)

P2(B)QH
1 (B)

)
D1(τ)

 ≈ (
P̃1(B)
P̃1(τ)

)
Q̂H

0 (B).

To do this efficiently the method of section ?? must be suitably modified.

Now we can subtract the second block row of the τ terms from the new first block of B. The corresponding
changes to B are:

P̂1(B) = P̃1(B)−
(

0
P2(A)

)
P̃1(τ),

Û1(B) = Ũ1(B)−
(

0
P2(A)

)
Ũ1(τ),

D̂1(B) = D̃1(B)−
(

0
P2(A)

)
D̃1(τ).

We must now return the τ terms to canonical form with the first two block rows being merged to zero. The
changes are:

P̂1(τ) = R2(A)P̃1(τ),
D̂1(τ) = R2(A)D̃1(τ),
Û1(τ) = R2(A)Ũ1(τ).

Now the hatted sequences represent an SSS system with n − 1 block rows. This can be solved recursively
for the hatted SSS representation for X. From that we must recover the original SSS representation for X
involving n row partitions. To do that we observe that we need to split the first block row of the hatted
representation and shift the first diagonal block one position to the left. We begin by first splitting the first
block row:

D̂1(X) =
(

D̃1(X)
D2(X)

)
,

Û1(X) =
(

Ũ1(X)
U2(X)

)
,

P̂1(X) =
(

P̃1(X)
P2(X)

)
.
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The rest of the changes to X are

D1(X) = P̃1(X)Q̂H
0 (X),

P1(X) = P̃1(X)R̂0(X),
Pi(X) = P̂i−1(X), i = 3, . . . , n,

Ri(X) = R̂i−1(X), i = m, . . . , n,

Qi(X) = Q̂i−1(X), i = m, . . . , n,

U1(X) =
(
Ũ1(X) ~U1(X)

)
,

W2(X) =
(

I
0

)
,

Wi(X) = Ŵi−1(X), i = 3, . . . , n,

Vi(X) = V̂i−1(X), i = 3, . . . , n,

where V2(X) and ~U1(X) are chosen such that

D̃1(X) ≈ U1(X)V H
2 (X).

11.3 Case for n = 1: Base

In this case the equations can be solved directly to determine the SSS form for X as follows:

D1(X) = D−1
1 (A)D1(B),

P1(X) = D−1
1 (A)P1(B),

Ri(X) = Ri(B),
Qi(X) = Qi(B),
U1(X) = D−1

1 (A)U1(B),
Wi(X) = Wi(B),
Vi(X) = Vi(B).

Note that the τ terms are just zeros.

12 Applications

We now apply the techniques of this paper to construct fast direct solvers for the first time for two appli-
cations that are essentially global spectral methods for differential equations. The first is by Greengard and
Rokhlin [23, 31, 37, 38] for boundary-value problems for ordinary differential equations, and the second is
by Kress [12, 30, 32] for 2D exterior scattering problems.

12.1 Two-point BVP

Consider the system of differential equations

a(t)
dx(t)

dt
+ b(t)x(t) = f(t), 0 ≤ t ≤ 1,

c0x(0) + c1x(1) = z,
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size
tolerance 256 512 1024 2048 4096 8192
1E-8 9 9 10 10 10 10
1E-12 13 15 16 17 18 18

Table 3: Peak Hankel block ranks for the spectral method of Greengard and Rokhlin for ODEs.

where x(t) and f(t) are N -dimensional vector-valued functions of t; a(t) and b(t) are N ×N -matrix valued
functions of t; c0 and c1 and N × N matrices; and z is an N -dimensional vector. Then the p-th order
Greengard-Rokhlin [23] method produces matrices of the form

G = diag(Ai) + diag(Pi)(Sf ⊗ IN )diag(Qi) + diag(Ui)(Sb ⊗ IN )diag(Vi),

where Sf and Sb are the p-th order forward and backward Chebyshev spectral integration operators, and Ai,
Pi, Qi, Ui and Vi are N ×N matrices that depend on the coefficients of the ordinary differential equation.
The spectral integration operators are given more specifically by the following formulas. Let

Vij = Ti−1(z
(p)
j−1), 1 ≤ i, j ≤ p,

Wij = Ti−1(z
(p+1)
j−1 ), 1 ≤ i ≤ p, 1 ≤ j ≤ p + 1.

where z
(p)
j is the j-th zero of the p-th Chebyshev polynomial Tp. Let S denote the (p + 1) × p indefinite

integration operator

Sij =



0, if i = 1 or i = j
1, if i = 2 and j = 1

1
2(i− 1)

, if i = j + 1

−1
2(i− 1)

, if i = j − 1

0, otherwise

Then we have

Sf = W (I − e1 ( 0 1 −1 1 −1 1 · · · ))SV −1, Sb = W (e1 ( 0 1 1 1 · · · )− I)SV −1.

