
Math 193b, HANDOUT FOR HOMEWORK

Some Answers and Solutions

Here you will find some solutions and answers to problems answers to which are not given in the book.

1. Chapter 7:

5. Certainly, the problem has a solution if the original probability multiplied by 1.1 does not exceed one. Let
k be a certain age, and µ(u) and µ∗(u) be the old and the new force of mortality, respectively. Then, for the
corresponding survival functions, the ratio

s∗(k)
s(k)

=
exp

{
−
∫ k

0 µ∗(u)du
}

exp
{
−
∫ k

0 µ(u)du
} = exp

{∫ k

0
[µ(u)−µ∗(u)]du

}
.

Thus, for the l.-h.s. to be equal to 1.1, we should have∫ k

0
[µ(u)−µ∗(u)]du = ln1.1.

For example, this is true if µ(u)−µ∗(u) = ln1.1
k for u ∈ [0,k]. Certainly, it is possible if µ(u)≥ ln1.1

k .

If k = 1, we should have µ(u)−µ∗(u) = ln1.1; that is, the force of mortality during the first year should be
ln1.1 less.

8. Since µ(x)→ ∞ as x → ω, The life time X cannot exceed ω; that is, P(X > ω) = 0. For this to be true, the

integral
∫ ω

0

du
(ω−u)α should diverge, so we set α ≥ 1. Now, for α > 1 and x < ω, we have

s(x) = exp
{
−
∫ x

0

du
(ω−u)α

}
= exp

{
− 1
(α−1)ωα−1

(
1

(1− x/ω)α−1 −1
)}

,

while for α = 1, we have the uniform distribution on [0,ω]. Indeed, in this case,

s(x) = exp
{
−
∫ x

0

du
ω−u

}
= exp

{
− ln

(
ω

ω− x)

)}
= 1− x

ω
.

10. Both functions are artificial. Nevertheless, the integral
∫ ∞

0 µ(x)dx converges in the first case, and diverges
in the second. So, the first µ(x) cannot serve as a model for units with bounded lifetimes.

11.

(a) When multiplying a force of mortality by 3, we cube the corresponding probability, So, the answer is
0.53 = 0.125.
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(b) In general,

t px = exp
{
−
∫ x+t

x
µ(z)dz

}
.

If we subtract from the force of mortality a number c, then the new probability equals

t p∗x = exp
{
−
∫ x+t

x
(µ(z)− c)dz

}
= exp

{
ct −

∫ x+t

x
µ(z)dz

}
= ect exp

{
−
∫ x+t

x
µ(z)dz

}
= ect

t px.

So, in our case, the new probability equals e0.01·30 ·0.05.

16. (a) From l0 newborn girls, on the average, l0s f (50) = l0 1√
2

survive 50years. For boys, this number is

l0sm(50) = l0 2
3 . Hence, the ratio of these mean values is 3

2
√

2
≈ 1.06.

(As a matter of fact, the precise solution should be different. Let η1 and η2 be the number of survivors
among men and women (both r.v.’s have binomial distributions). Then we should consider, for example, the
distribution of η1/η2 given η2 > 0, and in particular, the corresponding conditional expectation.)

Now, let B1 be the event that a person chosen at random is a male, and B2 is that it is a female. The by the
Bayes formula, the probability that a person of age 50 taken at random is a man is

P(B1 |X > 50) =
P(X > 50 |B1)P(B1)

P(X > 50 |B1)P(B1)+P(X > 50 |B2)P(B2)
=

1
2 sm(50)

1
2 sm(50)+ 1

2 s f (50)
=

2
3

2
3 +

1√
2

≈ 0.49.

Hence,

20|10q50 ≈ 0.49
sm(70)− sm(80)

sm(50)
+0.51

s f (70)− s f (80)
s f (50)

= 0.49

√
2/9−

√
1/9

2/3
+0.51

√
0.3−

√
0.2√

1/2
≈ 0.17.

(b) In general, let B1 be the event that a person chosen at random belongs to the first group, and B2 – that it
belongs to the second group. We know that P(B1) = w1 and P(B2) = w2. Certainly, w1 +w2 = 1.

