
Math 193a, HANDOUT FOR HOMEWORK

Some Answers and Solutions

Here you will find some solutions and answers to problems answers to which are not given in the book.

1. Chapter 1:

12. The only graphs which are not given in Section 3.1.3, are the graph of lnx and the parabola 2ax− x2.

18. (a) The utility function u(x) is concave, so the customer is a risk averter.

(b) The function is convex, and the customer is a risk lover.

(c) Let y = w−G. We have E{u(w−ξ)}= 0.9 ·u(100)+0.05 ·u(50)+0.05 ·u(0) = 0.9 ·50+0.05 ·50 · 3
4 =

46.875. Then one should consider the inequality y−0.005y2 ≥ 46.875, which gives y ≥ 75, and Gmax = 25.
It has been proved in Section 3.4.2 that Gmax ≥ E{ξ}, and this is certainly the case here since E{ξ}= 7.5.

(d) By (3.2.4) and Jensen’s inequality, u1(w1) = E{u1(w1 + Hmin − ξ)} ≤ u1(w1 + Hmin − E{ξ}). So,
w1 ≤ w1 +Hmin −E{ξ}, and Hmin ≥ E{ξ}. Again by (3.2.4), writing H instead of Hmin, we have

√
300 =

E{
√

300+H −ξ}= 0.9 ·
√

300+H+0.05 ·
√

250+H+ 0.05 ·
√

200+H. An approximate solution (which
may be obtained even by Excel) is ≈ 8.05.

(e) In this case,
√

300= E{
√

300+H −ξ}= 1
100

∫ 100
0

√
300+H − xdx = 2

300 [(300+H)3/2−(200+H)3/2].
The numerical solution is ≈ 50.70.

(f) The new function u(w) = 200w−w2 +349 = 200(w−0.005w2)+349, that is, a linear transformation of
the function from (a), so the answer is the same.

19. In this case, we proceed from (3.2.8). In Example 3.2-1, we have computed already that E{u(w−ξ)}=
2/3. On the other hand, E{u(w− 1

2 ξ−G)} =
∫ 1

0 (2(1−G− 1
2 x)− (1−G− 1

2 x)2)dx = −175
300 +

5
2(1−G)−

(1−G)2. Solving the quadratic equation −175
300 +

5
2(1−G)− (1−G)2 = 2

3 , we come to G ≈ 0.31.

22. The preference order.

26. All functions under consideration are concave except Case 1: the function u(x) = xα is concave only for
α ≤ 1.

27. The function is convex, so the person is a risk lover. When comparing two r.v.’s, X and Y , one should
verify the inequality E{ea(w+X)} ≥ E{ea(w+Y )}. The term eaw cancels, and the inequality is equivalent to
E{eaX} ≥ E{eaY}.

30. (a-i) They do not differ since u1(x) is a linear transformation of u2(x).

(a-ii) Since E{u1(X)}=−2E{u2(X)}+3, the preference orders are opposite: if X %Y for John, then X -Y
for Mary.

(b) Mary is more risk averse since u2(x) is “more concave” (for example, you may graph the functions
u1(x) and u2(x)). Certainly, such a reasoning is heuristic, and since we did not consider in class what “more
concave” means rigorously, students are suggested to take it at a heuristic level.
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A rigorous approach is connected with the notion of relative risk aversion (see Section 3.4.3). In our case,
for u(x) = xα, the relative risk aversion coefficient Rr = 1−α. Hence, the less α is, the larger is the relative
risk aversion coefficient. It is optional in this course.

38. Comparing the two distributions under consideration, we see that it looks like we “took” a probability
mass of 0.2 from mass 0.5, and moved 0.1 to the right and 0.1 to the left. In this case, the dispersion of the
distribution gets larger, and our intuition tells us that in the risk aversion case, the distribution should get
“worse”.

