Math 10C, August-2021. HOMEWORK ASSIGNMENT

During the course, the HW assignment may be slightly changed. Please, watch the current assignment.

1. 2.1: $1,7,8,9,11,13,15,21,25,29$.
2.2: $63,65,66,67,71,75,77,83,9192,99,101$.

A1. In all problems below regions in \mathbb{R}^{3} (not in \mathbb{R}^{2} or \mathbb{R}) are specified. Describe each region in words.
(a) $x^{2}+y^{2}+z^{2} \geq 16$.
(b) $x^{2}+y^{2} \geq 16$
(c) $x^{2}+y^{2}+z^{2}=0$.
(d) $x=-3$.
(e) $3<y<5$.
(f) $3 \leq y \leq 5$.
(g) $x^{2}+4 x+y^{2}-10 x+z^{2} \geq 1$.
2.3: $123,125,127,135,137,138,141,143,144,145,147,149,155,157,161,167,169$.

A2. Which of these two pairs of vectors are orthogonal?

$$
\begin{array}{ll}
\text { (a) }(3,2,1) & (1,2,-5) . \\
(b)(3,2,1) & , \\
(1,2,-7) .
\end{array}
$$

A3. Which of these two pairs of lines are orthogonal? (Hint: You may solve it in mind.)

$$
\begin{aligned}
\text { (a) } 2 x+3 y & =5,3 x-2 y=7 \\
\text { (b) } 5 x+2 y & =5,3 x-2 y=7
\end{aligned}
$$

2.4: 183, 185, 187, 189, 193, 197, 199, 201, 209, 213, 215, 217.
2. 2.5: $243,245,247,249,251,253,255,257,259,269,271,273,274,275,277,281,283$.
3.1: $1,2,5,19,23$.

A4. Let a vector $\mathbf{a}=(1,2,3)$, a vector function $\mathbf{r}(t)$ satisfies equations $|\mathbf{r}(t)|=16$, and $\mathbf{r}(t) \cdot \mathbf{a}=0$. Specify, as much as it is possible, the curve. (In other words, where is it located?)
3.2: $41,43,47,55,57,59,63,83,84,85,93$.

A5. Consider a curve $\mathbf{r}(t)=\left(t, \cos (\pi t), t^{2}\right)$.
a) Make sure that the point $(1,-1,1)$ belongs to the curve.
b) Write an equation of the line tangent to the curve at the point mentioned. (Advice: To avoid confusion, for the parameter in the equation of the line, use a symbol different from t; say, s.
c) Now forget about the curve, and find the point at which the tangent line you found intersects the plane $x+y+z=7$. (Advice: First, find the value of parameter s (in the equation of the line you found) for which the corresponding point indeed lies on the plane mentioned.

A6. Consider point $(1,2,4)$ and the plane whose equation is $x+y+2 z=20$. Find the distance between the point and the plane. (Advice: We discussed two methods of solving such a problem. Both are not bad; so, select which you like more. (Frankly, I prefer "dropping a perpendicular on the plane", but this does not mean that you should follow it.))
3.4: 155, 157, 159, 161.

A7. A ball was thrown at an angle of 30° with an initial speed of $10 \mathrm{f} / \mathrm{sec}$.
a) Find a position vector function $\mathbf{r}(t)$.
b) Find the maximal height the ball will attain. (Hint: That is, the maximal value of $y(t)$.)
c) Find the time at which the ball will fall on the ground. (Hint: That is, the time at which $y(t)=0$.)
d) Find the position of the ball at the end of the first second.
3. 4.1: $1,3,6,15,17,20,23,28,31,32,42,43,48,49$.
4.3: $113,114,115,117,119,121,123,135,136,137,138$.
4.4: $163,165,167,171,174,175,179,183,185$.
$4.5215,216,217,221,223,231,233,243,245$.
4.6: $261,263,267,281,283,285,287,291,297,298,299,300,301,302,303,304,305$.

A8. Let $f(x, y)=x^{3}+x y^{2}-100$.
a) Find the gradient of f at point $P(1,-2)$.
b) Find the directional derivative of f at the direction of vector $\mathbf{v}=(2,1)$.
c) Find the direction at which $f(x, y)$ starting from point P increases fastest (most rapidly)? What is the corresponding maximum increase rate?
d) Find the direction at which $f(x, y)$ starting from point P decreases fastest (most rapidly)? What is the corresponding maximum decrease rate? (Hint: The answer should be positive (just a decrease rate)).
e) Compare the answer in Problem b) and the second answer in Problem c). Which is greater? Why?

A9. Consider planes whose equations are $2 x-y+2 z=5$ and $3 x-y+3 z=7$, respectively.
a) To which plane (or both) does the point $P(1,-1,1)$ belong?
b) Write parametric equations of the line at which these two planes intersect. (Hint: You can set $z=t, x=x(t)$, and $y=y(t)$.
c) Find the directional vector of this line.
d) Does the point P you considered in a) belong to the line you found?
e) Rewrite the equations for the line for the case where point P plays the role of an "initial" point.
f) Write the equations for a plane that orthogonal to the intersection line and goes through point P.
g) Draw (imagine) a picture.

Due to August 27.
4. 4.7: $310,311,313,315,317,318,319,321,323,331,340$.
4.8: $358,359,365,369,371,373.376$.

Due to .
5. 5.1: $11,13,15,17,19,25,26,31,36$.
5.2: $60,63,67,69,80-83,85$.

A10. Let a set D be a triangle with vertices $(0,1),(2,1),(0,2)$. Find

$$
\iint_{D} x e^{y} d A
$$