Denote by w1(x) the probability that a person taken at random from people of age x (we know her/his age!)
belongs to the first group; w2(x) is defined respectively. By the the Bayes formula,

w1(x) = P(B1 |X > x) =
P(X > x |B1)P(B1)

P(X > x |B1)P(B1)+P(X > x |B2)P(B2)
=

w1 · x p(1)0

w1 · x p(1)0 +w2 · x p(2)0

. (1)

Similarly,

w2(x) =
w2 · x p(2)0

w1 · x p(1)0 +w2 · x p(2)0

. (2)

Then the conditional survival function

t px = w1(x) t p(1)x +w2(x) t p(2)x . (3)
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22. The distribution of T (x) is a mixture of exponential distributions but the weights depend on x. We may
use general formulas (1)-(3) or proceed as follows. Let wi, µi, i = 1,2, be the original weight and force of
mortality for the ith group. Then

P(T (x)> t) = P(X > x+ t |X > x)

=
w1 exp{−µ1(x+ t)}+w2 exp{−µ2(x+ t)}

w1 exp{−µ1x}+w2 exp{−µ2x}
= w1(x)exp{−µ1t}+w2(x)exp{−µ2t},

where

wi(x) =
wi exp{−µix}

w1 exp{−µ1x}+w2 exp{−µ2x}
, i = 1,2.

For the data in the exercise,

w1(20) =
0.3exp{−20/50}

0.3exp{−20/50}+0.7exp{−20/80}
≈ 0.27,

w2(20) = 1−w1(20)≈ 0.73.

The answer is natural. The forces of mortality in the two groups are different, so the share of people from,
for instance, the first group who attain an age x depends on x.

25. We write

E{K(x)} = E{K(x) |T (x)< 1}P(T (x)< 1)+E{K(x) |T (x)≥ 1}P(T (x)≥ 1)

= 0 ·P(T (x)< 1)+E{K(x) |K(x)≥ 1}P(T (x)≥ 1)

= E{1+K(x+1)}px = (1+ ex+1)px.

Thus,
ex = (1+ ex+1)px.
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2. Chapter 8:

1. (a) Regarding Ax, the nearest payment may occur only at t = 1. So, Ax ≤ v. Formally, Ax = E{vK+1} ≤
E{v0+1}= v.

We cannot write the same for Ax since the payment may occur at any t > 0. Formally, Ax = E{e−δT}, and
the bound e−δ does not apply.

(1b) If δ = 0, the APV of the whole life insurance with unit benefit is equal to one, and does not depend on
the age of the insured. If δ > 0, then, in a typical situation, Ax or Ax are increasing in x because the older a
person is, the shorter her/his future lifetime, and hence the future unit payment is discounted “to less of an
extent”. Formally, it is easy to see if – for example, in the continuous time case – we integrate (2.1.1) by
parts:

Ax =
∫ ∞

0
e−δtd(− t px) = 1−δ

∫ ∞

0
e−δt

t pxdt. (4)

So, if t px is decreasing in x for all t, then Ax is increasing.

In the discrete time case, the counterpart of the integration by parts may look as follows:

Ax =
∞

∑
k=0

vk+1P(K(x) = k) =
∞

∑
k=0

vk+1 (k px − k+1 px)

= v
∞

∑
k=0

vk
k px −

∞

∑
k=0

vk+1
k+1 px

= v
∞

∑
k=0

vk
k px −

∞

∑
m=1

vm
m px

= 1+ v
∞

∑
k=0

vk
k px −

∞

∑
m=0

vm
m px = 1− (1− v)

∞

∑
k=0

vk
k px.

However, there may be “dangerous” years such that if a person survives them, the expected remaining
lifetime gets larger, and hence the APV of a whole life insurance gets smaller.

Rigorously, it may be shown with use of (2.3.3) and (2.3.6). For example, from (2.3.6) with n = 1, we
have Ax = A1

x:1 + v pxAx+1 = v(1− px) + vpxAx+1 ≥ v(1− px). Assume that px is very small (the x is a
dangerous year). Then, since Ax ≤ v for all x’s, Ax is close to v. On the other hand, by the same formula,
Ax+1 = v(1− px+1)+ vpx+1Ax+2 ≤ v(1− px+1)+ v2 px+1, and if px+1 is not small, Ax+1 may be essentially
less than v.