Let us justify this in the EUM case. Let u be a utility function, and let X1 and X2 be r.v.’s with the
respective distributions. We have E{u(X1)} = 0.1u(1) + 0.2u(2) + 0.5u(3) + 0.2u(4) and E{u(X2)} =
0.1u(1) + 0.3u(2) + 0.3u(3) + 0.3u(4). Then E{u(X1)} − E{u(X2)} = −0.1u(2) + 0.2u(3)− 0.1u(4) =
0.2

[
u(3)− 1

2 (u(2)+u(4))
]
≥ 0 if u(x) is concave.

39. This exercise is a generalization of Exercise 38. Let u be a utility function, a r.v. X1 has the original
distribution, and X2 has the transformed distribution. Then E{u(X1)} = ∑k u(xk)pk. The corresponding
representation E{u(X2)} is the same except the terms with k = i−1, i, and i+1. Consequently, the difference
E{u(X1)}−E{u(X2)}=−∆u(xi−1)+2∆u(xi)−∆u(xi+1) = 2∆

[
u(xi)− 1

2 (u(xi−1)+u(xi+1))
]
.

If x’s are equally spaced, then xi =
1
2(xi−1+xi+1), and E{u(X1)}−E{u(X2)} is positive due to the concavity

of u(x).

Note that, for a particular i, all x’s do not need to be equally spaced but rather we should have xi+1 − xi =
xi − xi−1 only for this particular i .

61. (a) Since F(x) = 1− e−x/m, from (5.1.4) it follows that λ =
∫ ∞

d e−x/mdx = me−d/m. On the other hand,
λ = m/2, so d = m ln2 ≈ 0.69m.

(b) In this case, F(x)= x
2m , and λ=

∫ 2m
d

(
1− x

2m

)
dx=m

(
1− d

2m

)2
. Since λ= m

2 , we have d = 2(1− 1√
2
)m≈

0.59m.

In the first case, the deductible is somewhat larger. It is not surprising, since the exponential r.v. has a greater
dispersion and may assume large values.

2. Chapter 2:

1. (a) The student should look over Table (0.2.6.1).

(b) Since (1.1.3) is the particular case of (1.1.10), it suffices to consider the Γ-density. Let a r.v. X1ν have the
density f1ν(x) = 1

Γ(ν)x
ν−1e−x for x ≥ 0, and = 0 otherwise. Consider the r.v. Xaν = 1

a X1ν. In accordance

with (0.2.6.1), Xaν has the density aν

Γ(ν)x
ν−1e−ax for x ≥ 0, and = 0 otherwise. This is the density faν(x)

from (1.1.10). We have arrived at it just changing the scale.

5. (a) If X has the d.f. F1(x) = xγ/(1+ xγ), then by virtue of (0.2.6.1), the r.v. Y = θX has the d.f. F(x) =
(x/θ)γ/(1+(x/θ)γ).

7. FY (x) = P(X ≤ x/k) = 1−q+qFξ(x/k); E{Y}= kqµ, and Var{Y}= k2(qv2 +q(1−q)µ2).

19. (b) Solution: Note that fS2(x− y) = x− y if 0 ≤ x− y ≤ 1, which is equivalent to x− 1 ≤ y ≤ x, and
fS2(x− y) = 2− x+ y if 1 ≤ x− y ≤ 2, which is equivalent to x−2 ≤ y ≤ x−1. Otherwise, fS2(x− y) = 0.
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Keeping this in mind, we have for x ≤ 1,

fS3(x) =
∫ x

0
(x− y)dy = x2 − x2

2
=

x2

2
.

For 1 ≤ x ≤ 2,

fS3(x) =
∫ x−1

0
(2− x+ y)dy+

∫ 1

x−1
(x− y)dy = [−2x2 +6x−3]/2.

For 2 ≤ x ≤ 3,

fS3(x) =
∫ 1

x−2
(2− x+ y)dy = [x2 −6x+9]/2.

Otherwise, fS3(x) = 0.

21. Since a is a common scale parameter, without loss of generality we may set a = 1. Since f1ν(x− y) = 0
for y > x, by (2.1.3) and (1.1.10), for x > 0,

fS(x) =
∫ ∞

0
f1ν1(x− y) f1ν2(y)dy =

∫ x

0

1
Γ(ν1)

(x− y)ν1−1e−(x−y) 1
Γ(ν2)

yν2−1e−ydy

=
1

Γ(ν1)Γ(ν2)
xν1+ν2−1e−x

∫ x

0

(
1− y

x

)ν1−1(y
x

)ν2−1 1
x

dy.