In table 3 we report the maximum ranks of the Hankel blocks of Sf and Sb. The rows are indexed by the
(absolute) tolerance we used in computing the ranks of the Hankel-blocks. We used two tolerances: 10−8

and 10−12. These are the most representative for use in practice. The columns are indexed by the size of the
matrices. We report on sizes that range from 256 to 8192. It is clear that for the reported tolerances (10−8

and 10−12) the Hankel-block ranks are reasonably small. In fact they seem to behave like O(log N), where
N is the size of the matrix. This implies that this class of matrices can be inverted stably in O(N log2 N)
flops.

In this example we observe that the sequentially semi-separable representations for Sf and Sb need to be
calculated once and stored for each size. From that the sequentially semi-separable representation for G
itself can be computed rapidly on the fly.

12.2 Two-dimensional Scattering

For two-dimensional exterior scattering problems on analytic curves for acoustic and electro-magnetic waves,
Kress’ method of discretization of order 2n will lead to a 2n× 2n matrix of the form

A = I + R�K1 + K2,
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size
tolerance 256 512 1024 2048 4096 8192

1E-8 28 32 34 37 38 40
1E-12 40 46 52 58 62 66

Table 4: Peak Hankel block ranks for the spectral method of Kress, Martensen and Kussmaul for the exterior
Helmholtz problem.

where K1 and K2 are low-rank matrices and

Rij = −2π

n

n−1∑
m=1

1
m

cos
m|i− j|π

n
− (−1)|i−j|π

n2
.

From the results in section 10 we see that it is sufficient to verify that R is a sequentially semi-separable
matrix of low Hankel-block ranks. It would then follow that A is a sequentially semi-separable matrix of low
Hankel-block ranks. In Table 4 we exhibit the peak Hankel block ranks of R. The rows are indexed by the
(absolute) tolerance we used to determine the numerical ranks of the Hankel blocks. In particular we used
tolerances of 10−8 and 10−12 that are useful in practice. The columns are indexed by the size of R.

As can be seen the ranks seem to depend logarithmically on the size N , of R. This implies that the fast
algorithm will take O(N log2 N) flops to solve linear systems involving A. We observe that the sequentially
semi-separable representations of R for different sizes and tolerances need to be computed once and stored
off-line. Then using the results in section 10 we can compute the sequentially semi-separable representation
of A rapidly on the fly.

13 Related and Future Work

It is a rather difficult job to attribute due credit to all the researchers whose work is related to this paper.
Hence we will just mention as much of the related recent literature that we are aware off. The algebraic
formalism of the structure that is used in this paper appears in work of Dewilde and van der Veen [14] and
Eidelman and Gohberg [17, 18, 19]. Other structures that would work just as well appear in the works of
Rokhlin [37, 38] and Hackbusch [26, 27, 28] and Chandrasekaran and Gu [6]. Fast, direct, but not necessarily
stable algorithms for such matrices were first presented in Starr’s thesis [37, 38]. They also appear in the
works of Eidelman and Gohberg [17, 18] and Hackbusch [26, 27, 28]. Fast and stable direct solvers appeared
first in the works of Dewilde and van der Veen [14] and independently later in the work of Chandrasekaran
and Gu [5]. Various generalizations have been carried out by various authors, including us. Here is a brief
list of such work: [7, 8, 9, 27, 28, 33, 34].

The computational electromagnetics literature has also looked at this problem independently. Relevant work
includes that of Chew [25], Canning [3], and Jandhyala [21]. It is our hope that this paper would provide
a unifying point of view to the many disparate attempts available in the computational electromagnetics
literature.

In this paper we presented a fast and stable direct method for solving a linear system of equations whose
coefficient matrix satisfies the sequentially semi-separable matrix structure as defined in equation (1), and we
demonstrated that many dense matrices coming from various physical problems can be well-approximated
by matrices with such structures, thereby significantly reducing the solution time for related linear systems
of equations.
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The sequentially semi-separable representation used in this paper is not optimal. For example none of the
matrices Ui, Wi, Vi, Pi, Qi, or Ri need be full-rank matrices. In such a case it is better to allow these
matrices to be represented in compressed form. This will cause some complications in the algorithms, but
nothing major.

It is easy to replace the QL and LQ factorizations with LU factorizations with partial pivoting instead. Such
an approach would still be numercially stable as long as the integers mi’s are not very large.

The fast multipole method (FMM) of Greengard and Rokhlin [4, 22, 36] has evolved into a major workhorse
for many computationally intensive problems in a wide area of applications. It turns out that the matrix
structure exploited by the FMM to speed up the computation is closely related to the sequentially semi-
separable structure exploited in this paper. Future work includes developing fast direct solvers for linear
systems of equations where the coefficient matrix has the FMM matrix structure.

We will also explore the applications of the fast sequentially semi-separable algorithms to speed up Kress’
global discretization technique for solving the integral equations of scattering theory [11].

Acknowledgements. The authors are grateful to Robert Sharpe and Daniel White of Lawrence Livermore
National Laboratory for their suggestions and interests in this research.
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