4. In Exercise 7-28, we have shown that P(K = k) = pqk, where p = 1− e−µ. By (0.4.3.1), the m.g.f.
MK+1(z) = pez/(1−qez). Consequently,

Ax = MK+1(−δ) = e−δ 1− e−µ

1− e−µe−δ = e−δ 1− e−µ

1− e−(µ+δ) .

Using the fact that ex = 1+ x+o(x) for x → 0, we can write

Ax = (1+δ+o(δ))(1+µ+o(µ))(1+µ+δ+o(µ+δ))−1 ∼ µ
µ+δ

for µ+δ → 0. (Since µ and δ are positive, from µ+δ → 0 it follows that µ → 0 and δ → 0.)

Hence, for small µ and δ, the quantities Ax and A are close.
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6. In this case, Ax =
µ

µ+δ = 1
1+δ/µ . If Ax =

1
2 , then δ

µ = 1, and 2Ax =
1

1+2δ/µ = 1
3 . Thus, Var{Z}= 1

3 − (1
2)

2 =
1

12 .

13. If T is uniform, then—in view of the assumption we made in Section 2.1.3—formula (2.1.6) is precise.
It is interesting to see it directly. In Example 1.1-1, we got Ax =

1−e−s

s , where s = (ω− x)δ. From Example

1.1-2, setting v= e−δ, we obtain that Ax =
v(1− vω−x)

(ω− x)(1− v)
=

δe−δ

1− e−δ ·
(1− e−s)

s
=

δ
eδ −1

· (1− e−s)

s
=

δ
i
·Ax.

This is not the only possible example. For any distribution of T with a density that is constant in intervals
(k,k+1), formula (2.1.6) is precise.

21. We proceed from Exercise 7-22. Since for the constant force of mortality, Ax =
µ

µ+δ , in our case,

Ax = w1(x)
µ1

µ1 +δ
+w2(x)

µ2

µ2 +δ
.

Thus, A20 ≈ 0.27 0.02
0.02+δ +0.73 0.0125

0.0125+δ ≈ 0.223, and 2Ax = 0.27 0.02
0.02+2δ +0.73 0.0125

0.0125+2δ ≈ 0.126 for δ = 0.05.
By the double rate rule, Var{Z} ≈ 0.126− (0.223)2 ≈ 0.076.

22. We have

A30 = 0.25, A50 = 0.4, and A30:20 = 0.55. Then, by (2.3.6) and (2.4.7), 0.25 = (0.55− 20E30)+ 20E30 ·0.4,
which gives 20E30 = 0.5. Then e−δ200.95 = 0.5, and δ ≈ 0.032.

29. The first group is healthier since for any t, the probability to attain age x+ t is larger for the first group.
In a certain sense, people from the first group live longer, and then for any insurance, the APV for the first
group should be smaller; more precisely, not larger.

Rigorously, let T be a lifetime, and let Ψ be a random moment of payment. Assume that Ψ = ψ(T ) where
ψ(x) is a non-decreasing function. This is the case for all insurances we considered. Then, integrating by
parts, for the APV we have

A = E{e−δΨ}=
∫ ∞

0
e−δψ(t)dP(T ≤ t) =−

∫ ∞

0
e−δψ(t)dP(T > t)

= e−δψ(0)P(T > 0)+
∫ ∞

0
P(T > t)de−δψ(t).

Formally, ψ(t) may be non-differentiable at one point (as ψ(t) = min(t,n)) but for integration it does not
matter. In any case, the function e−δψ(t) is non-increasing, and hence the differential de−ψ(t) ≤ 0. Therefore
the choice of a larger function P(T > t) leads to a non-larger quantity A.

33. (a) All characteristics we consider may be represented as E{exp{−δΨ}}, where Ψ is the corresponding
random payment time. If P(0 < Ψ < ∞)> 0 (that is, Ψ is not equal to zero or infinity with probability one),
then E{exp{−δΨ}} is decreasing in δ.