By the variable change z = y/x,

fS(x) =
1

Γ(ν1)Γ(ν2)
xν1+ν2−1e−x

∫ 1

0
(1− z)ν1−1 zν2−1dz

=
Γ(ν1 +ν1)

Γ(ν1)Γ(ν2)
B(ν1,ν2) f1(ν1+ν2)(x),

where the constant B(ν1,ν2)=
∫ 1

0 (1− z)ν1−1 zν2−1dz. We know that fS(x) is a density, and hence
∫ ∞

0 fS(x)dx=
1. On the other hand, f1(ν1+ν2)(x) is also a density and

∫ ∞
0 f1(ν1+ν2)(x) = 1 either. Then the expression

Γ(ν1 +ν1)

Γ(ν1)Γ(ν2)
B(ν1,ν2) must be equal to one. So, we have proved that fS(x) = f1(ν1+ν2)(x) and, on the way,

that B(ν1,ν2) =
Γ(ν1)Γ(ν2)

Γ(ν1 +ν1)
. In Mathematics, the function B(·, ·) is called the Beta-function or the Euler

integral.

30. The parameter a = 1/m. Hence, in view of (0.4.3.5), Mξ(z) exists for z < 1/m. It is noteworthy that the
inequality is strict.

33. The function in Fig.10a cannot be a m.g.f. The function g(z) in Fig.10c is not a m.g.f. either. The
function in Fig.10b looks as a m.g.f.

34. For Fig.11a, the corresponding r.v.’s have a negative mean , while for Fig.11b, it is positive.

35. M′(0) = E{X}= m, M′′(0) = E{X2}= m2 +σ2.

36. The means are the same, Var{X1}<Var{X2}.

47. (a)

θ ≈ 2.326
√

22295
3300

≈ 0.105
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48. (d)

θ ≈ 1.645
√

195
100

≈ 0.229

(f) θnew ≈ 0.229√
2

≈ 0.162.

Additional Problems:

(a) 0.3e7z +0.7e11z, 0.7e7z +0.3e11z, (0.3e7z +0.7e11z)(0.7e7z +0.3e11z)

(b) The Γ-distribution with a = 1/3 and ν = 30.

(c) You will wait for when the current customer in service is served, and three before you. So, n = 4, and
the waiting time is Gamma-distributed with ν = 4×1 = 4,a = 1/2. In the second case ν = 4×2 = 8.

3. Chapter 3:

2. If N ≡ n, then MN(z)= ezn. Therefore, (1.5) implies MS(z)=MN(lnMX(z))= exp{(lnMX(z))n}=Mn
X(z).

4. The number of claims with priority for separate insurances are the r.v.’s

Xi =

{
0 with probability e−λ,

1 with probability 1− e−λ,
i = 1,2.

The sum

S = X1 +X2 =


0 with probability e−λe−λ = e−2λ,

1 with probability 2e−λ(1− e−λ),

2 with probability (1− e−λ)2.

On the other hand, for the joint insurance, the number of claims is a Poisson r.v. with parameter 2λ. So, the
number of priority claims is the r.v.

S′ =


0 with probability e−2λ,

1 with probability e−2λ2λ,
2 with probability 1− e−2λ − e−2λ2λ.

We see that P(S = 0) = P(S′ = 0), while P(S = 1)> P(S′ = 1), since the inequality 2e−λ(1−e−λ)> e−2λ2λ
is equivalent to the inequality eλ −1 > λ.

As a matter of fact, the last conclusion is true for any particular distribution of X’s. Indeed, for the corre-
sponding events we have {S = 0}= { S′ = 0}, {S = 1} ⊃ { S′ = 1}, and hence {S = 2} ⊂ { S′ = 2}.

Thus, P(S ≤ S′) = 1, P(S < S′)> 0. So, for the same price, the joint insurance covers more claims. (It makes
sense also to mention the first stochastic dominance.)

