Math 10B, Summer-August-2017.
 HOMEWORK ASSIGNMENT

During the course, the HW assignment may be slightly changed. Please, watch the current assignment.

In problems marked by *, the student may skip the final calculations, stopping at the moment when the calculations remained are obvious.

1. $5.1: 1,2 b, 3 a b, 7 a b, 17$.
5.2: $5,6,14,18,19$,
5.3: $1,2,15,16,17 \mathrm{a}, \mathrm{b}(\mathrm{ii}), 18 \mathrm{a}, \mathrm{b}(\mathrm{ii}), 21 \mathrm{ab}, 21 \mathrm{c}^{*}, 31$ (use a calculator), 33 (Hint: Is $f^{\prime}(x)$ positive or negative?).
5.4: 1-5, 22, 23, 26, 38, 39-42.

Due to August 14.
2. 6.1: 5, 6, 7-9 (for $F(0)=1$), 17, 23 (optional).
6.2: 1-10 (you do not have to write down all problems, but make sure that you can do it), 17-20, 37, 41, 42, 61.
6.3: $3,4,7,13$ (Hint: In this case, as in the case of throwing upward, $v(t)=$ $-g t+C$, but $v(0)=0$, so C is equal to what? Once you find $v(t)$, find that the height

$$
h(t)=h_{0}-\frac{g t^{2}}{2},
$$

where h_{0} is the initial hight equal to 100 .)
6.4: $4,5,17$ with graphing $F(x)$ for all x 's, positive and negative as well. (Hint: First, using the second fundamental theorem, find $F^{\prime}(x)$. After that, find (using the chain rule) $F^{\prime \prime}(x)$ and figure out where it is positive and where it is negative.)
7.1: 3-5, 7, 10, 17, 19-21, 23, 25, 57, 59-61, 66, 77.
7.2: 3, 4 (Advice: Do integration by parts twice), 5, 7, 9, 15 (Advice: Set $u(t)=$ $(\ln t)^{2}$, and $\left.v(t)=t\right), 20\left(\right.$ Advice: Write $\left.\frac{z}{e^{z}}=z e^{-z}\right), 21$ (Advice: Set $v^{\prime}(x)=\frac{1}{x^{2}}$), 33 (Hint: We considered this integral in class), 35, 45, 46, 53 (Advice: You may take a look at Example 6 on p. 367).
7.3: 1, 2, 22.

Compute the integrals:

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x, \int_{0}^{3} x \sqrt{9-x^{2}} d x, \int_{0}^{3 / 2} \sqrt{9-4 x^{2}} d x, \int_{0}^{3 / 2} x \sqrt{9-4 x^{2}} d x
$$

(in the last integral, you do not have to provide final calculations);
7.4. 56.

Due to August 21.
3. 7.4: $31,39^{*}, 41^{*}, 43^{*}, 49^{*}, 52^{*}$;
7.6: $1,5,7,8^{*}$ (optional, do the substitution $w=\sqrt{x}$), $9^{*}, 10,13$ (Hint: First, do a substitution and look at how nice the integral becomes after that), 23 (do the substitution $w=\ln x$), 29*, 31*.
Additional problem: Consider two integrals: $\int_{2}^{\infty} \frac{1}{x \ln ^{2} x} d x$, and $\int_{e}^{\infty} \frac{1}{x \ln ^{2} x} d x$.
First, explain that both integrals converge or diverge simultaneously; in other words, either both converge or both diverge. Secondly, figure out whether they converge or diverge. If the former is true, find the values of both. (Advice: Use the substitution $w=\ln x$.)
7.7 (in problems below, you may (though do not have to) apply just the limit test): $1,3.10,11,19,21,23$.

Due to August 28.
4. 8.1: 7, 11, 13, 16, 28, 30.
8.2 : 1, 2, 5, 7, 9, 11, 14.

Due to September 6.
5. In this HW assignment, you may be brief in writing down these problems but, please, make sure that you can do all of them.
9.2: $1,2,8,9-11,15,18-20,26-28,37$.
10.1: 1,3 (for $n=2$), 18, 19, 22, 25, 27, 28, 29, 30; write the Taylor polynomial of the third order for $f(x)=e^{3 x}$ and $\sin (2 x)$.
11.1: $1,2,4,6,16,17$.
11.4: $1,2,3,7,9,10,13,15,25$.

Due to September 8.