(b) All functions are continuous in δ; so, it suffices to consider the case δ = 0. The present value of $1
to be paid in future is $1. However, we must not forget that for some insurances (for example, for a term
insurance), with a positive probability, there will be no payments. Hence, the APV equals one times the
probability that there will be a payment. In particular, as δ → 0,

limAx = lim Ax = limAx:n = limAx:n = 1,

lim A1
x:n = limA1

x:n = P(K(x)< n) = nqx,

lim m|Ax = lim m|Ax = lim
n

Ex = P(T (x)> m) = m px.
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(c) Rigorously, we should compute limδ→0 E{exp{−δΨ}}. We should not forget that Ψmay assume an
infinite value with a positive probability, and consequently, the r.v. Z = exp{−δΨ}} may be equal zero with
the same probability. So, limδ→0 E{exp{−δΨ}}= E{1{Ψ<∞}}= P(Ψ < ∞). (One may pass the limit inside
the expectation by the Lebesgue dominated convergence theorem, which is certainly out of the scope of this
book.)

34. For any number δ, the function e−δt is convex (in another terminology, concave upward), so by Jensen’s
inequality (see p.100), E{exp{−δΨ}} ≥ exp{−δE{Ψ}}. Thus, when replacing Ψ by E{Ψ}, we underesti-
mate the APV. In particular, Ax ≥ exp{−δex} and Ax ≥ exp{−δ

◦
ex}.

3. Chapter 9:

3. The symbol a20 denotes the expected present value of the whole life insurance on a twenty years old
person whose lifetime is random, while a20 denotes the present value of a certain annuity paid during 20 .
years (see p.478).

19. This immediately follows from (3.2.5) since vk · k px = kEx. The formula (3.2.5) was obtained by the
current payment technique (see Section 1.1).

20. (a) It is convenient to proceed from (1.1.7), i.e., from the formula

ax =
∫ ∞

0
e−δtct · t pxdt (5)

in the continuous time case, and from (1.2.5), i.e., from the formula

äx =
∞

∑
k=0

e−δkck · k px (6)

in the case of annuity-due. The characteristics ax and äx are non-increasing in δ. If ck · k px ̸= 0 at least for
one k ̸= 0, then äx is decreasing. However, if for example, in a m-deferred insurance contract, m px = 0, then
m|äx is just zero.

In the continuous time case, we need ct · t px to be positive in an interval of positive t’s. Except the trivial
case where it is not so, all annuity characteristics under consideration are decreasing in δ.

(b) If δ = ∞, all future payments have zero values. So, for any payments ct , we have ax → 0 as δ → ∞. In
the discrete time case, the first payment is provided immediately and its value is not discounted. So, for all
payments ck, we have äx → c0. Thus, in the case ct ≡ 1 for the quantities äx, äx:n , the limit equals one, while
in the case of the deferred annuity m|äx, the limit is zero.

Consider limits as δ → 0. All characteristics are continuous functions of δ, so it suffices to set δ = 0. If
δ = 0, then the present value of an annuity paid at unit rate is equal to the length of the payment period in
the continuous time case, and to the number of payments in the discrete time case. We must also remember

6



that the period (or the number) mentioned may equal zero. In particular, as δ → 0,

limax = E{T}= ◦
ex,

lim äx = E{K +1}= ex +1,

lim ax:n = lim(ax − n pxax+n) =
◦
ex − n px

◦
ex+n, (7)

lim äx:n = lim(äx − n pxäx+n) = (ex +1)− n px(ex+n +1)

= ex + nqx − n pxex+n, (8)

lim m|ax = m pxE{T (x+m}= m px·
◦
ex+m,

lim m|äx = m px(E{K(x+m)}+1) = m px(ex+m +1).

(c) Probably, the easiest way to prove the formulas above rigorously is to pass the limit as δ → 0 inside the
integral and the sum in (5) and (6), respectively. Considering, for example, lim m|ax, we may write that, as
δ → 0,

m|ax =
∫ ∞

m
e−δt · t pxdt →

∫ ∞

m
t pxdt = m px

∫ ∞

m
t−m px+mdt.