6. (a) λ = 231 ·0.01+124 ·0.05+347 ·0.03 = 18.92, p̄n =
λ

231+124+347 ≈ 0.02695.

12. (a) If ξ is the size of a damage and d is the deductible, then the number of claims is a Poisson r.v. Λ̃ with
parameter λ̃ = λP(ξ > d) = λe−ad = 300e−2/10 ≈ 245.62. So, E{Λ̃}=Var{Λ̃} ≈ 245.62.

(b) P(Λ̃ ≤ 230) = ∑230
k=0 e−λ̃λ̃k/k!. Since

√
Var{Λ̃} ≈ 15.67, the number 230 differs from E{Λ̃} approxi-

mately by the standard deviation, so the probability is not small.
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(c) Since E{Λ̃} is large, the distribution of Λ̃ is close to the corresponding normal distribution. Since the dif-
ference E{Λ̃}−230 is close to the standard deviation, P(Λ̃ ≤ 230)≈ Φ(−1)≈ 0.159. (More precisely, one
may write P(Λ̃ ≤ 230) = P( 1

15.67(Λ̃−245.62)≤ 1
15.67(230−245.62)) ≈ P( 1

15.67(Λ̃−245.62)≤−0.997)≈
Φ(−1)≈ 0.159, but it is not necessary.)

21. By (1.1) and (1.3), for the total payment S, we have E{S} = 4 ·50 = 200, Var{S} = 2 ·50+16 ·102 =
1700. If the distribution of S is closely approximated by the Γ-distribution with parameters a, ν, then
ν
a = 200, and ν

a2 = 1700. Then a = 200
1700 ≈ 0.118, and ν ≈ 23.53. Using Excel, we get that P(S > 250) ≈

1−Γ(250,0.118,23.53)≈ 0.117.

28. In the book and below, the symbol d
= means “equal by distribution”, that is, the distributions of the

corresponding r.v.’s are the same.

Let λ = E{N1}= E{N2}, and let N be a Poisson r.v. with parameter 2λ. Consider r.v.’s Yi mutually indepen-
dent, independent of N, and assuming values ±1 with probabilities 1

2 . Let W = Y1 + ...+YN , let Ñ1 be the
number of Y ’s assuming the value 1, and Ñ2 be the number of Y ’s assuming the value −1.

(We may view this as the situation of two portfolios with the respective number of claims Ñ1 and Ñ2. The
size of all claims in the first portfolio equals 1, while in the second, it is −1.)

By Proposition 10, Ñ1 and Ñ2 are independent Poisson r.v.’s with parameter λ, that is, the vector (Ñ1, Ñ2)
d
=

(N1,N2). On the other hand, W d
= Ñ1 − Ñ2, and hence W d

= N1 −N2.

The m.g.f.

MN1−N2(z) = MN1(z)M−N2(z) = exp{λ(ez −1)}exp{λ(e−z −1)}
= exp

{
λ
(
ez + e−z −2

)}
.

Note that we could obtain the same result using the representation for MN1−N2(z) above and (1.6), writing

MW (z) = exp{2λ(MY (z)−1)}= exp
{

2λ
(

1
2

ez +
1
2

e−z −1
)}

= exp
{

λ
(
ez + e−z −2

)
= MN1−N2(z).

}
.

29. Let N be a Poisson r.v. such that E{N} = 300. Consider r.v.’s Yi mutually independent, independent of
N, and assuming values 3 and −5 with respective probabilities 1

3 and 2
3 . Let W =Y1 + ...+YN , let Ñ1 be the

number of Y ’s assuming the value 3, and Ñ2 be the number of Y ’s assuming the value −5.

(We may view this as the situation of two portfolios with the respective numbers of claims Ñ1 and Ñ2. The
size of all claims in the first portfolio equals 3, and in the second it equals −5.)

By Proposition 10, Ñ1 and Ñ2 are independent Poisson r.v.’s with parameters λ1 = 1
3 300 = 100 and λ2 =

2
3 200 = 200, respectively. Then, the vector (Ñ1, Ñ2)

d
= (N1,N2). On the other hand, it is clear that W d

=

3Ñ1 −5Ñ2, and hence W d
= 3N1 −5N2.