Making the variable change s = t −m, we have

m|ax → m px

∫ ∞

0
s px+mds = m pxE{T (x+m)}.

21. Clearly, äx:n ≥ äx since unlike the case of the whole life annuity, the certain and life annuity provides the
first n payments for sure. One may also compare (3.4.7) with (3.1.8).

If the probabilities k px are close to one for k = 0, ...,n− 1, then the expression (3.4.7) is close to (3.1.8).
Theoretically, äx:n = äx if k px = 1 for k = 0, ...,n−1.

Now, limδ→0 äx:n = E{max{n,K +1}}. This follows from (3.4.1) and the general fact that the present value
Y = Ψ if δ = 0 and ck ≡ 1. Formally, this follows, for example, from (1.2.3).

22. For δ = 0, we rewrite (3.2.6) as

E{K(x)+1}= E{min{K(x}+1, n}}+ n pxE{K(x+n}+1}. (9)

On the other hand,

E{min{K(x)+1,n}} = E{K(x)+1−max{K(x)+1−n, 0}}
= E{K(x)}+1−E{max{K(x)+1−n, 0}}
= E{K(x)}+1− n pxE{K(x)+1−n |T (x)≥ n}
= E{K(x)}+1− n px(E{K(x+n)}+1).

Substituting this into the r.-h.s. of (M-9), we come to the l.-h.s. of (M-9).

We can also substitute into (3.2.6) the results of Exercise 20, which leads to

ex +1 = ex + nqx − n pxex+n + n px(ex+n +1}.

As is easy to see, this is an identity.
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23. Reasoning heuristically, we can write the counterparts of (3.2.6) and (3.2.8) immediately:

ax = ax:n + vn
n pxax+n, (10)

and
ax:m = ax:n + vn

n px ax+n:m−n for all m = n,n+1, ... , (11)

respectively. Relation (M-10) follows from (M-11) by setting m = ∞. The proof of (M-11) is similar to what
we did in Section 3.2 and runs as follows:

ax:m =
∫ m

0
e−δt

t pxdt =
∫ n

0
e−δt

t pxdt +
∫ m

n
e−δt

t pxdt

= ax:n +
∫ m

n
e−δ(t−n)e−δn

n px ·t−n px+ndt

= ax:n + e−δn ·n px

∫ m

n
e−δ(t−n)

t−n px+ndt.

Under the variable change s = t −n, this implies that

ax:m = ax:n + e−δn ·n px

∫ m−n

0
e−δs

s px+ndt = ax:n + e−δn · n px ·ax+n:m−n .

24. (i)
ax = ax:n + vn

n pxax+n;

(ii)
äx = äx:n + vn

n pxäx+n;

(iii)
äx = äx:m + m|äx

[relations (ii) and (iii) follows from each other in view of (3.3.7)];

(iv)
Ax = 1−δax;

(v)
Ax = 1−däx;

(vi)
Ax:n = 1−däx:n ;

(vii)
A1

x:n = 1−däx:n − vn
n px.

27. Let $10,000 be a unit of money. The APV of the uncle’s gift is 2ä20, while the annuity Ann prefers
is the 10-year deferred annuity whose APV is c · 10 p20e−δ·10ä30, where c is the annual payment. We
use the Illustrative Table which corresponds to the data on the total population of USA, 2002. We have
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10 p20 = (l30/l20) =
97743
98675 ≈ 0.9906, ä20 ≈ 22.48818, and ä30 ≈ 21.25547. Then, for the two annuities to be

equivalent, we should have

c =
2ä20

e−δ·10 10 p20 · ä30
≈ 2 ·22.48818 · e0.04·10

0.9906 ·21.2554
≈ 3.1866.

So, if Ann attains the age of 30, she will annually get $31,866.

28. (a) Let Ψ be the number of visits. The r.v. Ψ has the geometric distribution in the form (0.3.1.7)
with p = 0.1. The present value of the total money spent is the r.v. Y = ∑Ψ

k=1 vk−1Xk, where Xk is the random

amount spent at the kth visit. Assuming X’s and Ψ are independent, we write E{Y |Ψ}=
Ψ

∑
k=1

vk−1E{Xk |Ψ}=

8
Ψ

∑
k=1

vk−1 = 8
1− vΨ

1− v
. Then

E{Y}= E{E{Y |Ψ}}= E
{

8
1− vΨ

1− v

}
=

8
1− v

(1−E{vΨ}) = 8
1− v

(1−MΨ(lnv)),

where MΨ(z) =
ez p

1−qez , the m.g.f. of Ψ (see Section 0.4.3.2), and q = 1− p. Now, MΨ(lnv) =
vp

1−qv
(which is the generating function of Ψ), and

E{Y}= 8
1− v

(1− vp
1−qv

) =
8

1−qv
=

8
1−0.9 ·0.96

≈ 58.82.

(b) Making use of (0.7.3.2), we write

Var{Y} = E{Var{Y |Ψ}}+Var{E{Y |Ψ}}= E

{
Ψ

∑
k=1

v2(k−1)Var{Xk}

}

+Var
{

8
1− vΨ

1− v

}
= E

{
16
12

· 1− v2Ψ

1− v2

}
+

64
(1− v)2Var{vΨ}

=
4
3
· 1

1− v2 (1−E{v2Ψ})+ 64
(1− v)2 (E{v2Ψ}− (E{vΨ})2). (12)

As was already noted, E{vΨ} = vp
1−qv . Then E{v2Ψ} =

v2 p
1−qv2 . One can insert it into (12) and get a

general formula, but we will restrict ourselves to a particular answer. For v = 0.96 and p = 0.1, we have
E{vΨ} ≈ 0.706 and E{v2Ψ} ≈ 0.540. Then, as is easy to calculate using (12), Var{Y} ≈ 1670.38.

29. (a) Let $100,000 be a unit of money, and d = 1− e−δ, where δ = 0.03. Following (3.1.4) and (3.1.5),
we have

ä30 =
1
d
(1−A30) =

1
1− e−0.03 (1−0.2)≈ 27.07,

and

Var{Y}= 1
d2 (

2A30 − (A30)
2) =

(
1

1− e−0.03

)2

(0.09−0.22)≈ 57.24.
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(b) Making use of (3.2.3) and the results of Exercise 8-20, we have

ä30:35 =
1
d
(1−A30:35 )≈

1
1− e−0.03 (1−0.386)≈ 20.77.

For the variance of the 35-year term insurance, we got Var{Z}≈ 0.030. Then, for the corresponding annuity,

Var{Y}=
(

1
1− e−0.03

)2

·0.03 ≈ 34.35.

36. The combination of two temporal annuities, namely, the combination with the APV 20ä20:45 +10ä20:5 ,
pays 30 for the first 5 years and 20 for the next 40 years. We should subtract the 20-year deferred 25-year
temporal annuity whose APV is 10 · 20|ä20:25 , which amounts to 10v20

20 p20ä40:25 . Thus, the total APV is
20ä20:45 +10ä20:5 −10v20

20 p20ä40:25 .

On additional problem #2. Let n = 100, Yi; i = 1, . . .n, be the present value of the annuity to be paid to
the ith client, and S = Y1 + · · ·+Yn. We have computed above the quantities m = E{Yi} and σ2 = Var{Y}
in both cases ((a)and (b)) above. Denote by H the initial size of the fund. We want to have a fund such that
P(S ≤ H)≥ 0.99. Using the normal approximation, we have

P(S ≤ H) = P
(

S−mn
σ
√

n
≤ H −mn

σ
√

n

)
= P

(
S∗ ≤ H −mn

σ
√

n

)
≈ Φ

(
H −mn

σ
√

n

)
≥ 0.99.

So, if q0.99 is the 0.99-quantile of the standard normal distribution (≈ 2.33), then

H −mn
σ
√

n
≥ q0.99,

and hence
H ≥ mn+q0.99σ

√
n.

It remains to insert the particular values of q0.99,m,σ, and n.