33. (a) N has the Poisson distribution with λ = λ1+λ2 = 10 ·12+10 ·22 = 50. Thus, E{N}=Var{N}= 50.
Using software we get P(N ≤ 50)≈ 0.5375.

(b) Since p1 = 10
50 , in accordance with (3.2.7), P(N1 < 11 |N = 50) = B(10, 1

5 ,50), where B(x; p,n) is the
binomial d.f. with parameters p,n. Excel gives 0.58356.

5



(c) This is the compound Poisson distribution of a r.v. W =Y1+ ...+YN where N is Poisson with λ = 50, and
the independent Y ’s take values 100 and 300 with probabilities p1 = 0.2 and p2 = 0.8, respectively.

(d) E{S}= 50(100 ·0.2+300 ·0.8) = 13000; Var{S}= 50(1002 ·0.2+3002 ·0.8) = 3,700,000. In accor-
dance with (1.6),

MS(z) = exp
{

50
(

e100z 1
5
+ e300z 4

5
−1

)}
= exp

{
10e100z +40e300z −50

}
.

34. (a) Since p1 = 0.2 and p2 = 0.8, we have S d
=W , where W is defined as in Exercise 33c above with

Y =


100 with probability 1

5 ·
1
3 = 1

15 ,

200 with probability 1
5 ·

2
3 +

4
5 ·

1
2 = 8

15 ,

300 with probability 4
5 ·

1
2 = 2

5 .

(b) E{S}= 50E{Y}= 50 · 700
3 = 35000

3 ; Var{S}= 50E{Y 2}= 50 ·58000 = 29 ·105.

(c) This follows from (3.1.13) where N1, N2, N3 are the numbers of Y ’s which assumed the values 100,
200, 300, respectively. Consequently, E{Ni}= E{N}pi. Namely, E{K1}= 50 · 1

15 = 10
3 , E{N2}= 50 · 8

15 =
80
3 , E{N3}= 50 · 2

5 = 20.

35. In this case, S d
= W , where W is defined as in Exercise 33c above with Y ’s having the density f (x) =

p1 f1(x)+ p2 f2(x), where f1(x), f2(x) are the uniform densities on [100,200] and [200,300], respectively.
Hence,

f (x) =


0.2 · 1

100 = 0.002 if x ∈ [100,200],
0.8 · 1

100 = 0.008 if x ∈ [200,300],
0 otherwise.

Then E{S}= E{N}(p1m1 + p2m2) = 50(0.2 ·150+0.8 ·250) = 11500, Var{S}= E{N}(E{Y 2}= 50(0.2 ·
(1502 + 1

12 1002)+0.8 · (2502 + 1
12 1002)) = 2766666.6̄, and

MS(z) = exp{50(M(z)−1)} ,

where

M(z) = p1M1(z)+ p2M2(z) = 0.2 · e100z e100z −1
100z

+0.8 · e200z e100z −1
100z

=
e100z −1

100z
(0.2 · e100z +0.8 · e200z).

36. The problem is similar to Exercise 35. In this case, S d
= W , where W is defined as in Exercise 33c

above with Y ’s having the density f (x) = w1 f1(x)+w2 f2(x), where f1(x), f2(x) are the uniform densities on
[100,300] and [200,400], respectively. Hence,

f (x) =


0.2 · 1

200 = 0.001 if x ∈ [100,200],
0.2 · 1

200 +0.8 · 1
200 = 0.005 if x ∈ [200,300],

0.8 · 1
200 = 0.004 if x ∈ [300,400],

0 otherwise.
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Then E{S}= E{N}(w1m1+w2m2) = 50(0.2 ·200+0.8 ·300) = 14000, Var{S}= E{N}(E{Y 2}= 50(0.2 ·
(2002 + 1

12 2002)+0.8 · (3002 + 1
12 2002)) = 4166666.6̄, and MS(z) = exp{50(M(z)−1)}, where

M(z) = w1M1(z)+w2M2(z) = 0.2 · e100z e200z −1
200z

+0.8 · e200z e200z −1
200z

=
e200z −1

200z
(0.2 · e100z +0.8 · e200z).