4. Chapter 10:

4. (i) Px = Ax
/

ax and Px = Ax
/

äx. Since ax ≤ äx, and Ax ≥ Ax (see Exercises 8-27 and 9-15), Px ≥ Px.

(ii) The logic is the same. The premiums Px:n = Ax:n
/

ax:n and Px:n = Ax:n
/

äx:n . Then Px:n ≥ Px:n because
Ax:n ≥ Ax:n , and ax:n ≤ äx:n .

(iii) Px = Ax
/

äx and Px:n = Ax:n
/

äx:n . Clearly, Ax ≤ Ax:n , and äx ≥ äx:n . Hence, Px ≤ Px:n .

(iv) P1
x:n = A1

x:n
/

äx:n and Px:n = Ax:n
/

äx:n . The denominators are the same, while A1
x:n ≤ Ax:n , so P1

x:n ≤ Px:n.

11. The lifetime T is exponential with µ = 0.01, so P(K = k) = (1− e−µ)e−µk. The insurance may be
represented as the sum of a 10-year term insurance with a benefit of 1000, and a 15-year term insurance with
the same benefit.
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The APV for the first insurance is

1000 ·
9

∑
k=0

vk+1(1− e−µ)e−µk = 1000 · (1− e−µ)v
1− (ve−µ)10

1− ve−µ ≈ 72.857800.

For the second, it is

1000 ·
14

∑
k=0

vk+1(1− e−µ)e−µk = 1000 · (1− e−µ)v
1− (ve−µ)15

1− ve−µ ≈ 95.594223.

The APV for the premium annuity-due may be computed by(9.3.2.5), which amounts to

14

∑
k=0

vke−µk =
1− (ve−µ)15

1− ve−µ ≈ 10.112946.

Hence,

P ≈ 72.858+95.594
10.113

≈ 16.657.

14. If δ = 0, then in view of what we got in Exercise 5 and (M-8),

P =
n px · ex+n +1

ex +1− n px − n pxex+n
.

17. Since we consider the event {L < 0} = {Z −πnet(1+ k)Y < 0}, the size of the benefit does not matter:
we can consider the problem for a unit benefit. We have A50 ≈ 0.32654, ä50 ≈ 17.1756, so

πnet ≈
0.32654
17.1756

≈ 0.01901.

Next,
H2 = 2A50 − (A50)

2 ≈ 0.13526−0.326542 ≈ 0.028632,

and H ≈ 0.169208. Now, d = 1− e−0.04 ≈ 0.039, and

πγ ≈
0.32654+1.6448 ·0.1692/

√
100

17.1756−1.6448 ·0.1692/(0.039
√

100)
≈ 0.021526.

To find k, we should solve the inequality (1+ k)πnet ≥ πγ. A solution is k ≥ 0.133 or 13.3%.

18. We start with

äx =
∞

∑
k=0

vk
k px,

and

äx:n =
n−1

∑
k=0

vk
k px.

It is given that, for all k, the probabilities k px are larger for the first group. Hence, äx and äx:n are also larger
for the first group. Since Ax = 1−däx, and Ax:n = 1−däx:n , the characteristics Ax and Ax:n are smaller for
the first group. Because Px = Ax/ax and Px:n = Ax:n/äx:n , both premiums are smaller for the first group.

11



19. Let µ(x) = µ, and q = e−µ. In Exercise 8-4, we have shown that

Ax = v
1−q
1−qv

.

(In Exercise 8-4. we wrote e−δ for the discount factor v.) Then

1−Ax = 1− v
1−q
1−qv

=
1− v
1−qv

=
d

1−qv
,

and
Px =

dAx

1−Ax
= v(1−q).

22. (a) First, we compute

35E30 = (l65/l30)e−δ·35 = (82609/97743)e−0.04·35 ≈ 0.2084.

Then
35|a30 = 35E30 ·a65 ≈ 0.2084 ·12.6095 ≈ 2.6280.

Next, we calculate

A1
30:35 = A30 − 35E30 ·A65 ≈ 0.1666−0.2084 ·0.5056 ≈ 0.06123.