Additional problems:

(a) λ1λ2, λ1(λ2 +λ2
2).

(b) 1/4.

4. Chapter 4:

1. (a) Let us measure time in hours. Consider two intervals: ∆1 = [0, 0.5] and ∆2 = (0.5,1]. Since an
interarrival time cannot be larger than one hour, if there were no arrivals in ∆1, then there should be an
arrival in ∆2; that is, P(N∆2 = 0 |N∆1 = 0) = 0. On the other hand, P(N∆2 = 0 |N∆1 = 1)> 0 because if there
was an arrival in ∆1, the next arrival may occur after half an hour elapses.

(b) Similar to the above reasoning, P(N2 = 2 |N1.5 = 2, N1 = 2) = 0 since the condition means that there
was no arrivals in [1,1.5]. On the other hand, P(N2 = 2 |N1.5 = 2) > 0 because there may be no arrivals
during half an hour. Thus, the process is not Markov. Then it is not the process with independent increments
because processes of the latter type have the Markov property.

2. Assume that interarrival times are independent, and the expected value of the kth interarrival time equals
k. Consider two intervals: ∆1 = [0, 1] and ∆2 = (1,2]. The probability P(N∆2 = 0 |N∆1 = 1) should be much
smaller than P(N∆2 = 0 |N∆1 = 1000) because given that there were 1000 arrivals, the waiting time for the
next arrival is 1001 times larger than the length of a unit interval, and the probability that there will be no
arrival during a unit time interval is close to one.

Actually, we can state it rigorously if we observe that due to the memoryless property, P(N∆2 = 0 |N∆1 =
k − 1) = P(τk > 1), where τk is the kth interarrival time. The last probability equals exp{−1/k} → 1 as
k → ∞.

12. (a) Since Nt is the process with independent increments, Corr{N2,N4 −N2}= 0.

(b)

E{NtNt+s} = E{Nt(Nt +Nt+s −Nt}= E{N2
t }+E{Nt(Nt+s −Nt)}

= E{N2
t }+E{Nt}E{(Nt+s −Nt)}

= (E{Nt})2 +Var{Nt}+E{Nt}E{(Nt+s −Nt)}
= (λt)2 +λt +λt ·λs = λt +λ2t(t + s).

Next,

Cov{Nt ,Nt+s} = E{NtNt+s}−E{Nt}E{Nt+s}
= λt +λ2t(t + s)−λt ·λ(t + s) = λt,
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1

0      γ                          z 1

(1-z)2

     e-cz

Figure 1:

and

Corr{Nt ,Nt+s}=
Cov{Nt ,Nt+s}√

Var{Nt}Var{Nt+s}
=

λt√
λt ·λ(t + s)

=

√
t

t + s
.

(c) By the memoryless property, at the moment t, “everything starts over as from the beginning”, and we
can think about the mth arrival after time t. For a separate interarrival time τ, we have E{τ} = 1

λ , and
Var{τ}= 1

λ2 . Consequently,

E{Tn+m |Nt = n}= t +E{Tm}= t +
m
λ
,

and
Var{Tn+m |N(t) = n}=Var{Tm}=

m
λ2 .

13. By virtue of (2.2.6), we should give an example of a function λ(t) for which limt→∞ χ(t) = 1. Let, for
instance, λ(t) = e−t . Then χ(∞) =

∫ ∞
0 e−sds = 1.

Another example may be λ(t) =
2

π(1+ t2)
because =

∫ ∞

0

1
1+ s2 ds = π/2.

17. Let time be measured in hours. If τ1 = 1/2, then after the first arrival, during the next half an hour, the
intensity of arrivals is not high, and the probability that there will be no arrivals during half an hour is not
small. However, if τ1 = 1, then after the first arrival, the intensity will become very high, and the probability
that there will be no arrivals during half an hour will be very small.

More precisely, P(τ2 > 0.5 |τ1 = 0.5) = P(N(0.5,1] = 0) = exp
{
−1 · 1

2

}
=

1√
e

, while P(τ2 > 0.5 |τ1 = 1) =

P(N(1,1.5] = 0) = exp{−100 · 1
2
}= e−50, which is a very small number.