Then
A30:35 = A1

30:35 +35 E30 ≈ 0.06123+0.2084 ≈ 0.2696,

and

ä30:35 =
1−A30:35

1− exp{−0.04}
≈ 18.6267.

Thus,

Pnet = (35|a30/ä30:35 )≈
2.6280
18.6267

≈ 0.1411.

Adding 5%, we get ≈ 0.1482 per dollar, or $7407 per year.

27. First, as has been shown in Exercise 6, the benefit premium for an n-year term insurance is P1
x:n =

Px:n −P
x:

1
n
, where the last premium is that for the n-year pure endowment. Denoting, for simplicity and for

a moment, this premium by P∗
x:n , note that P∗

x:n = nEx/ax:n . Now,

tV
1
x:n = A1

x+t:n−t −P1
x:n ax+t:n−t =

= (Ax+t:n−t − n−tEx+t)− (Px:n −P∗
x:n )ax+t:n−t

= Ax+t:n−t −Px:n ax+t:n−t − n−tEx+t +P∗
x:n ax+t:n−t

= tV x:n − n−tEx+t +P∗
x:n ax+t:n−t ,

where tV x:n is the reserve for the n-year endowment insurance. Using (2.3.5) and the above expression for
P∗

x:n , we have

tV
1
x:n = 1− ax+t:n−t

ax:n
− n−tEx+t + nEx

ax+t:n−t

ax:n

= (1− n−tEx+t)− (1− nEx)
ax+t:n−t

ax:n
.
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For the exponential case, we follow what we did in Example 2.3.-2. Since nEx = e−δne−nµ = e−(δ+µ)n,

tV
1
x:n = (1− e−(µ+δ)(n−t))− (1− e−(δ+µ)n)

1− e−(δ+µ)(n−t)

1− e−(δ+µ)n
= 0,

which is not surprising in view of the memoryless property. Unlike the case of an endowment insurance, in
the term insurance case, the “possibility that the payment will be soon made does not get larger” when the
time is getting closer to the maturity of the contract.

28. If µ(x) = µ, then in accordance with (9.3.2.5),

äx:n =
n−1

∑
k=0

e−δke−µk =
n−1

∑
k=0

e−(µ+δ)k =
1− e−(µ+δ)n

1− e−(µ+δ) ,

and, by (2.3.2),

kVx:n = 1− 1− e−(µ+δ)(n−k)

1− e−(µ+δ)n =
e(µ+δ)k −1
e(µ+δ)n −1

.

29. If δ= 0, then äx =E{K(x)+1}, ax =E{T (x)}, äx:n =E{min{K(x)+1,n}}, and ax:n =E{min{T (x),n}}.
Then, in accordance with (2.3.2),

kVx = 1− E{K(x+ k)+1}
E{K(x)+1}

= 1− ex+k +1
ex +1

=
ex − ex+k

ex +1
;

We have already obtained the similar formula for the full continuous case in (2.1.3). In the traditional
notation, we write it as

tV x = 1− E{T (x+ t)}
E{T (x)}

=

◦
ex −

◦
ex+t

◦
ex

.

For an n-year endowment, using (2.3.2), (2.3.5), (M-7) and (M-8), we have

kVx:n = 1− E{min{K(x+ k)+1,n− k}}
E{min{K(x)+1,n}}

= 1− ex+k + n−kqx+k − n−k px+kex+n

ex + nqx − n pxex+n
,

and

tV x:n = 1− E{min{T (x+ t),n− t}}
E{min{T (x),n}}

= 1−
◦
ex+t − n−t px+t ·

◦
ex+n

◦
ex − n px·

◦
ex+n

=

◦
ex −

◦
ex+t +(n−t px+t − n px)

◦
ex+n

◦
ex − n px·

◦
ex+n

.

30. For an m-year deferred life annuity, for k ≤ m,

kVben = m−k|äx+k −Pbenäx+k:m−k = m−k|äx+k −
m|äx

äx:m
· äx+k:m−k

= vm−k · m−k px+k · äx+m − vm · m px · äx+m ·
äx+k:m−k

äx:m

= vm−k · m−k px+k · äx+m

(
1− vk · k px ·

äx+k:m−k

äx:m

)
.
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