5. Chapter 6:

2. ϕ̃n(u)≥ ϕn(u).

5. (a) The derivative of (1− z)2 at 0 is −2, and the derivative of e−cz at 0 is −c. So, the exponential function
intersects the parabola at a γ > 0 iff c > 2. See also the Fig.1 in this handout.
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(c) It may be seen from Fig.1 in this handout. Rigorously, e−cz is decreasing in c and both functions are con-
tinuous. Hence, the solution γ = γ(c) is continuous and increasing in c. So, there exists γ(∞) = limc→∞ γ(c).
The number γ(c)< 1 for all c. On the other hand, for instance, γ(3)> 0, and for c > 3, we can write

(1− γ(c))2 = exp{−cγ(c)} ≤ exp{−cγ(3)}→ 0

as c → ∞. Thus, (1− γ(c))2 → 0, and γ(c)→ 1.

Estimate (2.1.4) is not good in this case since for c → ∞ the ruin probability converges to zero, while (2.1.4)
gives only the bound e−u.

Heuristically, the fact that the ruin probability vanishes while c → ∞ should be clear. If c is very large, then
the probability of ruin at the first step is very small, and at the beginning of the second step, the company
starts with a very large surplus. Then the ruin probability is small due to Lundeberg’s inequality.

We discuss a formal proof in Exercise 6c.

6. (a) Let us look at Fig.3b where for our case µ = m− c < 0. The closer µ to zero, the smaller the solution
p in Fig.3b. On the other hand, as we see in Fig.3a, for µ ≥ 0, the only solution is zero. So, we can guess
that the solution p approaches zero as µ → 0.

If X is not degenerate, that it may take on values larger than m. In this case, if the premium is equal only to the
mean value m, the company cannot function in the long run, since the deficit of payments is accumulating.
The rigorous proof of this statements should consist in proving that the ruin probability in this case is one,
which we do below.

7. (a) Let us look at Fig.3b where for our case µ = m−c < 0. The larger c, the steeper the slope at the origin,
and hence the larger the solution p in Fig.3b. So, we can guess that p → ∞ as µ → ∞.

Heuristically, it is clear. A rigorous argumentation may repeat the corresponding arguments in Exercise 5c.

8. Setting y = z/a, we come to the equation (1+ y(1+ θ)ν)(1− y)ν = 1. So, if y is a solution to the last
equation, for the solution of (2.2.24), we should take z = ay.

13. (a) The information about λ is not needed. By (2.2.22),

1
10γ

(e10γ −1) = 1+(1+0.2)5γ.

A numerical solution is γ ≈ 0.053, so ψ(100)≤ e−100·0.053 ≈ 0.005.

(b) We should solve the inequality
exp(−0.053u)≤ 0.05.

This implies u ≥ 57.62.

14. (a) We have m = 3, and

MX(z) =
1
4

e2z +
1
2

e3z +
1
4

e4z.

Thus, (2.2.21) becomes 1
4 e2z + 1

2 e3z + 1
4 e4z = 1+1.1 ·3z, or

e2z +2e3z + e4z = 4+13.2z. (1)
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(b) No.

(c) Using software (for example Wolfram or even Excel), we get that a positive solution to (M-1) above is
γ ∈ [0.59,0.6]. Now, E{X2}= 9.5 and E{X}= 3, so approximation (2.2.26) from the book gives

γ ≈ 2 ·0.1 ·3
9.5

≈ 0.063.

(d) We write e−γu ≤ 0.03, which gives u ≥ −1
γ ln0.3. Since − ln(0.03)≤ 3.51, we can write u ≥ 59.5 ≥ 3.51

0.059 .

(e) For the new distribution, the degree of “dispersion” is less, so we should expect at least a bit larger γ and
a less ruin probability. Equation (2.2.22) becomes

e4z − e2z

2z
= 1+1.1 ·3z

Software leads to a solution γ ∈ [0.06,0.061]. The rest is practically the same since the solution does not
differ much from the previous.

10


